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The nonlinear evolution of free-electron laser (FEL) amplifiers is studied for infrared and shorter
wavelengths. The configuration of interest consists in the propagation of an energetic electron beam
through a drift tube in the presence of a periodic wiggler magnetic field with planar symmetry. A three-
dimensional formulation is derived in which the electromagnetic field is represented as an expansion of
Gaussian optical modes. Since the wiggler model is characterized by planar symmetry, the Gauss-
Hermite modes are used for this purpose. A set of nonlinear differential equations is derived for the evo-
lution of the amplitude and phase of each mode, and they are solved simultaneously in conjunction with
the three-dimensional Lorentz force equations for an ensemble of electrons in the presence of the
magneto-static wigg1er, self-electric and self-magnetic fields due to the charge and current distributions
of the beam, and the electromagnetic fields. It is important to note that no wiggler average is used in the
integration of the electron trajectories. This permits the self-consistent modeling of effects associated
with (1) the injection of the beam into the wiggler, (2) emittance growth due to inhomogeneities in the
wiggler and radiation fields as we11 as due to the self-fields, (3) the effect of wiggler imperfections, and (4)
betatron oscillations. The optical guiding of the radiation field is implicitly included in the formulation.
This approach has important practical advantages in analyzing FELs, since it is necessary only to
characterize the beam upon injection into the wiggler, and the subsequent evolution is treated self-
consistently. Numerical simulations are performed for two examples corresponding to an infrared FEL

0
at wavelengths near 3.5 pm, and an x-ray FEL operating in the neighborhood of 1.4 A wavelengths cor-
responding to the proposed linear coherent light source (LCLS) at the Stanford Linear Accelerator
Center. Results for both cases indicate that the more severe limiting factor on the performance of the
FEL is the beam emittance. For the infrared example, the transition to the thermal regime occurs for an
axial energy spread of hy, /y0=0. 19%%uo, and optimal performance is obtained for 4y, /yo &0.1% and y
is the relativistic factor. This restriction is more severe for the LCLS parameters, for which the thermal
transition is found for hy, /yo 0.05% and optimal performance requires hy, /yo 0.01%. Wiggler
imperfections are found to be a much less important constraint on FEL design. Simulations indicate
that there is no coherent "walkoff" of the beam from the symmetry axis due to wiggler imperfections,
and that the radiation field is sufficiently guided by the interaction that no severe degradation is found in
the extraction efficiency or growth rate for moderate levels of wiggler fluctuations.

PACS number(s): 41.60.Cr, 41.60.—m, 41.50.+h, 52.75.Ms

I. INTRODUCTION

The free-electron laser (FEL) has been demonstrated to
operate at spectral ranges from the microwave through
the ultraviolet [1—16] using a wide variety of accelera-
tors, including modulators, pulse line accelerators, elec-
trostatic accelerators, induction and rf linacs, and storage
rings. The fundamental physics of the interaction relies
upon stimulated scattering due to the ponderomotive po-
tential created of the beating of a periodic magnetostatic
wiggler and the radiation field in the presence of an ener-
getic electron beam [17]. Wiggler magnets have been
built with helical, planar, and azimuthal symmetry and
FELs have been configured as master oscillator power
amplifiers (MOPAs), oscillators, and super-radiant
amplifiers. The term super radiant amp-lifier was original-
ly used to denote a device in which the radiation grows
from noise in a single pass through the wiggler; however,
the term self-amplified spontaneous emission (SASE) has
recently become more widely used for this class of device.

MOPAs and SASE devices have typically been em-

ployed longer (millimeter and submillimeter) wavelengths
using high-current but relatively low-energy electron
beams. In this parameter regime, the FEL grain is
sufficiently high to drive the signal to saturation in a sin-
gle pass. In contrast, short-wavelength FELs (defined
herein as near-infrared wavelengths and below) have re-
quired higher-energy beams. Since the currents available
from most accelerators capable of producing the neces-
sary energies were not high enough to yield single-pass
gains suitable for amplifier operation, these FELs have
typically been configured as oscillators. However, recent-
ly rf linac designs have been proposed in which the peak
currents are high enough to make amplifier operation
possible. The purpose of this paper is to address a range
of important issues relevant to short-wavelength FEL
amplifiers.

In this paper, a three-dimensional nonlinear formula-
tion of the interaction in short-wavelength FELs is de-
scribed and applied to the study of several devices of
current interest in the infrared and x-ray spectra. The
technique employed is similar to a formulation developed
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previously [18—20] that was applied to long-waveguide
FELs. The fundamental technique is based upon a repre-
sentation of the electromagnetic field as a superposition
of vacuum modes. The long-wavelength formulation was
tailored to treat the modes in both cylindrical and
rectangular waveguides. For the present case of short-
wavelength FELs, Gaussian optical modes will be used.
Nonlinear equations governing the evolution of the am-
plitude and phase of each mode are derived by taking an
average of Maxwell's equations over the wave period.
This eliminates the fast time- and space-scale variation
from the equations, which greatly reduces the computa-
tional requirements. These equations are integrated
simultaneously with the three-dimensional Lorentz force
equations for an ensemble of electrons subject to the total
aggregate of static and fluctuating fields. This includes
the magnetostatic wiggler, the electromagnetic radiation
fields, and the static self-electric and self-magnetic fields
produced by the bulk charge and current densities of the
beam [21]. However, collective Raman effects associated
with the fluctuating fields of the beam space-charge
waves are neglected in the analysis because the frequen-
cies of interest are much higher than the beam plasma
frequency.

It is important to emphasize that no average is per-
formed over the Lorentz force equations. This permits
the simulation of the entire wealth of three-dimensional
phenomena in the FEL including, but not limited to, em-
ittance growth in the injection of the beam into the
wiggler and during the course of the interaction, the
effect of transverse inhomogeneities in the fields which
manifests as an effective energy spread leading to reso-
nance broadening and betatron oscillations, optical guid-
ing of the radiation field by the beam, and the self-
consistent modeling of wiggler imperfections.

Two wiggler models are used, both of which have pla-
nar symmetry. The reason for this is that most of the
short-wavelength FELs, as well as the undulators used in
synchrotron light sources, are planar designs. In view of
this wiggler symmetry, the preferred choice for the opti-
cal modes are the Gauss-Hermite modes. It should be
observed in this regard that the drift tube in which the
electron beam propagates also constitutes a waveguide,
and that Gaussian modes do not rigorously satisfy the
boundary condition on the drift tube wall. As a result, it
is implicitly assumed that the spot size of the Gaussian
radiation beam is much less than the radius of the drift
tube. Furthermore, since the radiation is guided by the

I

beam, it is also assumed that the beam radius is much
smaller than the drift tube radius.

The organization of the paper is as follows. The gen-
eral mathematical formulation is described in Sec. II.
This includes the wiggler geometry, the Gauss-Hermite
modes, the dynamical equations for the amplitudes and
phases of the Gaussian modes, and the electron dynam-
ics. Two numerical examples are discussed in Sec. III.
The first is an infrared FEL aperating at a wavelength of
about 3.5 pm. The second is relevant to an x-ray FEL
design which is under consideration at the Stanford
Linear Accelerator Center (SLAC) [22] which is referred
to as the Linear Coherent Light Source (LCLS) utilizing
the SLAC linac. This is a 15-GeV design which is intend-
ed to operate at wavelengths ranging from 1 to 4 A. In
both cases, issues relating to the extraction efBciency, the
sensitivity to beam emittance, the mode spectrum, and
the effect of wiggler imperfection are examined. A sum-
mary and discussion is given in Sec. IV.

II. MATHEMATICAL FORMULATION

The physical configuration of interest is one in which
an energetic electron beam propagates through a circular
drift tube in the presence of a planar wiggler magnetic
field. Since we are interested in radiation in the infrared
spectrum and still shorter wavelengths, the electromag-
netic field is expressed in terms of Gaussian optical
modes. Furthermore, because the wiggler has a planar
symmetry, it is most convenient to employ a superposi-
tion of Gauss-Hermite modes. The electron dynamics are
treated using the full three-dimensional Lorentz force
equations with these magnetostatic and electromagnetic
fields. In addition, collective effects arising from the bulk
self-electric and self-magnetic fields due to the charge and
current distribution of the beam are included as we11 un-
der the assumption of a circular pencil beam geometry.
However, since the wavelength of interest is less than or
of the order of several micrometers, the collective Raman
effects due to the beam space-charge waves are neglected.

A. Wiggler geometry

Two different models of the wiggler field are used. One
model is based upon a planar wiggler generated by a mag-
net stack with parabolically shaped pole faces [1], and
has the form

kx ky kx k„yB„(x)=B (z) cosk z e„sinh sinh — +e cosh — cosh
2 2 ' 2 2

kx ky—&2e, sink z cosh — sinh
2 2

where B denotes the wiggler amplitude and k„—:2vrlA,
denotes the wiggler wave number corresponding to the
wiggler period A, . This type of wiggler provides
enhanced focusing of the electron beam in the plane

I

transverse to the direction of bulk electron Aow. The
other wiggler model is one in which focusing in the direc-
tion of the wiggler-induced transverse oscillation is de-
scribed by a polynomial increase in wiggler amplitude.
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B„(x)= coskwz d
sink z — 8 (z)

w Z

X sinhk y—Y(k y)
X(x ),

cosk z8„(x)= sink„z — 8 (z )
W

X coshk y—k y sinhk y X(x ),
2k dx

(3)

Y(k y)B„,(x)=B„(z)cosk z sinhk y-
k

1 d2 d21+
~ X(x),

This is the x direction for the present choice of wiggler
geometry, and the components of the field are represent-
ed as

where 8 denotes the uniform wiggler amplitude, N is
the length of the adiabatic entry taper in wiggler periods,
zo is the start of the downstream amplitude taper for
e%ciency enhancement, and c. represents the slope of
the taper.

The random component of the amplitude is determined
by specifying the magnitude of the amplitude variations
at periodic intervals of a wiggler period b.z =A, /N, and
then mapping the amplitude between these points in a
continuous fashion. Thus we choose a sequence of
wiggler imperfections, b.B„=b,B„(nb,z ) either from a
random number generator or from the measured varia-
tions in a specific wiggler magnet. The only restriction
placed on this sequence is that AB =0 over the entry
taper region in order to ensure a positive definite ampli-
tude. The variation in b,B (z) between these points [i.e.,
nb, z & z & (n + l)hz] is given by

48 (n bz+ 5z ) =b 8„+[68„+i 58„]si—n2
2 Az

where Y(k y) =—k y coshk„y —sinhk y, and

X(x )
=—1+—1 x

2 cx~

2m

describes the enhanced focusing in terms of two free pa-
rameters: the order of the polynomial m and the scale
length a . Observe that in the limit in which the wiggler
amplitude is constant and X(x }~1(i.e., when a„~~ ),
then this wiggler reduces to the well-known three-
dirnensional form of a Bat pole face wiggler
B (x)~B [e„sink z coshk y+e, cosk z sinhk„y].

The wiggler amplitudes in each case are permitted to
vary with axial position in order to model such effects as
(1}the adiabatic injection of the beam into the wiggler, (2)
e%ciency enhancement using a tapered wiggler ampli-
tude, and (3) the inclusion of imperfections in the wiggler.
As such, we can write the amplitude as a superposition of
systematic and random components

B„(z) =8 "(z)+AB„(z),
where the systematic B" describes the adiabatic entry
taper as well as the uniform amplitude and systematic
taper for efficiency enhancement, and the random com-
ponent AB can either be chosen using a random number
generator or the measured imperfections from an actual
wiggler magnet.

We choose a systematic amplitude variation of the
form

where 0~5z ~hz. This method for the treatment of
wiggler imperfections has been previously applied to
long-wavelength FELs in which the electromagnetic
fields are confined in a waveguide [23,24].

Free-electron lasers have been constructed using both
wiggler types. The first design using parabolic pole faces
was constructed by Phillips [1], and the second wiggler
type has been used in a harmonic FEL experiment at the
Naval Research Laboratory [25]. Both field types pro-
vide enhanced focusing which is necessary for the propa-
gation of intense beams. It is important to note, however,
that while the parabolic pole face model in Eq. (1) is curl-
and divergence-free in the case of a uniform amplitude,
the curl and divergence do not vanish identically when
the amplitude is allowed to vary in z. This simply means
that the fringing fields associated with variations in the
amplitude are not included in the model. Since it is im-
portant to ensure that the wiggler model be self-
consistent in order for the theory to be valid, and since
the curl and divergence are proportional to the slope of
the amplitude, we must restrict the use of this model to
cases where the amplitude changes slowly with axial posi-
tion. In contrast, both the divergence and the z corn-
ponent of the curl of the second wiggler model can be
shown to be divergence-free for any smooth variation in
the amplitude. In addition, while the transverse com-
ponents of the curl do not vanish identically, they are
small for most cases of interest.

B. Electromagnetic fields

k z
B sin

w

O~z ~% A,„
B~'(z)= 8„, N~A&z &zo,

B„[1+k e (z —zo)], zo &z,
(7)

The electromagnetic fields are represented in terms of
the Gauss-Hermite optical modes. This constitutes a
complete basis set which is consistent with the planar
symmetry imposed by the wiggler geometry. It should be
noted, however, that Gaussian optical modes must be
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used with some caution because the drift tube in which
the electron beam propagates also constitutes a
waveguide, and the Cxaussian modes do not rigorously
satisfy the boundary conditions on the drift tube wall. As
a result, the analysis must be restricted to cases where the
radiation spot size is much smaller than the radius of the

drift tube. Since the radiation will be guided by the in-
teraction with the electron beam, this condition is
equivalent to the requirement that the electron beam ra-
dius be much less than the drift tube radius.

The vector potential of the Gauss-Hermite modes can
be expressed as [26]

wp
5 A(x, t)= g 5At „(z) exp( r /w—)H„

p
' W

2g

+2x . +2 +2x z . /2xX Hl e~ sing« —
k e, a, slngl ~M kl ~w w zp w

&2x &2x
w w

v'2x
w

cos+l n

—(1+n + 1)tan
Zp

(10)

where H„denotes the Hermite polynomials, wp denotes
the spot size at the radiation waist, and for frequency and
wave number (co, ki „)the phase is given by

z , kpr
pi „=f dz'ki „(z')+

It should be remarked that this representation is
correct to first order in (ki „w ) '=A, /w, where X denotes
the wavelength; hence, this representation is valid only as
long as the spot size is much greater than the wavelength.
Observe as well that these modes approximate TEM
modes only as long as X «w. For all cases of interest in
this paper, this inequality is satisfied, and it will prove
convenient to use the TEM approximation for the field.

In addition, kp ——co/c is the free-space wavelength,
w =wo(1+z /zo), R(z)—=z(1+zo/z ), and
zo=—koioo/2 is the Rayleigh length. Observe that the
amplitude and wave number of each mode is allowed to
vary slowly in z to describe the growth of the wave as
well as the dielectric e6'ect of the beam on the dispersion.
The Poynting Aux for each mode can be written as

2'+"Ifn fI l, pg ~kl, n w p~~1, n

C. Dynamical equations

The dynamical equations which govern the evolution
of the amplitude and wave number of each mode are
found by substitution of the mode representation (9) into
Maxwell's equations after averaging the equations over a
wave period and orthogonalization in the transverse
mode structure. The procedure is formally equivalent to
that described for long-wavelength FELs [18—20], and re-
sults in equations of the form

2 2

+ —k, „
dz c

4~b 1 ~o Ux 2 z V'2x
5a&„= &+, , exp( r /w )Hi- H„2 2l +nI f w

V'Zy
sin

w
(12)

and

i g2 d i g2
4oib 1 too Ux 2 2 v'2x &2y

2k' „(ki„5ai„)= 2 t+„, , exp( r /w )Ht- H„ cosV l, nc 2 +"l!n! w w
(13)

where 5a& „=—e5Ai „/m, c, cob is the beam plasma fre-
quency, v is the instantaneous electron velocity, e and m,
are the electronic charge and rest mass, and c is the speed
of light In Uacuo.

The averaging operator in Eqs. (12) and (13) is defined
over an ensemble of electrons injected into the wiggler
within one wave period. The initial momentum space
distribution is chosen to be monoenergetic but with a
pitch-angle spread. This can be thought of as having a

zero energy spread but a nonzero emittance. The specific
form of the distribution is

+o(po) = A exp[ —(p.o
—po)'I~p". ]

X5[po pio p o]H(p o) (14)

where the subscript 0 denotes initial quantities (i.e., upon
entry to the wiggler at z =0), po and bp, denote the ini-
tial bulk momentum and momentum spread, respectively,
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H is the Heaviside function, and the normalization con-
stant is

PoA:— m. f dp, o exp[ —(p, o
—po )'/hp, ']

VO

hp,= 1 — 1+2(yo —1)
PO

—l /2

(16)

Note that while this distribution is monoenergetic, there
is an axial energy spread which is given by

where yo—= (I+po/m, c )'~ . The averaging operator
takes the form

z f d4of 'dpz(Aoexp[ (pro po) /~p ]f f dxodyooz(xo yo) f d0oo~~(0o)( ' ' ' )
4K WO 0 7r

b

where Ab denotes the initial cross sectional area of the
beam, Po

=—tan '(p o/p„o), P,o —=u, o/c, go (—: coto-,
where to is the injection time) is the initial ponderomotive
phase, and 0'~~(go) and o ~(xo,yo ) describe the initial beam
distributions in phase and cross section.

D. Electron dynamics

These equations for the amplitude and phase of each of
the Gauss-Hermite modes [(12) and (13)] are integrated
simultaneously with the three-dimensional Lorentz force
equations for an ensemble of electrons. As such, the pro-
cedure is capable of treating the self-consistent injection
of the beam into the wiggler, emittance growth due to the
inhomogeneities in the wiggler and radiation fields, beta-
tron oscillations, and optical guiding of the radiation to
list a few of the three-dimensional effects inherent in the
interaction. Since this is an amplifier model, the Lorentz
force equations are integrated in z and are of the form

5E= —— 5 A
1 a
c Bt

(19)

5B=VX5A . (20)

In addition, E" and B" represent the self-electric and
self-magnetic fields associated with the bulk charge and
current distribution of the beam.

The technique used in the treatment of the self-electric
and -magnetic fields has been described previously [21]
and has been shown to give good agreement with a collec-
tive FEL experiment [27]. Under the assumption of a
Hat-top density profile the self-fields can be expressed as

u, p= —e(E"+5E)——v X(B +B"+5B),'dz C

where B is the wiggler field, 5E and 5B are the elec-
tromagnetic fields associated with the total vector poten-
tial (9),

2

y(r)=yo+ (r Rl, )—
4C2

(23)

for an initial beam radius Rb, and results in an energy
spread which may be expressed as

~7 self /b=5.88X10 ' (24)
XO V'rl —1

where the beam current Ib is in A. It should be noted
that this represents a coherent energy spread across the
beam and is not the same as a thermal energy spread.

It should be remarked here that, in contrast to
Maxwell's equations, there is no necessity to average the
orbit equations. Recall that the amplifier model used is
based upon the propagation of a single frequency wave,
and that the interaction is resonant at the frequency
where the bulk velocity of the electron beam is in synch-
ronism with the phase velocity of the ponderomotive
wave, i.e., ub =co/(k+k„). Since the electromagnetic
field in the Lorentz force equations is evaluated along the
electron trajectory, the bulk phase (apart from the com-
ponents which describe diffraction) varies as y=kz cot. —
Substitution of z=zo+cot/(k+k ) in this expression for
the phase yields y= kzo —ck t under the assumption that
k =co/c ))k . As a result, the contributions due to the
electromagnetic fields in the Lorentz force equations vary
on the scale length of the wiggler period, and the integra-
tion step need only be small enough to resolve this spatial
scale.

III. NUMERICAL ANALYSIS

I

where (x ) and (y ) specify the beam centroid, the (P, )
is the average axial beam velocity. In order to make use
of this approach, these average beam quantities must be
determined at each point in the integration prior to the
calculation of the self-fields. In addition, the beam ini-
tialization must include the space-charge depression in
electron energy across the beam profile. This energy vari-
ation takes the form

and

E"= — cob [(x —(x ) )e + (y —(y ) )e~ ]

'(P, )[(y —&y&) „—( —
& &)" ],

(21)

(22)

The set of coupled nonlinear differential equations for
the amplitudes and phases of the gauss-Hermite modes
(12) and (13) are solved numerically in conjunction with
the Lorentz force equations (18) for an ensemble of elec-
trons. In general, Eqs. (13) and (14) are second order in
the amplitude and phase, but it will prove numerically
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convenient in many cases to neglect the second deriva-
tives of the amplitude and phase, and to integrate the re-
sulting first-order equations. The error associated with
this approximation is, typically, small while the numeri-
cal stability is much improved. The algorithm employed
for this purpose is a fourth-order Runge-Kutta-Gill tech-
nique, and the particle averages are carried out using a
Gaussian quadrature technique in each of the degrees of
freedom (xo,yo, go, Po p,o). For cases discussed in this pa-
per, a choice of 1000 particles was found to be adequate
when Ay, =0, which is increased to 9600 particles other-
wise. The number of Gauss-Hermite modes necessary to
describe the evolution of the electromagnetic field de-
pends upon the detailed parameters of each particular ex-
ample. Diffraction over the Rayleigh length is countered
by optical guiding due to the beam, and the detailed bal-
ance depends upon the Rayleigh length, the growth rate,
and the evolution of the beam envelope in the wiggler.
As a result, the specific number of modes used in each
case is determined by an empirical procedure in which
successive simulation runs are made with increasing num-
ber of modes until convergence of the saturation power
and saturation length are achieved.

The initial conditions are chosen to model the injection
of a solid axisymmetric and monoenergetic electron beam
with a uniform cross section. As mentioned previously,
there is a coherent variation in the kinetic energy across
the beam which is countered by a similar variation in the
potential energy due to the self-electric field. The Gauss-
Hermite modes are initially assumed to be at the free-
space wavelength and it is assumed that the radiation
waist is located at z =0 with a spot size equal to the beam
radius, although this can be altered to model the injection
of power in a given mode with a different spot size. The
initial power levels in each mode can be arbitrarily select-
ed to describe the injection of a specific pulse or of noise.
For each case discussed in this paper, however, it is as-
sumed that the total initial power is in the lowest-order
mode, and all higher-order modes grow from zero power
due to the interaction with the electron beam.

It should be remarked that no attempt is made to
"match" the beam upon entry to the wiggler in the sense
that the beam emittance and radius are selected in order
to ensure that the beam envelope remains constant. In
the opinion of the author, this is a pointless and counter-
productive procedure both from an experimental and
theoretical standpoint. Radiation growth in a FEL is a
microscopic process in which resonant electrons interact
with the radiation field, and give rise to both
amplification and refractive guiding of the wave. The in-
teraction is extremely sensitive to the axial energy spread
(or emittance) of the beam, and even a small axial energy
spread can result in a substantial reduction in the peak
extraction efficiency. In contrast, efforts to "match" the
beam are motivated by the desire to achieve a uniform
beam envelope in the hope that this will yield an im-
proved overlap between the electron beam and the radia-
tion field or, in other words, to maximize the filling-factor
and the growth rate. However, the overlap between the
beam and the radiation is a macroscopic process depend-
ing upon the growth and refractive guiding determined

by the microscopic interaction. Hence, it is more impor-
tant to minimize the emittance in a FEL than it is to
match the electron beam to achieve a uniform envelope.
Variations in the beam centroid due to the wiggler
motion and the beam envelope due to betatron oscilla-
tions will merely result in guiding of the signal, while an
enhanced emittance which may be necessary to match
the beam will certainly result in a degradation in the ex-
tracted power. The most important consideration in the
design of a FEL, therefore, is to minimize the emittance.

Two cases will be examined in this paper. The first is
an infrared FEL operating at wavelengths in the neigh-
borhood of 3.5 pm, and the second is an x-ray FEL
operating at wavelengths near 1.4 A. It will be assumed
in both cases that the injected signal is at a power level of
10 kW. While this may be unrealistic if actual devices in
these spectral ranges are operated in SASE mode, the
analysis will still serve to determine essential characteris-
tics of the interaction such as the extraction efficiency,
sensitivity to emittance, mode character, and the effects
of wiggler imperfections.

For convenience, the simulation will be referred to as
MEDUSA.

A. Infrared FEL

In treating the infrared FEL, it is assumed that a 30-
MeV/100-A electron beam with an initial radius of
0.0525 cm propagates through the drift tube in the pres-
ence of a planar wiggler with an amplitude of 5.2 kG, a
period of 1.8 cm, and an entry taper region which is 10
wiggler periods in length. The specific radius of the drift
tube is not important as long as it is much greater than
the beam radius. In this case, the second wiggler model
[(2)—(5)] is used with a choice of m =2 and a„=0.2 cm,
and it should be noted that the detailed results will vary
somewhat with these parameters. The initial spot size is
assumed to be equal to the beam radius (wo =0.0525 cm)
and that an initial power of 10 kW is injected into the
TEMOO mode. Note that while the Gauss-Hermite modes
are only approximately TEM modes in the limit in which
A, « wo and Rb, it is convenient to refer to them with this
notation.

The first issue to be addressed is the growth of the sig-
nal for an ideal beam in which by, =0 and the mode
spectrum which results therefrom. The results from
MEDUSA for the choice of A, =3.505 pm are shown in
Fig. 1, illustrating the evolution of the power versus axial
position for the total signal and for the TEMOO mode. It
is clear from the figure that the total signal grows in an
approximately exponential fashion until saturation is
reached at a power level of approximately 8.9 MW at
z/k =199. This represents an efficiency of approxi-
mately 0.27% and an average growth rate for all modes
of ~lmk~/k„=2. 69X10 . It is also clear from the
figure that while the TEMOO mode was the dominant
mode upon injection of the signal, higher-order modes
grow rapidly. At saturation, the TEMOO mode power is
1.69 MW, which accounts for only 19% of the total
power.
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P = 10 kW; k = 3.505 p,m; w = 0.0525 cm
in 0
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FIG. 1. Evolution of the power versus axial distance for an
ideal beam.

The growth of higher-order modes depends upon
specific details of the beam radius, wiggler amplitude
(and, hence, the beam displacement for the midplane),
and the radiation spot size and Rayleigh length. It is
found that for the fundamental resonance represented by
this case that the only TEM&„modes which grow are
those for which both l and n are even, and the ones which
grow most rapidly are those where either l or n are zero.
While the TEMpp mode represents less than half the total
power at saturation, it is still the dominant mode. The
TEMp2 and TEMpp modes are the next highest at power
levels approximately 45% that of the TEMpp mode. The
power decreases rapidly for higher-order modes; howev-
er, some 48 modes must be retained in order for the mode
superposition to converge to within better than 1% accu-
racy. This is illustrated in Fig. 2, in which the relative
mode amplitudes (normalized to the power in the TEMpp
mode) are shown at saturation. As shown in the figure,
the bulk of the power is contained within five modes (the
TEMpp TEMpp TEM2p and TEM~ and TEMgp) but

substantial amounts of power are found in the tail of the
superposition.

The even modes are seen to interact preferentially at
the fundamental resonance; however, this does not mean
that odd modes do not interact. It is expected that the
even modes will also be preferentially amplified by in-
teractions at odd harmonics, the odd modes will yield
amplification at even harmonics by a periodic position in-
teraction. This has been demonstrated at microwave fre-
quencies in both theory and experiment at the Naval
Research Laboratory [28], and in theory at infrared
wavelengths at Los Alamos National Laboratory [29].
Harmonic interactions, however, will be discussed in a
future paper.

The broad mode spectrum is not an artifact of the ini-
tial "top-hat" radial density profile. A parabolic density
profile has also been used and, for a fixed total current,
yielded a result which differed from the top-hat distribu-
tion by only a few percent. The principal reason for this
is that the radial distribution describes only the initial
state of the beam. The subsequent beam evolution is
governed by the three-dimensional wiggler, radiation,
and self-fields and the radial profile of the beam is quickly
distorted from the initial state.

The importance of self-fields on the interaction can be
illustrated by examining the resonant spectrum. The
efficiency is plotted as a function of wavelength in Fig. 3
for an ideal beam subject to both the inclusion and
neglect of the self-fields. The resonant interaction is seen
to extend from a wavelength of approximately 3.47 pm
through 3.52 pm with the peak efficiency found at the
longer wavelengths. The effect of the self-fields for this
case is to uniformly reduce the efticiency. At 3.5 pm, the
efficiency drops from 0.30% without the self-fields to
0.27% with the self-fields which represents a 10% drop in
efficiency. A similar decrease due to the self-fields is also
found in the average growth rate as shown in Fig. 4.
Here, the average growth rate at 3.505 pm decreases
from ~Imk~/k =2.82X10 without the self-fields to
2.69X10 with the inclusion of the self-fields. Note
that this 10% drop in the efficiency is associated with a
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FIG. 3. Plot of the e%ciency versus wavelength both with
and without the self-fields.
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FIG. 4. Plot of the average growth rate versus wavelength
with and without the self-fields.

coherent energy drop across the beam of only
b,ysei&/yo=0. 01%. It should also be noted that one-
dimensional phase trapping estimates of the efficiency
[17] yield a value of 0.42% for the maximum efficiency,
which is close to that shown in the figure.

The effect of the axial energy spread on the interaction
is severe. In view of the FEL resonance condition, the
transition to the thermal regime occurs for Av, /vo
=IImkI/[Rek+k ]=5.24X10 since IImkI/k
=0.00269 at a wavelength of 3.505 pm. This corre-
sponds to an axial energy spread (16) of b y, /yo= 0. 19%.
The variation in the efFiciency and average growth rate
with increases in the axial energy spread (by, /yo) is
shown in Fig. 5 at a wavelength of 3.505 pm and subject
to the inclusion of the self-fields over the range of axial
energy spreads up to the thermal transition. It is clear
from the figure that the interaction strength decreases
rapidly with increases in the axial energy spread. The
efficiency decreases by more than half as the energy
spread increases to 0.2%, and the average growth rate
also drops a significant amount from 2.69X10 to
1.86X10 . It is clear, therefore, that an experiment in

0.35
P = 10 kW; X = 3.505 p,m; w = 0.0525 cm

this regime will require the axial energy spread to be held
to less than 0.1% to realize optimal performance.

The effect of wiggler imperfections has been studied by
this non-orbit-averaged approach for long-wavelength in-
teractions in which the transverse mode pattern of the ra-
diation is governed by the waveguide [23,24]. In such
cases, the effect of wiggler imperfections was found to be
small. Typically, root mean square (rms) wiggler imper-
fection levels of as much as a few percent were found to
have negligible impact on the extraction efficiency and
growth rate in a long-wavelength FEL. However, it has
been suggested that this might not be the case for short-
wavelength FELs. The speculation is that in the short-
wavelength regime wiggler imperfections might cause the
electron beam to walk off from the radiation spot thus re-
sulting in a degradation in the efFiciency and growth rate.

In order to address this speculation, we now consider
the effect of the random contribution to the wiggler am-
plitude defined in Eqs. (6) and (8) and generate a sequence
of random periodic fluctuations in the wiggler amplitude
[b.B„]with a period of A, /2 (i.e., Nz =2 in the notation
described in Sec. II). The effect of these wiggler imper-
fection distributions is studied statistically for ensembles
of random sequences at fixed rms values. Typically, it is
found that, at a given rms level, the ensemble averages re-
quire consideration of 35 different random sequences for
the average efficiency to converge to within 1%. In order
to isolate the effect of the wiggler imperfections, all such
simulations are performed under the assumption of an
ideal beam (i.e., b,yi =0).

MEDUSA indicates that, as in the case of the long-
wavelength FELs studied previously [23,24], the effects of
wiggler imperfections are also small for this infrared
wavelength example. The variation in the ensemble-
averaged efficiency with increases in (b,B /B„)„, is
shown in Fig. 6 for parameters consistent with the case
shown in Fig. 1. The error bars in the figure denote the
standard deviations. It is clear from the figure that the
average efficiency is remarkably insensitive to the wiggler
imperfections even for rms fluctuation levels as high as

0.28—
I

0.0025
0.24

~
~ 020

0.16 0.0015

0.12—
I

0.00
I I I I I I I I I I I I t I I I I I 0 pp1

0.05 0.10 0.15
Axial Energy Spread (%%uo)

0.20

P, = 10 kW; X, = 3.505 p,m; w = 0.0525 cm
r

)
i » i

(
i r i &

)
r i » 0 003

48 M~odes v =30Mev
~o 0 30

u 0.25
C

~ pHo 0.20

0.15
can

0.10

0.05

0.00
0

N =10
m=2
o'. = 0.2 cm

OCiCS '

Ib 110A

R = 0.0525 cm

hy =0

4 6 8 10
(AB /B ) (%)

12

FIG. 5. Variation in the eKciency and average growth rate
with axial energy spread.

FIG. 6. Variation in the ensemble-averaged efficiency for
Np =2.



52 NONLINEAR THEORY OF SHORT-WAVELENGTH FREE-. . . 5409

10%. Over this range of fiuctuations, the efficiency drops
by slightly less than half from 0.27% to 0.14%. More
significantly, the ensemble-averaged efficiency actually in-
creases slightly as (b,B /B~)„, increases up to 2%, and
drops only to 0.26% for (b.B /B )„,=5%. The reason
for the small increase in the efficiency at low values of
(6B /B )„,is that the only constraint placed upon the
random sequence is that of the rms Auctuation level. The
average value of the wiggler fiuctuation (B ) is not con-
strained. Hence, what has happened is that the average
value of the wiggler amplitude has increased slightly over
the 5.2 kG of the uniform 8, and this has resulted in a
slight increase in the efficiency. However, this does not
alter the conclusion that the interaction is relatively in-
sensitive to imperfections in the wiggler field.

In order to explain why the efFect is so small, we turn
to a detailed consideration of the orbit dynamics due to
the wiggler imperfections. Figure 7 shows the motion of
the beam center (x ) versus axial position for an ideal
wiggler [i.e., (bB~/B )„,=0] during the interaction
shown in Fig. 1. The figure shows the spinning up of the
beam in the entry taper region and the bulk wiggler-
induced oscillation. The figure also shows that the beam
motion is not regular but is substantially perturbed. In
order to explain this, note that the beam centroid de-
scribes an average over the entire beam cross section.
Electrons injected near the axis of symmetry execute an
extremely regular trajectory showing largely the effects of
the bulk wiggler oscillation. However, the off-axis elec-
trons undergo substantial betatron motion under the ac-
tion of both the wiggler and the radiation field. Note also
that the initial beam radius Rb =0.03K,„ is substantially
larger than the magnitude of the perturbations of the
beam centroid; hence, these perturbations are relatively
small in comparison with the scalloping of the beam en-
velope.

The motion of the beam center shown for the ideal
wiggler is now compared with that found for the case of
(b B /B )„,=5%. The specific random sequence exam-
ined is one which gave an efficiency close to the ensemble
average, and is shown in Fig. 8. A comparison of the
arnplification of the radiation for the ideal wiggler and for
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FIG. 8. Plot of the wiggler parameter for a specific random
sequence.
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lI1

this choice of wiggler imperfections is shown in Fig. 9. It
is evident that the total extracted power drops from 8.9
MW for the ideal wiggler to approximately 8.7 MW for
this choice of wiggler imperfections. The motion of the
beam center in the wiggler-plane corresponding to the in-
teraction in this particular choice of wiggler imperfec-
tions is shown in Fig. 10. It is clear from the figure that
while the specific motion of the beam center has changed
from that shown in Fig. 7 for an ideal wiggler, the quali-
tative character of the motion has not. The electron
beam is kicked off-axis many times during the course of
the interaction as in the case of the ideal wiggler. In this
case, these perturbations are due both to the large ampli-
tude radiation field and the wiggler imperfections.
Indeed, the combined effects of the large amplitude radia-
tion field and the wiggler imperfections in this case has
led to a much smaller maximum displacement from the
symmetry plane than was found in Fig. 7 for the ideal
wiggler. However, there is still no coherent walk off of
the beam, and while the beam may be displaced in one
direction from the syrnrnetry plane at one point in the in-
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FIG. 7. Motion of the beam center versus axial position in an
ideal wiggler.

FIG. 9. Evolution of the power for an ideal wiggler (solid
line) and for the random wiggler variations (dashed line) shown
in Fig. 8.
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previously, it shall also be assumed that the initial power
is 10 kW in the TEMOO mode, and that the initial spot
size matches the beam radius at 16 pm. The parabolic
pole face wiggler (1) is used to study the interaction for
an ideal wiggler, and the second wiggler (2) is to examine
the effect of wiggler imperfections.

The issue of quantum mechanical effects should be dis-
cussed for this configuration if only for the purpose of
dismissing them. Quantum mechanical effects can be
neglected if the spreading of the electron wave packet
over the length of the wiggler is less than the radiation
wavelength. This can be formulated as [17,30]

(25)

FIG. 10. Motion of the beam center versus axial position
subject to wiggler imperfections.

teraction, it is displaced in the opposite direction at
another point. The net result is that the beam center has
returned to a point near the symmetry plane at the end of
the interaction region.

The conclusions to be drawn from these results are
twofold. In the first place, it does not appear that there is
any serious walk off of the beam. The beam displacement
from the symmetry plane can be relatively large even in
the absence of wiggler imperfections when the radiation
amplitude becomes large, but the effect of wiggler imper-
fections does not magnify this effect and can even counter
it. Thus, MEDUSA does not predict any cumulative
walkoff of the beam due to the wiggler imperfections. In
the second place, the speculation that wiggler imperfec-
tions might result in a severe degradation in the gain and
efficiency are exaggerated. The radiation is guided by the
interaction. Displacements of the beam from the symme-
try plane can result in the presence of a large component
of higher-order modes which might negatively impact the
ultimate use of the FEL; however, as attested by the fact
that the maximum efficiency found from one-dimensional
phase trapping arguments is close to that found by
MEDUSA, the ultimate extracted power is not seriously
affected. In general, therefore, the effect of wiggler im-
perfections is not severe, and is much less important a
constraint on FEL design than the emittance of the elec-
tron beam.

B. X-ray FEL

The x-ray FEL parameters under study here corre-
spond to the proposed LCLS at SLAC. Due to the lack
of sources to drive a MOPA in this spectral band, the de-
vice would operate in the SASE mode using the SLAC
linac at an energy of 15 GeV. The beam pulses would be
compressed in the axial direction to achieve a peak
current of 5 kA, and would have a radial extent of only
16 pm. The proposed wiggler would achieve a 16-kCx
amplitude at a period of 2.7 cm, and it is assumed for this
study that the entry taper region is 10 wiggler periods in
length. This implies a resonant wavelength in the neigh-
borhood of 1.4 A. As in the infrared example discussed
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FIG. 11. EKciency versus wavelength for single mode propa-
gation.

where Az denotes the spreading of the electron wave
packet, A,, =h /m, c is the Compton wavelength, and L is
the length of the wiggler. For the parameters of interest
to the LCLS, the spreading of the wave packet over a
wiggler length of 30 m is hz=9. 2X10 A, which is ap-
proximately three orders of magnitude less than the 1.4-
A wavelength. At this length of wiggler, therefore, quan-
tum mechanical effects can be neglected from the treat-
ment. However, this is the closest that any operational
or proposed FEL has approached to the regime where
quantum mechanical effects are important, and if a
wiggler of 100 m or more in length were required, then
quantum mechanical effects might become important.
Finally, another requirement for the neglect of quantum
mechanical effects is that the electron recoil on emission
of a photon is small. This can be formulated by the re-
quirement that the frequency downshift in the emitted
photon due to the electron recoil is less than the gain
linewidth, and results in a criterion identical to (25).

First consider the interaction for the TEMoo mode
alone. The spectrum is shown in Fig. 11 in which we plot
the extraction efficiency versus wavelength for an ideal
beam and both with and without the self-fields. As
shown in the figure, the efficiency subject to the inclusion
of the self-fields peaks at 0.97% at a wavelength of ap-
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proximately 1.4323 A. The effect of the self-fields is
small, but results in a decrease in the peak efficiency of
approximately 7.5%. In contrast to the results for the in-
frared example, the effect of self-fields can result in slight
enhancements in the efficiency in narrow parts of the
spectrum.

In this example, it is found that adequate convergence
of the mode superposition is achieved using 38 modes. A
plot of the power as a function of axial position is shown
in Fig. 12 for an ideal beam at a wavelength of 1.4323 A.
The interaction saturates at a power of approximately 98
GW for an efficiency of 0.13% over an interaction length
of 30 m. This contrasts with a saturated power level of
about 73 GW over a saturation length of 52 m, which is
found using the TEMpp mode alone. As a consequence,
as in the infrared example, while the TEMpp mode is
dominant, it constitutes only about 27% of the total
power at saturation. The relative mode amplitudes at
saturation are shown in Fig. 13 and are normalized to the
power in the TEMpp mode. It is clear that, as in the in-
frared example, the dominant modes are the TEMpp,
TEMp2 TEMpp TEMp4, and TEM4p, but substantial
amounts of power are contained in the higher-order
modes.

As might be expected, the interaction for the x-ray
FEL is more sensitive to the axial energy spread than the
infrared case. The average growth rate associated with
the interaction in Fig. 12 is ~Imk~/k =1.15X10
which implies that the transition to the thermal regime is
found for hy, /y0=0. 05%. A plot of the variation in the
extraction efficienc and the saturation length at a wave-
length of 1.4323 A spanning the thermal transition re-
gime is shown in Fig. 14. As shown in the figure, the ex-
traction efficiency drops by more than half as the axial
energy spread increases to 0.1%, and by 39% at the
thermal transition. The growth rate also decreases, and
the saturation length increases from about 30 m for an
ideal beam to 39 m at the high end of this range. As
such, it is necessary to keep the beam emittance as small
as possible to remain far below the thermal transition for
optimal performance, and the achievement of near-peak
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efficiencies requires that hy, /yo~ 0.015%.
The effect of wiggler imperfections on the LCLS design

is studied using the second wiggler model (2). The identi-
cal beam ( V& =15 GeV, Ib =5 kA, Rb =16 pm), wiggler
(B = 16 kG, A, =2.7 cm, N = 10), and radiation
(P,„=10kW, A, =1.4323 A, no=16 pm, 38 modes) pa-
rameters are used for this purpose as were used previous-
ly with the parabolic pole face wiggler model, except that
we also assume that I=2 and a =0. 1 cm for the second
wiggler model. The evolution of the power with axial po-
sition for an ideal wiggler is shown in Fig. 15 for pur-
poses of comparison. As is evident in the figure, the
power saturates at approximately 97 GW over a length of
30 m for an overall extraction efficiency of about 0.13%.
This is very close to the results found for the parabolic
pole face wiggler (97 MW over a saturation length of 30
m).

The motion of the beam center in the x direction (the
direction of the principal wiggler-induced transverse ve-
locity) is shown in Fig. 16 for the ideal wiggler case corre-
sponding to that shown in Fig. 15. In contrast to the re-
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suits found for the 30-MeV beam and 3.5-pm radiation
(see Fig. 7), the wiggler motion for the LCLS parameters
in the absence of wiggler imperfections is extremely uni-
form. There is very little wandering of the beam center
due to the high-amplitude radiation field, and the beam
exhibits the bulk wiggler motion as well as the expected
betatron oscillation s. This is due to the increased
"stiffness*' of the 15-GeU beam, and accounts for the
fewer number of modes needed relative to the infrared ex-
aIIlple.

The effect of wiggler imperfections for LCLS parame-
ters is greater than for the infrared example, but sti11 not
severe. In studying the effect of wiggler imperfections, it
is assumed, as in the preceding example, that the random
wiggler amplitude variations occur every half wiggler
period (i.e., X =2). The variation in the efficiency with
increasing values of (b,B /8 )„, is shown in Fig. 17.
As in the preceding example, the dots in the figure
represent the ensemble average over 35 randomly chosen

amplitude fluctuation distributions, and the "error bars"
denote the standard deviations. It is clear from the figure
that the efficiency remains relatively unaffected by the
wiggler imperfections for (68 /8„)„,~ 1%, and de-
creases rapidly thereafter. The efficiency for the ideal
wiggler in this case is 0.13%, which decreases to 0.12%
for (58 /8 )„,=1%. This represents a negligible de-
gradation in the interaction efficiency, and it is reasonable
to conclude that the LCLS will operate up to nearly op-
timum efticiencies as long as the rms wiggler irnperfec-
tions are kept to within this limit.

However, the LCLS parameters do exhibit a greater
sensitivity to wiggler imperfections than was found for
the preceding infrared wavelength FEL example. This is
expected due to the narrower radius of the 15-GeV beam.
In general, the smaller the beam radius, the more difficult
it is for the interaction to guide the radiation. However,
this is offset in the present case by the greater stiffness of
the 15-GeV beam, which requires a relatively large level
of wiggler imperfections to cause any appreciable beam
defIection.

In order to illustrate the effect of the wiggler imperfec-
tions, we turn to a more detailed consideration of the or-
bit dynamics for a specific choice of wiggler imperfec-
tions. For this purpose, we compare the motion of the
beam center for an ideal wiggler shown in Fig. 16 with
the corresponding motion for (bB /8 )„,=1% and
the specific random sequence which resulted in an
efficiency of 0.12% (i.e. , which was chosen to the ensem-
ble average). The variation in the wiggler parameter a
for this case is shown in Fig. 18, and the motion of the
beam center for this choice is shown in Fig. 19. It is
clear from Fig. 19 that the variation in the beam center is
relatively slow for this case, and that there is no coherent
walkoff of the beam.

In this example, the beam is able to guide the radia-
tion, and although the maximum displacement of the
beam center relative to that found for an ideal wiggler is
approximately 50% that of the maximum bulk wiggler-
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induced oscillation (at z/A, =150), there is little degra-
dation in the interaction e%ciency. In order to illustrate
the effect of the optical guiding, consider the relative
mode amplitudes at saturation. The relative mode spec-
trum for this case as shown in Fig. 20. A comparison of
the mode amplitudes shown in Fig. 20 with those shown
in Fig. 13 for the ideal wiggler indicates a somewhat
larger amount of power in the higher-order modes. This
rejects the fact that the beam sweeps out a greater cross
sectional area for this case than for the ideal wiggler,
which implies that the radiation has been guided during
the course of the interaction.

The overall conclusion from this study of the effects of
beam energy spread and wiggler imperfections for the
LCLS parameters is that optimal performance requires
that the axial energy spread be kept small enough that
b,y, /yo ~ 0.01% and that the rms wiggler tolerances be
kept to (bB~/B )„,~1%. In general, the conclusion
formed on the basis of both the infrared and x-ray exam-
ples studied here is that the electron beam quality im-
poses a more severe constraint on the interaction than
does the wiggler quality.

IV. SUMMARY AND DISCUSSION

In this paper, a three-dimensional nonlinear formula-
tion of the interaction in short-wavelength FELs is
presented and used to evaluate the performance of several
tentative experimental designs. For this purpose, the
analysis is based upon a representation of the electromag-
netic field as a superposition of the Gauss-Hermite opti-
cal modes which is appropriate for the planar wiggler
configuration which is also assumed. Note that the
Gauss-Laguerre modes would form the appropriate basis
for a helical wiggler configuration. A set of coupled non-
linear differential equations is derived for the evolution of
the amplitude and phase of each mode which is then in-
tegrated in conjunction with the three-dimensional
Lorentz force equations for an ensemble of electrons.

It is important to emphasize that no wiggler average is
performed on the Lorentz force equations, and that the
orbits are integrated in the complete field structure in-
cluding the magnetostatic wiggler, the electromagnetic
fields, and the self-electric and self-magnetic fields formed
by the bulk charge and current densities of the beam. As
a result, it is necessary only to specify the characteristics
of the beam upon entry to the wiggler and the emittance
growth and evolution of the electron beam due to such
efFects as (1) the injection of the beam into the wiggler, (2)
transverse inhomogeneities of the wiggler field (including
betatron oscillations), (3) the interaction with the elec-
tromagnetic field, (4) the self-electric and self-magnetic
fields of the beam, and (5) wiggler imperfections are im-
plicitly included in the treatment.

It should be remarked in regard to the modeling of
wiggler imperfections that all that is necessary is to speci-
fy the variation in the wiggler field amplitude as a func-
tion of axial position, and the simulation will self-
consistently describe the response of the electron beam.
Because of this, it is possible to model the imperfections
of any specific wiggler magnet, although this was not at-
tempted in the present work.
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No attempt has been made to match the beam into the
wiggler in the sense that the beam emittance and radius
are selected to ensure that the beam envelope remains
constant. In the opinion of the author, this is a pointless
and counterproductive procedure both from an experi-
mental and theoretical standpoint. Radiation growth is a
microscopic process in which resonant electrons interact
with the radiation field, and give rise to both
amplification and refractive guiding of the wave. The in-
teraction is extremely sensitive to the emittance of the
beam, and even a small axial energy spread can result in a
substantial reduction in the peak extraction efficiency.
Efforts to match the beam are motivated by the desire to
achieve a uniform beam envelope in the hope that this
will yield an improved overlap between the electron beam
and the radiation field or, in other words, to maximize
the filling factor and the growth rate. However, the over-
lap between the beam and the radiation is a macroscopic
process depending upon the growth and refractive guid-
ing determined by the microscopic interaction. Hence, it
is more important to minimize the emittance in a FEL
than it is to match the electron beam to achieve a uni-
form envelope. Variations in the beam centroid due to
the wiggler motion and the beam envelope due to beta-
tron oscillations will merely result in guiding of the sig-
nal, while an enhanced emittance which may be necessary
to match the beam will certainly result in a degradation
in the extracted power. The most important considera-

tion in the design of a FEL, therefore, is to minimize the
emit tance.

In general, the conclusion formed on the basis of both
the infrared and x-ray examples studied here is that the
electron beam quality must be kept small enough that the
interaction is far from the transition to the regime where
thermal effects become important. However, the interac-
tion was found to be relatively insensitive to wiggler im-
perfections. In this regard, it should be emphasized that
no coherent walkoff of the beam has been detected in
simulation, and that the optical guiding of the radiation
field is able to counter much of the jitter of the beam.
Hence, it is found that electron beam quality imposes a
much more severe constraint on the interaction than does
the wiggler quality.
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