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Thermodynamic and transport properties of dense hydrogen plasmas
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Thermodynamic and transport properties of dense plasmas are expressed by Green's functions
within a consistent quantum statistical approach. The equation of state for hydrogen plasma is
evaluated within a generalized Beth-Uhlenbeck approach utilizing a quasiparticle picture for the one-
and two-particle states. Taking into account also further clusters such as dimers and molecular ions,
the stability behavior of the thermodynamic functions is studied with respect to the hypothetical
plasma phase transition. The electrical and thermal conductivity, as well as the thermopower, are
then calculated within the linear response theory as given by Zubarev. Especially, the effects of
arbitrary degeneracy, ion-ion structure factor, screening, and of partial ionization are studied. The
interactions between the various species are treated on the T matrix level. The numerical results
interpolate between the Spitzer theory for fully ionized, nondegenerate plasmas and the Ziman
theory for metallic densities. The plasma phase transition is accompanied by a metal-nonmetal
transition, which is characterized by drastic changes of the electronic properties, as can be deduced
from the behavior of the transport properties.

PACS number(s): 52.25.—b, 05.60.+w, 51.10.+y

I. INTRODUCTION

We consider a neutral hydrogen plasma consisting of
electrons (mass m, = m, charge q, = —e) and protons
(m& ——M, q„= +e) with n, = n„= n. In order to
characterize the plasma state, we introduce the Coulomb
coupling constant I' for the ion system and the degener-
acy parameter 0 for the electron system [1],
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EF denotes the Fermi energy, d is the mean distance
between the particles, and a~ is the Bohr radius,
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This paper is devoted to hydrogen plasma from the
nondegenerate, weakly nonideal domain (0 )) 1, I' & 1)
up to the degenerate, strongly coupled region (8 (( 1,
I' )) 1). The physical properties are influenced by
many-particle efFects. For instance, in the nondegener-
ate, weakly nonideal domain, dynamic screening and self-
energy efFects as well as the formation and decay of bound
states (atoms H, dimers H2, molecular ions H2+, etc. ) are
important, whereas in the degenerate, strongly coupled
region structure factor and local-Geld corrections, arbi-
trary degeneracy, and Pauli blocking are relevant (for a
review, see [2]).

The electronic properties show drastic changes when
the density is varied. At low densities, the plasma is
nearly fully ionized and reasonably well described within
the Debye-Huckel theory for the thermodynamic proper-

ties and the Spitzer theory for the transport properties.
Dense, nonideal plasmas are characterized by partial ion-
ization where bound states strongly afFect the physical
properties. For instance, the electrical conductivity can
have values with 0 ( 10 /(0 m) for T ( 10 K [3], which
indicates already a nonmetallic behavior when utilizing
the Mott criterion also for plasmas. At very high densi-
ties, bound states disappear due to the Mott efFect and
the plasma becomes fully ionized again. The electrical
conductivity is described by the Ziman formula.

Zero-temperature calculations have indicated that a
Grst-order phase transition must occur at high pressures
around 150 GPa between the insulating molecular phase
and the conducting metallic phase (for a review, see
[4]). Electrical conductivities measured in shock com-
pression experiments with fluid molecular hydrogen and
deuterium [5] have clearly shown that H2 and D2 are
semiconducting fluids with an energy gap of about 12
eV.

The corresponding nonmetal-to-metal transition at G-

nite temperatures is usually connected with a thermo-
dynamic phase transition, the up to now hypothetical
plasma phase transition [6,7]. Especially, the location of
a (second) critical point of this plasma phase transition
is of high interest with respect to a better understand-
ing of matter at high pressures and temperatures as it is
relevant for, e.g. , astrophysical systems.

All approaches to the equation of state of strongly cou-
pled plasmas based on the chemical picture that treats el-
ementary species (electrons and protons) as well as com-
posites (atoms, molecules, molecular ions, etc.) on the
same footing have resulted in various estimates for that
critical point in hydrogen [6—12], helium [13], hydrogen-
heliurn [12,14], and xenon plasma [15].

There, nonideality corrections to the equation of state
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are usually considered within the following model: the
Coulomb interactions between charged particles beyond
the Debye-Huckel theory, the polarization interactions
between charged particles and neutrals by means of the
second virial coe%cient with respect to a polarization po-
tential, and the interaction between neutrals within the
&amework of extended Quid perturbation theory which
gives reasonable results compared with available shock-
wave experiments [16] and Monte Carlo simulations [6].

In this paper, a unified approach to the thermody-
namic and transport properties of dense plasmas is uti-
lized (for details, see [2,17]). The equation of state
takes into account the self-energy of single-particle states
within the T matrix approximation [18]. The partition
function of correlated two-particle states, a generalized
Beth-Uhlenbeck formula [19], consists of a bound and a
scattering part. Thus, at least on the two-particle level,
the chemical picture has been avoided.

The chemical potential is studied as a function of tem-
perature and density. The thermodynamic stability cri-
terion (Op/Bn) T & 0 is utilized to locate the critical point
of the plasma phase transition. Furthermore, the degree
of ionization and the composition of hydrogen plasma are
determined.

The transport properties are calculated within linear
response theory given here in the formulation of Zubarev
[20]. Transport coefficients are expressed by equilibrium
correlation functions [3,21,22]. Transport cross sections
for the scattering between the various species are cal-
culated on T matrix level. The ion-ion structure factor
8;,(q) is determined. within the hypernet ted chain (HNC)
approximation considering also local-field corrections to
the dielectric function s(q, u).

Numerical results for the electrical and thermal con-
ductivity as well as the thermopower are given for a large
domain of the density-temperature plane ranging &om
nondegenerate, weakly nonideal plasmas up to degener-
ate, strongly coupled plasmas.

There is a close connection to the behavior of expanded
fIuid alkali-atom metals and mercury which follow the
plasma region in the density-temperature plane contin-
uously towards higher densities and lower temperatures.
There, the metal-nonmetal transition takes place near the
critical point of the liquid-vapor phase transition (for a
review, see [23,24]).

G.(k...)-' = nz„—E.(k) —Z.(k, z„),
z =ivrv/P+ p, , v = +1,+3, . . . .

z are Matsubara frequencies and E,(k) = 52k /2m, is
the kinetic energy of &ee particles. Quasiparticle energies
are usually defined by the solution of

s, (k) = E,(k) + ReZ, [k, s, (k)/h+ iO] . (6)

In order to describe the formation of atoms H, dimers
H2, molecular ions H2+, H, as well as higher-order clus-
ters out of the elementary species e, p, the self-energy
(and also the polarization function) have to be decom-
posed into a sum over the contributions of N-particle
ladder T matrices (for details, see [25—27]). These quan-
tities are determined by respective Bethe-Salpeter equa-
tions with an efFective two-particle interaction kernel that
contains the dynamically screened potential and further
in-medium corrections to their energy spectrum via the
cluster contributions to the polarization function. We
consider here the dominant bound state part of the N-
particle T matrices with N & 3. For hydrogen atoms
(K = 2), also the scattering state part becomes of im-

portance as shown below.
Inserting this cluster expansion into Eq. (4), the total

electron density is given by

The equation of state is derived &om the relation be-
tween the one-particle density n, (P, p) for the species
c = e, p, and the imaginary part of the thermodynamic
Green's function G, (k, z) —the spectral function —via
[17]

n, (P, p, ) = ) Irn G, (k, (u —iO+) f, (fuu),
1 . d(~)

Op vr
k

(4)

where P = 1/k~T is the inverse temperature, Oe the nor-
malization volume, and p denotes the chemical potential
of species c = e, p. f,(E) = (exp[P(E —p, )] + 1) is
the Fermi distribution function. The chemical potential
p, (P, n) is obtained from Eq. (4) by inversion, whereas the
pressure p(P, p) = f" dp, n(P, p) follows after a simple
integration.

The Green's function G, (k, z) is related to the self-

energy Z, (k, z) via the Dyson equation,

II. THERMODYNAMIC PROPERTIES OF
HYDROGEN PLASMA

A. Equation of state
In partially ionized plasmas, bound states such as

atoms H, dimers H2, molecular ions H2+, H, and fur-
ther clusters are formed out of the elementary particle
electrons e and protons p. We take into account clusters
up to K = 4, i.e. , dimers H2, accordant with [10,11]

e+p —H, e+H = H

J+H = H, +, H+H = H, .

The concentration of higher clusters is negligible as can
be deduced &om respective ideal Saba equations.

n, (P, p,,) =n, +nH +nH ++2nH(&) (2) (3) (4) (7)

where the partial densities are given by respective parti-
tion functions.

B. Two-particle partition function

In a first step, molecular ions (K = 3) and dimers

(N = 4) are neglected. Zimmermann and Stolz [18] de-
rived an equation of state from Eq. (4) which is the sum

of the density of free quasiparticles, n, , and of a den-~ (i)

sity of correlated two-particle states, nH . Replacing the(2)

slightly k-dependent self-energy shift in Eq. (6) by a con-
stant quantity 4, which is fixed by the free quasiparticle
density,
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(8)

and utilizing the optical theorem, a generalized Beth-Uhlenbeck formula [19] can be derived for the correlated density,
which reads for the nondegenerate case:

f'Ph k') ( Ph2k2) 2 1= ) (2b + ) ) Iexbe( )be e) iI + b&
I I

exec
I

—
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(9)

= 2A ' exp[—P A.—p,.)] is the quasiparticle density.
(2wPh /m, ) denotes the thermal wavelength,

and p, g is the reduced mass (d = e, p).
The correlated two-particle density consists of the sum

over the discrete bound state energies e g and the in-
tegral over the continuous scattering states, character-
ized by their scattering phase shifts b'r(k). Utilizing the
Levinson theorem [28], the first expansion term of the
bound state part with respect to Pe„r was projected into
the scattering state part. The additional term sin[2bg(k)]
in the scattering state part compared with the standard
Beth-Uhlenbeck formula results &om the definition of the
quasiparticle density n via the full self-energy shift 4,
[18]. The discontinuities in the bound state part, which
occur whenever a bound state disappears due to screen-
ing efFects, are compensated by respective contributions
in the scattering state part and the whole partition func-
tion, Eq. (9), remains a smooth function.

Performing another integration by parts in Eq. (9), the
Gnite Planck-Larkin partition function is obtained for the
first, bound state part of the full two-particle partition
function (see also [29]),

Z,„=) (2E+ 1) ) [exp( —Ps~e) —1+Psne] . (10)

Although (10) describes only bound state contributions
to the thermodynamic functions, the Planck-Larkin con-
vention has &equently been used for the two-particle par-
tition function of low-temperature plasmas where scatter-
ing states can be neglected [8,9,15,25,27,30]. This treat-
ment is appropriate for, e.g. , low-temperature alkali-atom
plasmas.

For hydrogen and also inert gas plasmas such as xenon,
the situation is more involved. For comparison, we have
calculated the two-particle partition function Z = Z,~+
2 ) Z„, Eq. (9), for the Debye potential

Veg(r) = "
eXP( r/Rrb) . —

4m' pr

The screening length RD is given for arbitrary electron
degeneracy by

Free particle density and ideal part of the chemical poten-
tial are connected via the relation n, A, /2 = Iiy2(Pp', ).
I (x) are Fermi integrals. We consider the heavy protons
rather producing a microfield distribution in the plasma
than contributing to the static screening length. Prom a
study of dynamic screening effects on the collision inte-
grals [31] one can conclude that static screening of elec-
trons and protons overestimates screening efFects consid-
erably so that Eq. (12) is more appropriate.

The bound state energies e g and scattering phase
shifts bg were determined by solving the Schrodinger
equation for the attractive or repulsive Debye potential
(ll) numerically. The respective values were checked
against earlier results [32—34]. The results for the Planck-
Larkin, the standard Beth-Uhlenbeck, and the modi-
fied Zimmermann-Stolz partition functions are compared
in Table I for given temperatures and inverse screening
lengths K = 1/RI).

All three partition functions are smooth functions with
respect to the density so that no unphysical jumps in
the thermodynamic functions occur whenever a bound
state vanishes. Furthermore, the bound state part dom-
inates the partition function for low temperatures, i.e.,
T & 2x 10 K, and screening parameters +a~ & 0.5. The
scattering state contribution is not negligible for larger
screening parameters ra~ where only a small number of
bound states remains and compensation efFects between
bound and scattering contributions are considerable. For
higher temperatures and low densities, the number of
scattering states increases strongly so that their contribu-
tion to the two-particle partition function becomes dom-
inant.

The discrepancies between the standard Beth-
Uhlenbeck and the Zimmermann-Stolz partition function
are small for low temperatures. For the low and high den-
sity limit, however, pronounced deviations occur which
are due to the utilization of the quasiparticle picture by
Zimmermann and Stolz [18].

To study the influence of two-particle scattering states
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on the thermodynamic functions, the Planck-Larkin and
Zimmermann-Stolz partition functions are inserted into
the law of mass action, e + p H. The Planck-Larkin
convention (10) may serve as the simplest version of the
chemical picture, while the quasiparticle picture of Zim-

mermann and Stolz contains at least the full two-particle
partition function for the nondegenerate case.

C. Formation of clusters

zPL
ep

zBU
e zZS

e

2.00
1.25
1.00
0.67
0.50
0.40
0.25
0.10
0.05
0.01

2.00
1.25
1.00
0.67
0.50
0.40
0.25
0.10
0.05
0.01

2.00
1.25
1.00
0.67
0.50
0.40
0.25
0.10
0.05
0.01

x10 K
0.6602 [

—1]
0.3398 [+0]
0.1009 [+1]
0.1336 [+2]
O. lO73 [+3]
0.5255 [+3]
0.9767 [+4]
0.3824 [+6]
0.1571 [+7]
0.5260 [+7]

x10 K
0.8192 [

—1]
0.3313 [+0]

T = 10
0.00
0.00
0.5896
0.9908
0.1018
0.5182
0.9756
0.3823
0.1571
0.5260

[-1]
[+1]
I+31
[+3]
I+4]
[+61
[+71
[+7]

T=20
0.00
0.00
0.1393
0.1374
0.7028
0.1879
0.9323
0.6124
0.1251
0.2302

[
—1] O.7237 [+O]
[+1] 0.3386 [+1]
[+1] 0.1021 [+2]
[+2] O.23O1 [+2]
[+2] o.1ool [+3]
[+3] 0.6295 [+3]
[+4] 0.1285 [+4]
[+4] 0.2502 [+4]

T = 30 x 10 K
0.9041 [

—1]
0.3209 [+0]
0.6174 [+0]
0.2044 [+1]
0.4575 [+1]
0.8129 [+1]
0.2255 [+2]
0.8144 [+2]
0.1408 [+3]
0.3552 [+3]

0.00
0.00
0.6078 [

—2]
0.5139 [+0]
0.2195 [+1]
0.4982 [+1]
0.1731 [+2]
0.6789 [+2]
0.1126 [+3]
0.1741 [+3]

0.3386 [
—2]

0.2314 [+0]
O. 1127 [+1]
0.1352 [+2]
0.1075 [+3]
0.5255 [+3]
0.9768 [+4]
0.3824 [+6]
O. 1571 [+7]
0.5260 [+7]

0.6689 [
—2]

0.2326 [+0]
0.8111 [+0]
O.3546 [+1]
0.1033 [+2]
0.2306 [+2]
0.1006 [+3]
0.6319 [+3]
0.1292 [+4]
0.2656 [+4]

0.9287 [
—2]

0.2261 [+0]
0.6832 [+0]
0.2191 [+1]
0.4698 [+1]
0.8211 [+1]
0.2308 [+2]
0.8395 [+2]
0.1484 [+3]
0.5493 [+3]

TABLE I. Values for the two-particle partition function
for the Debye potential (11) for various inverse screening
lengths r = 1/Ro and temperatures T. Z,„denotes the
Planck-Larkin partition function (10), Z, is the standard
Beth-Uhlenbeck result (without the sine term), and Z, is
the Zimmermann-Stolz partition function according to (9).
The notation 0.1352 [+2] stands for 0.1352 x 10+

[n&'&] Z, = nH [1+nH KH, +] . (14)

D. Quasiparticle shifts and partition functions

The mass action laws, Eqs. (9) and (13), are solved
by inserting appropriate expressions for the quasiparti-
cle shifts and the partition functions for atoms H, dimers
H2, and molecular ions H2+. Considering the definition
of the quasiparticle density, Eq. (8), and the relation be-
tween the ideal part of the chemical potential and the
&ee particle density, n, A, /2 = Izgz(Pp', "), the shifts 4
can also be interpreted as the interaction parts of the
chemical potential,

In a next step, besides hydrogen atoms also dimers
and molecular ions are considered. Saumon and
Chabrier [6,7] found dimer fractions up to 95% near
the plasma phase transition, whereas Haronska, Kremp,
and Schlanges [11] extracted dimer fractions up to 70%
from their calculations. Substantial concentrations of
dimers A2 and molecular ions A2 were also obtained
near the critical point of the liquid-vapor phase tran-
sition in hydrogenlike expanded alkali-atom Quids and
plasmas, where a metal-nonmetal transition takes place
[25,30,35,36].

The formation of molecular ions, p+ H H2+, and of
dimers, 2H = H2, can be described by respective laws of
mass action,

(3) (2) (4) (2) 2n„+ =nH np H, +, nH =[nH ] KH, .

The quantities K are given by the partition functions
of the species involved in the reaction and reduce to the
well-known Saha equations only in the low-density limit.
For arbitrary densities, the K's become dependent on
density and temperature. Due to the condition of charge
neutrality, the various mass action laws are not inde-
pendent &om each other and we have Anally a coupled,
strongly nonlinear system of equations,

2.00
1.25
1.00
0.67
0.50
0.40
0.25
0.10
0.05
0.01

0.00
0.00
0.2156 [

—2]
0.1625 [+0]
0.6129 [+0]
0.1247 [+1]
0.3442 [+1]
0.9704 [+1]
0.1418 [+2]
0.1995 [+2]

50 x 10 K
0.9910 [

—1]
0.3020 [+0]
0.5169 [+0]
0.1296 [+1]
0.2338 [+1]
0.3530 [+1]
0.7268 [+1]
0.2002 [+2]
0.3640 [+2]
0.1917 [+3]

0.1298 [
—1]

0.2111 [+0]
o.555o [+o]
0.1415 [+1]
0.2450 [+1]
0.3628 [+1]
O.7837 [+1]
0.2284 [+2]
0.4574 [+2]
0.4300 [+3]

~HF + ~MW + ~PP (16)

For simplicity, we have used the Pade approximations
of Ebeling and Richert [8,9] for the charged particle

The shifts L can be decomposed into the Hartree-
Fock (HF) and Montroll-Ward (MW) contributions,
characterizing the self-energy of charged particle inter-
actions in second order with respect to the screened
Coulomb potential, and a polarization contribution (PP)
that is due to interactions between charged particles and
neutral bound states,
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self-energy, L + 4 = pg ', which interpolate be-
tween the known limiting cases of nondegeneracy (Debye-
Hiickel theory), the strong-coupling limit for the elec-
trons (Gell-Mann and Brueckner result [37]),and the case
of strongly correlated ions (Madelung energy). Thus,
these formulas cover the whole density region from the
dilute plasma to the dense fIuid state within an estimated
maximum error of about 20% [38].

The polarization contribution 4 was calculated for
arbitrary densities for the interaction of electrons with
hydrogen atoms [39]. The results can be given in a
parametrized form as linearized virial coefFicients B, &
with respect to a local polarization potential V (R)
[27]

= nH)B, H, B,~ —— d R V (R)

Vpp(R) = — e nD exp( —2+R)
( +

2(47rso) 2(R2 + r2) 2

The values for the dipole polarizability o.D and the cutoff
radius ro are given in Table II. K = 1/RD is the inverse
screening length.

The energy spectrum of atoms is shifted due to the
interaction with free quasiparticles (PP) as well as with
other atoms and clusters [van der Waals (vdW)]

s„t = E„t + AE„t, b,E„t = AE„t + AE„t . (18)

These terms can be derived from in-medium corrections
to the Bethe-Salpeter equation (see, e.g. , [25,26,39]). We
have taken into account these energy shifts in form of a
correction factor in the two-particle partition function,
Eq. (9), via Z;+ = Z, exp(AE„t), supposing that the to-
tal correlated two-particle density reacts like that of hy-
drogen atoms which, of course, overestimates these con-
tributions.

The polarization contribution is given by AE
&

n, B,~ similar to Eq. (17). The second, van der Waals

term describes the long-range attraction between neu-
trals as well as the short-range repulsion between clus-
ters. For these terms, the density and temperature de-
pendent interaction potentials between H, H2, and H2+
have to be known for arbitrary distances in order to cal-
culate, e.g. , the respective virial coefFicients. This com-
plex problem has only been solved approximately up to
now which is the source of substantial uncertainties in
the various theories. Utilizing extended Huid perturba-
tion theory [6,7] yields reasonable agreement with results
of shock-wave experiments [16] and Monte Carlo simula-
tions.

Within the van der Waals two-fluid theory [40],
the intermolecular potentials are replaced by effective,
temperature-dependent hard-core radii so that the re-
spective well-known expressions for the thermodynamic
functions of a hard-core reference system can be applied
(see, e.g. , [11]).

We have chosen here the interatomic H-H potential de-
rived by Aviram, Goshen, and Thieberger [41] and then
calculated an effective hard-core radius by means of the
Barker-Henderson theory [40]. With this value and the
known equilibrium distances in the hydrogen dimer H2
and the molecular ion H2+, effective hard-core radii can
also be derived for these species. The respective con-
tribution (vdW) in Eq. 18) is then given by a modified
Carnahan-Starling-type expression derived by Mansoori
et al. [42] for the chemical potential of a mixture of hard
spheres, LE E = pH

The mass action laws for the dimers and molecular
ions, Eqs. (13), contain the partition functions KH, and
KH, +, respectively, which are treated in the usual way by
separating the internal quantum numbers with respect to
the translational, spin, electronic, rotational, and vibra-
tional degrees of freedom,

&pir1 el rot vib

These terms are given by

TABLE II. Paramaters for the calculation of the chemical equilibria in hydrogen plasma.

Parameter

Polarizability nH in a~
Cutoff radius ro in a~
EfFective atomic radius BH in a~

Equilibrium distance dH, + in a~
Equilibrium distance dH, in a&
DH~ of dimers in eV
DH + of molecular ions in eV
Rotational constant of dimers BH, in cm
Rotational constant of molecular ions BH, + in cm
Vibrational frequency of dimers uH, in cm
Vibrational frequency of molecular ions ~H, + in cm

1.10
1.00
0.91

4.5
1.4565

(T=10x10 K)
(T=15x10 K)
(T=20x10 K)

2.00
1.40'
4.75
2.79'
60.8'
29.8'
4395
2297

Redmer, Ropke, and Zimmermann [39].
EfFective hard-core radii within the Barker-Henderson method [40]; see also Haronska, Kremp, and

Schlanges [11].
'See, for instance, B.H. Bransden and C.J. Joachain, Physics of Atoms and Molecules (Longman
Scientific 0 Technical, New York, 1983), p. 393.
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el
~H~

rot
H~

vib

= exp(PDH + AFH

= phc/HH

1 —exp ]-
@he )

(20)

where BH~, uH~, and D~~ are the characteristic rota-
tional constant, the vibrational &equency, and the dis-
sociation energy of molecular ions (N = 3) and dimers
(% = 4), respectively. c is the speed of light.

We have taken into account interaction corrections to
these mass action laws via quantities LEH~ similar to
the case of atoms. Comparing the dipole polarizabilities
of hydrogen atoms and dimers [43], f = o.H, /nH, one
finds f 1.23 which is utilized as a scaling factor for
the respective virial coefficient, RPPH -- f x BPH. Ef-
fective hard-core radii for the dimers and molecular ions
have been derived kom the effective atomic radius and
the equilibrium distances in these clusters as described
above, so that LEH ——p& . The parameters that are
necessary for the evaluation of the respective formulas
are given in Table II.

E. Composition of hydrogen plasma

We have displayed the composition of hydrogen plasma
in Fig. 1 for a given temperature as function of the den-
sity. We can clearly distinguish between three different
regions. The low-density plasma is weakly ionized with
an ionization degree of less than 5%%uo an.d extends up to
about 102 cm . It consists mainly of atoms H and
dimers H2, the latter reaching a maximum concentration
of about 90% for T = 10x 10s K and 70% for T = 15 x 10s
K at about this density. Dimers are not negligible in the
region above 10 cm

The second region &om 10 cm up to 2 x 10 cm
is characterized by partial ioinzation from 5% to 80%.

'1.0

0,6—0
I—
O

0.4—

—0.6

—0.4

0.2 —0.2

0,0
20

l

22 24

kg, o[ n[cxn-') ]

FIG. 1. Composition of hydrogen plasma for T = 15 x 10
K as a function of the particle number density n. The fraction
of free electrons e, atoms H, dimers Hq, and molecular ions
H2+ is shovrn.

Here, all species have strongly varying concentrations,
which is a result of the nonideality corrections to the
mass action laws. Dimers vanish at about 2 x 10 cm
where molecular ions H2+ reach their maximum concen-
tration. of about 35%. Then, the ionization degree is
sharply rising with increasing densities, which is a result
of pressure ionization (Mott effect).

Hummer and Mihalas [44] found a maximum concen-
tration for molecular ions H2+ of only 6.2 x 10 in nearly
the same density-temperature region within a free-energy
minimization scheme for the coupled chemical equilibria.
This discrepancy is possibly caused by the use of different
parameters for the internal partition functions, and the
simple neutral-neutral interaction for the evaluation of
the occupation probabilities performed by Hummer and
Mihalas. The latter forces pressure dissociation of H2 for

g 0.1 g/cm at arbitrary temperatures.
The third region above 2 x 10 cm is nearly fully

ionized and completely described by the degenerate elec-
tron gas immersed in the positive background of protons
and molecular ions. For high-temperature plasmas with
T & 50 x 10 K, the fraction of neutral and charged clus-
ters is decreasing, and we have simply a three-component
system of electrons, protons, and hydrogen atoms that
is reasonably well described within an extended Debye-
Hiickel theory [45].

F. Plasma phase transition

The chemical potential of hyd. rogen plasma,

id id gas gas
Pplasma = Pe+@'p +e +~p +I e +I g

+ riH + fnH +e,H + PH
(2) (4) HC

{21)

is shown in Fig. 2 for T = (10, 15, 20) x 10 K within
three different models. The ideal part of the chemical
potential is always calculated for arbitrary degeneracy
via the Fermi integral. The electron and proton gas con-
tributions are taken in the parametrized form of Ebeling
and Richert [8,9].

The simplest model (a) (dash-dotted line) considers
only electrons, protons, and hydrogen atoms the fraction
of which was determined by means of the Planck-I arkin
partition function (10). Dimers and molecular ions were
neglected. Furthermore, the hard-core contributions that
might be the source of substantial uncertainties at high
densities are also neglected.

Molecular ions and dimers as well as the respective
hard-core contributions have been included in model (b)
(dashed line). In case (c) (solid line), the Planck-Larkin
partition function was replaced by the Zimmermann-
Stolz two-particle partition function (9) so that the in-
Quence of scattering states is included. All other contri-
butions are the same as in case (b).

The resulting curves for the chemical potential indicate
that a thermodynamic instability occurs in all three mod. —

els. The instability is inherent already in the simplest
model (a) and, therefore, produced by the electron and
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61.4
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57

pc
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0.14
0.13
0.43
1.48
0.36
0.35
0.29
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Method

PIP
PIP
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FIT
PIP
PIP
PIP
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Reference

Robnik and Knndt [10]
Ebeling and Richert [9]
Haronska, Kremp, and Schlanges [ll]

Schlanges, onihl Bonitz and Tschttschjan [12]
Present paper
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again. Consistent results for the plasma phase transi-
tion should be based on a unified description. However,
also other effects may have considerable inHuence on the
thermodynamic properties of strongly coupled hydrogen
plasma so that the question whether or not the plasma
phase transition is a consequence of utilizing the chemical
picture cannot be decided. For instance, the equations
of state (7) and (8) have to be evaluated for arbitrary
degeneracy considering also Pauli blocking terms. The
self-energy should be determined within (off-shell) the T
matrix approximation. Furthermore, the effects of band
structure and the variation of the internal partition func-
tions with density (e.g. , vibron shift) have to be treated,
which goes beyond the present approach.

2 1 L12o. = e L11, o. = )eT I11

Lqq

1 (A= —
~

I.„—
T

(22)

( h)i+@—2

Oo id)

0 &„N1 —No

ph N1 —N0 d (23)

with

Postulating a linear response of the systems with respect
to the external forces, electric field, and temperature gra-
dient, the transport coeKcients L,I, are given in a deter-
minant representation [3,63], known also from standard
kinetic theory,

III. THERMOELECTRIC TRANSPORT
COEFFICIENTS N =(N pN i . N L), (24)

A. Linear response xnethod

Electrical conductivity o, thermopower o. , and thermal
conductivity A are well known for nondegenerate, low-
density plasmas where the Spitzer theory [47] applies.
For strongly degenerate systems such as Huid metals, the
Ziman theory is applicable [48] and the electrical conduc-
tivity is given by the Ziman formula, the thermopower by
the Mott formula, and the thermal conductivity by the
Wiedemann-Franz relation.

Most of the theoretical attempts to describe the (elec-
trical and thermal) conductivity of plasmas in a large
density-temperature domain are based upon the Ziman
formula which is, strictly speaking, only valid for the case
of strongly coupled ions and degenerate electrons. Im-
provements account for many-particle effects such as, for
instance, structure factor, local-field corrections, and ar-
bitrary degeneracy [49—52]. On the other hand, improve-
ments of the Spitzer theory have been proposed for the
nondegenerate region of strongly coupled, partially ion-
ized [53—56], as well as weakly nonideal [57—59] plasmas.
Lee and More [60] evaluated the complete set of transport
co eFicients for electron transport in electric and mag-
netic Gelds within a relaxation time approximation for a
quantum transport (Boltzmann) equation for arbitrary
degeneracy as well as partial ionization.

A general approach to the thermoelectric transport
properties of Coulomb systems valid for arbitrary de-
generacy has been derived within linear response theory,
given here in an extended version originally developed
by Zubarev [20] for mechanical and nonmechanical per-
turbations of an open system (for a review, see [61]).
Due to the relation between transport coeKcients, cor-
relation functions and thermodynamic Green's functions
[3,21,22], this efficient method allows for the treatment of
many-particle effects and the consistent inclusion of the
composition, as determined in the last section. We will
give the main results very briefiy, before discussing the
transport coeKcients in more detail.

The electrical conductivity 0, thermopower o., and
thermal conductivity A are connected with the Onsager
transport coefficients L,i, [62] according to

(N,
N1

(d) =
( doo

d10
dpi '' dpi
d11 ~ ~ d1L

(dio dpi . dpi)

where 6 is the enthalpy per particle.
The correlation functions for thermodynamic equilib-

rium,

N„=N„+ —(P„(s);P ),1

N„= —(P„,P ),
d„= (P„(E);P ), P„= —[Hs, P„],

are defined by

(A, B) = d7- Tr(pp A( —ibad) B),
0

0

(A(s);B) = lim dte" [A(t), B],
A(t) iHgt/s A(0) iHgt/A—

1
go = exp PHs ~ P)—pcNc

0

(26)

The generalized momenta P of the electron system,

P„=) 5k[PE, (k)]"at (k)a, (k), (27)

are a set of relevant observables, which characterize the
nonequilibrium state. The terms of lowest order have
the physical meaning of electron momentum (Pp) and of
the ideal part of the electron energy current (Pz). They
are connected with the microscopic expressions for the
electrical current density and the electronic heat current
density, respectively.

The transport coefficients can be calculated by eval-
uating the equilibrium correlation functions (25) for ar-
bitrary degeneracy of the system so that we are able to
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describe the entire region from nondegenerate, weakly
coupled plasmas to degenerate, strongly coupled plasmas.

B. Evaluation of the correlation functions

Neglecting the terms (P (e); P ), which are related
to the Debye-Onsager relaxation effect, the generalized
particle numbers N„ in Eq. (25) are given by Fermi
integrals I (x),

I'(n + m + 5/2) I„+~+phiz(Pp, *,")
I'(5/2) I~y2(&1 *")

(28)

which were evaluated for given densities and tempera-
tures.

The force-force correlation functions d are related
to four-particle Green's functions via (for details, see
[3,21,22])

0d„=—lim dt exp(et)
e —+0

d7)). ) V,q(q)Vq, (q')K„(k, q)K~(k', q') F(kpq, k'p'q'; t —i'.);
d kpq k'p'q'

K„(k,q) = k[PE, (k)]" —(k+ g)[PE, (k+ q)]";
dw exp(iut/5)

F(kpq, k 'p'q'; t) = — [G4(w+ ie') —G4(w —ie)]2~i exp(P~) —1
(29)

The four-particle Green s functions can be evaluated in terms of Feynman diagrams. The polarization approxi-
mation describes the interaction of free particles with a system of scatterers in the first Born approximation that is
characterized by the dielectric function e(q, w) (for details, see [21]),

ELM
Ime '(q, (a+ iO) [1+g(~)]d~ ' = 2vrPh) eqV(q)

k,q
—OO

x f, (k)[1 —f, (k+ q)] K„(k, q) K (k+ q, —q) 6[(u+ E,(k+ q) —E,(k)] . (3O)

g(w) = [exp(P~) —1] ~ is the Bose distribution function. The dielectric function e(q, ~) relates the dynamically
screened potential V'(q, (q)) to the polarization function II(q, ~) according to

V.(,)
V.~(q) V.~(q)
&(q z) 1 —2 V-~(q)il-s(q z)

a, b

(31)

A cluster decomposition is employed for the polarization function similar to that for the self-energy Z, i.e. , II(q, z) =
IIq(q, z) + Ilz(q, z) + (see Sec. II A), Ilq represents the RPA for free-particle states, whereas II2 describes the
contribution of two-particle states to the polarization function [64]. The correlation functions d can then be
separated with respect to electron-ion, electron-electron, and electron-atom scattering, i.e. , d = D ' +D +D
The electron-electron and electron-ion contributions have the structure of Lenard-Balescu collision terms with respect
to the relevant interaction potentials (see [3]),

qq - = ~(qqlq ) &~(]l q: (q) ]* —q&-(q)&-(44q* —q') j ]
~(q ~) ]'

—OO

xh [~ —E,(k) + E,(k + q)] b [(u + E,(p) —E, (p —q)] f, (k) [1 —f, (k+ q)]
x f-(p) [1 —f.(p - q)][K-(k q) + K-(p -q)][K-(k q) + K-(p q)] . —

(33)

qq" = zpq) f du 8;,( w) 'q* b ]ru —E(q) + E(k+ q)] 6]w+ E(p) —E(q —q)] f (k)]1 —f (k+ q)]
k p, q

x f;(p)[l —f;(p —q)] K (k, q)K (k+ q, —q) .

The electron-atom correlation function is treated within the second Born approximation in order to include besides
the atomic form factor (first Born approximation Vl l) also the polarization contributions (second Born approximation
V( l). In the static case, we then have

V( l(knP, k + qn'P —q) + V~ l(knP, k + qn'P —q)D„- =~Ps )
k, nn 'P, q

x h [E,(k) + E„p —E,(k + q) —E„p ~] f, (k) [1 —f, (k + q)]
x g p[l+g p ~]K„(k,q)K (k+q, q) . — (34)
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g ~ = [exp(PE I —p, —p,;)—1] is the Bose distribution
function for atoms in the internal state n with a total
momentum P.

Restricting to the static limit u ~ 0 also for the case
of electron-electron and electron-ion scattering, the Born
approximation for the collision terms can be improved
systematically by considering the T matrix with respect
to the Debye potential (11). For electron-atom scatter-
ing, we consider the T matrix with respect to an efjec
tive interaction potential, the sum of the first and sec-
ond Born approximation in (34). Then, the correlation
functions D„',c = i, a are expressed by transport cross
sections QF (for details, see [39,63]),

2h
D~m = 2Nc

37r
dkk [PE,(k)]"+

xf.(k)[1 —f.(k)] QF(k) (35)

For the nondegenerate case, Fermi distribution func-
tions are replaced by Boltzmann factors. The electron-
electron correlation function (32), valid for arbitrary de-
generacy, can then be related to the transport cross sec-
tion QT' according to

2m

3
d~x R„(x)QT'(z) exp( —z),

(36)

with x = Ph k /m. The polynomials R are given in
[31,63].

In the low-density limit, the plasma is fully ionized
(i.e. , D' = 0), and the momentum-dependent electron-
electron and electron-ion transport cross sections QP'"
can be approximated by a generalized Coulomb loga-
rithm ln A [63]. The transport coefficients are then given
in the simple form

(k~T)'~2(4vrsp)2 1
e2m~&2 lnA '

a = ak~/e,
2

A=L
i i

To. .(e)

(37)

The convergence of this linear response method has been
studied with respect to a systematic extension of the set
of momenta (P„) [3,63,65]. In the nondegenerate limit,
three momenta (Pp, Pq, P2) are needed to reproduce the
Spitzer results for the prefactors f, a, L in Eq. (37). Fur-
thermore, there is a close connection to standard meth-
ods of kinetic theory for solving the Boltzrnann equation.
For instance, choosing Sonine polynomials for the set of
relevant observables (P ) corresponds to the Chapman-
Enskog method [66]. Considering Hermite polynomials
coincides with the Grad method [67]. Solving the Boltz-
mann equation by means of a variational principle [68]
or within the relaxation time approximation can also be
related to special sets (P ) (for details, see [3,63,65]).

For the degenerate domain, Pauli blocking, structure
factor, and local-Beld corrections to the dielectric func-
tion become of importance. The correlation functions

can then be given in the Born approximation (Landau
collision integral) by

2@2
D„"' = dE (/3E) "+ U„(E)

xf.(E)[1 —f.(E)]

U„[E,(k)] = N; dqq
" S,, (q) .'

p s(q)

(38)

Already a one-momentum approximation (Pp) yields,
e.g. , the Ziman formula for the electrical conductiv-
ity, whereas the Mott formula for the thermopower and
the Wiedemann-Franz relation for the thermal conduc-
tivity can be derived from a two-momentum approxi-
mation (Pp, Pq) and a three-momentum approximation
(Pp, P], P2), respectively.

C. Transport cross sections

The correlation functions D m are given in lowest den-
sity order by a ladder sum of diagrams, which corre-
sponds to the Boltzmann collision term [31]. The re-
spective T matrices relate the correlation functions to
the two-particle scattering process, which is described by
the transport cross sections QT,'(k) for elastic electron-
electron, electron-ion, and electron-atom scattering (c =
e)z)a )

do tQF(k) = 2vr (1 —cos y) sinydy .
0

(39)

QT" (k) = —) (I. + 1) sin 8&"(k) —h&+~(k)
e=o

d = i, a, (40)

4vr ) (/+ l)(8+2) ( (—1) )
k' - 28~3 q 2

X sin h&'(k) —0&+2(k)

The scattering phase shifts be' for electron-ion and
electron-electron scat tering have already been deter-
mined in Sec. II for the Debye potential (11) when cal-
culating the two-particle partition functions Z, . The
respective results for the transport cross sections (40)
are shown in Fig. 3 as function of the screening length
R~. Figure 3(a) shows a very systematic behavior with
respect to k, the transport cross sections are decreasing
with density due to screening. The respective figures
have been checked against earlier calculations [34,56].

The scattering angle y is related to the transfer momen-
tum by q = 2k sin(y/2), and do/dA is the difFerential
scattering cross section. For ei and ea scattering we have
I = 1, whereas for ee scattering t = 2 holds. Within a
partial wave expansion for QF(k), the following expres-
sions are derived:



525378

For small RD v 1 'RD va ues j D ( lOa ) l g ()l
ransport cross sections s i

ehavior for k valva ues smaller than 0.8k
ions s ow resonanceliki e

ishing of the last bound sta
in thee energy spectrum d h

oun states (e.g. , 2s at RD = 3.223ag)

h I
m an the con

of th
m. n t 's region, whi h

o the integral interval therva, e transport eros s sec ions vary
I

byu to tp ee orders of m 't d .magnitu e.
sec ions are reduced w

e

values systematically.
uce with decreasing B~

As we will show in t
tur

ow in the next section the '

()
densities. Thus, the el
ur;; as o e taken into account at higher

s, e e ectron-ion trans ort
derived from (39) has a

sport cross section
as a more complicated form )

HEIDI REINH Z, RONALD REDMERR, AND STEPAN NAGEL

&P(k) =
2k2 ) (2E + 1) exp(2xh") —1 Pg(cos —cos X) sin X dX, (41)

120 —ei

100

80
Al

65
IN

60
LU

40

20

where Pg(x) are Lee egendre polynomials.
s in ec. IV.

For electron-atom
shifts

-a om scattering, the scat
t lo 1 ltdcu a e numerically with respect to

an appropriate potential; see 34 .
od fme o or electron-neut

second-order pote t'
utral scattering the

fir
o en ia contains the atom

B xima ion as well as
ti1( o dB

resu d' 1 d' F' . 4.
orn approximation .

The trans ort '
withcross sections with

( o)

[69j
i ose where the atomic form factor

(,)
2e' ( 1

r = — + —
i
exp( —2r/a~)

has been included, i.e., V~ ~ + V~ ~ as an
tial. In addition the

as an effective poten-
or inary Bo

e transport cross s t
approximation for

ss sec ion with res ect to tec o the unscreened
iza ion potential (dott d 1o e ine), and the T

kaB

3.0

2.0

N
m 4

3(3
CD0

1.0
cn

6$

0.0
C3

C3

CDo -1.0-

-2.0

0.0 0.5 1.0
k/k

2.0

FIG. 3. ~a~ ~~a~~~~iansport cross sections fo

lengths B
ave num er vector k for va g

= 1 . (b) Tr
scattering as a funct'

ansport cross s c ronsectj.ons for electron-c ron-ion

F for various scrreensng lengths B~.
a zze wave number vect or

-3.0 I

0.0 I

I

0.1

ka
1.0

FIG. 4. Trans ortansport cross section for elec
s a unction of the wa

a

utilizing only the olar'
e wave number vector k:

the un
e po arization potential V

e unscreened case (Q) and R
at

(+)an ~ ——20a
or in a ition, i.e V un-

d ( ) dBan ~ —206~
or pproximation with res ect

e

p
ia otted line an

[ o] wit in a T matrix cal
eyer

(



52 THERMODYNAMIC AND TRANSPORT PROPERTIES OF DENSE. . . 5379

matrix results of Meyer and Bartoli [70] (dashed-dotted
line) which obey the Friedel sum rule are shown.

In the Born approximation, the electron-atom trans-
port cross section is considerably underestimated. The
partial wave expansion with respect to the polarization
potential alone gives results that are too high for low
transfer momenta k. This has a pronounced inHuence on
the transport coefficients in regions with a low degree of
ionization, i.e., the partially ionized plasma region. A
very good overall agreement with the consistent Meyer-
Bartoli curve is found within the partial wave expansion
with respect to the atomic form factor plus the polariza-
tion potential (see also [55] for alkali-atom plasmas). One
can conclude that the atomic form factor is important
for large transfer momenta A:, and that there is no signif-
icant inHuence of screening on the electron-atom trans-
port cross section. Therefore, the Meyer-Bartoli formula
can be utilized for the further evaluation of the correla-
tion functions D„'

0.06

0.04

0.02
CC

0

-0.02

-0.04
0.0

I

5.0
4

10.0
r (units of a,)

I

15.0 20.0

FIG. 5. Effective ion-ion potentials within full RPA includ-
ing local-field corrections for T = 10 K and various R~ val-
ues. 1: RD ——0.5a~, 2: R~ ——0.8a~, 3: RD = 1.0a~, 4:
R~ ——2.0ag, 5: RD = 5.0ag.

D. Ion-ion structure factor

For the calculation of force-force correlation functions
(38) and, thus, also the transport coefficients L,i, (23),
the ion-ion structure factor S;;(k) has to be determined.
At low densities, i.e., for weakly coupled, nondegener-
ate plasmas, the system can be assumed to be randomly
distributed with S;,(k) = l. At higher densities, both
exchange and correlation contributions to the screening
function lead to a typical oscillatory behavior of S;;(k).

In the fully ionized region, the plasma is usually de-
scribed as a one-component system where the ions in-
teract via an efFective interaction potential V;,+(r). The
pure Coulomb potential V,, (r) is modified by the screen-
ing of the electrons, which can be described by the di-
electric function s(k) according to Eq. (31). For s(k)
we evaluate the full random phase approximation (RPA)
numerically for arbitrary degeneracy of the electron sys-
tem. To account for exchange and correlation effects,
local-field corrections G, (k) are introduced by the rela-
tioIl

IIRPA (k)
1 + V(k)G. (k)II, (k)

(42)

For G, (k), various expressions have been derived. We
utilize here the parametrization given by Ichimaru and
Utsumi [71], which satisfies the self-consistency condi-
tions in the compressibility sum rule and the short-range
correlation. The effective potential in coordinate space
follows then from the Fourier transform of Eq. (31).

Figure 5 shows the drastic changes of the interionic po-
tential with respect to a variation of the density (given
by RD) for a fixed temperature of T = 104 K. At high
densities, the electron gas is fully degenerate and the
strong screening leads to a short-range interionic poten-
tial. Local-Geld corrections are small in that region. At
intermediate densities, the minimum of the interionic po-
tential caused by the local-Beld corrections becomes more
pronounced. At low densities, the minimum vanishes

again and the behavior is Debye-like.
The ion-ion structure factor S;;(k) can be calculated

numerically utilizing the integral equation method for
the determination of the correlation functions. Within
this scheme, the Ornstein-Zernike relation h(r) = c(r) +
n f c(~r —r'~)h(r') dr' is supplemented by the closure
relation

( Vefr (T)
g;; (r) = exp

~ h(r) —c(r) — " + B(r)
~l kgT r

c(r) is the direct correlation function, h(r) the total cor-
relation function with h(r) = g(r) —1, and g(r) the pair
distribution function.

Neglecting the bridge function B(r), the static struc-
ture factor

S,;(q) = 1 + x f dr (g(r) —1] exp(ieq. r) (44)

is calculated in the HNC approximation. For the numer-
ical evaluation, we have employed the algorithm devel-
oped by Labik, Malijevski, and Vonka [72].

To check our calculation, the resulting structure factors
at I' = 1 and 8 = 0.1 were compared with self-consistent
results of Ichimaru and co-workers [51] for S;,(k) and
G, (k) for a strongly coupled plasma, and a good agree-
ment within 5% can be stated.

Figure 6 shows a typical sequence of structure fac-
tors for various densities according to the eB'ective inter-
ionic potentials in Fig. 5. Due to the strong changes of
the interionic potential, the qualitative behavior varies
especially for small k values. For high densities (R~ =
0.5a~), the compressibility of the system is low, and
S(k ~ 0) is nearly zero. With decreasing density, up to
BD ——2a~, the long-wavelength limit for the structure
factor increases strongly. This behavior is mainly due to
the attractive part of the potential, which becomes more
pronounced in that region. With a further decrease of
the density, this attractive part vanishes again and the
structure factor drops down to values S;;(k + 0) ( l.

We want to state that the small k behavior of the
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FIG. 6. Ion-ion structure factor within full RPA including
local-Beld corrections for T = 10 K and various R~ values
(see Fig. 5). 1: RD = 0.5ag, 2: Ro = 0.8a~, 3: Ro = 1.0a~,
4: R~ —2.0gp, 5: Rz) —5.0@g.

structure factor as derived from the HNC approxima-
tion corresponds to the compressibility of an electron gas
treated in extended RPA. The present equation of state,
however, contains also contributions of bound states, of a
hard core reference system, etc. (see Sec. II). Therefore,
the present structure factors that are needed for the cal-
culation of the transport coefficients in the high density
region are not internally consistent with this equation of
state.

has been covered.
The numerical results obtained within the present lin-

ear response approach interpolate between the Spitzer
theory for nondegenerate, weakly nonideal plasmas [see
(37)] and the Ziman theory for degenerate, strongly cou-
pled plasmas. This is demonstrated in Figs. 7—9 where
the transport coefficients are shown for a given ternpera-
ture of T = 15 x 10 K as function of the number density.
A three-momentum approximation has been applied, i.e.,
utilizing Po, Pq, and P2, which yields an accuracy of 1%
compared with the values obtained within an infinite se-
ries expansion of the distribution function.

The correlation functions were calculated on the T ma-
trix level using (40) for electron-electron scattering, (41)
for electron-proton scattering, and, for simplicity, the fit
formula of Meyer and Bartoli [70] for electron-atom scat-
tering; see Fig. 4. The scattering of electrons at dimers
was supposed to follow a potential strength similar to
that of atoms so that the interaction of electrons with all
neutrals is described by this formula.

The results for the electrical conductivity and ther-
mopower indicated with generalized Ziman and Mott for
mula have been deduced from the first Born approxirna-
tion for the electron-ion correlation function (38) within
a one- and two-momentum approximation, respectively.
Electron-electron and electron-neutral interactions have
been neglected in this Lorentz plasma model. However,
the efFects of structure factor and of a smeared-out Fermi
surface (arbitrary degeneracy) are included.

IV. RESULTS FOR THE TRANSPORT
COEFFICIENTS

A. Electrical conductivity

The electrical conductivity 0, thermal conductivity A,
and thermopower o. of partially ionized hydrogen plasma
were calculated for T = 10 —10 K and n~ = 10 —10
cm

In the high density limit, the consideration of higher
momenta P corresponds to a generalization of the Zi-
man (and Mott) formula as employed, e.g. , in [50,51].
We have included structure factor efFects as well as local-
field corrections when calculating the correlation func-
tions D" in that region. Taking into account the struc-
ture factor for electron-ion scattering via (41), we found
only little impact on the transport properties. Especially
for high temperatures structure factor efFects can be ne-
glected. For T & 10 K and BD ) la~, the transport
cross section is reduced by only 1%. On the contrary,
for BD & 1a~, we find a pronounced lowering of the
transport cross sections especially for small k values so
that these contributions are damped out when integrat-
ing over k. This leads to a lowering of the electron-ion
correlation function by up to one order of magnitude in
the high-density —low-temperature domain, which is con-
sidered to represent a metallic liquid.

Furthermore, the composition of hydrogen plasma was
determined considering the nonideality corrections to the
thermodynamic potentials and the respective laws of
mass action; see Sec. II. Thus, also the region of partial
ionization at intermediate densities and low temperatures

The electrical conductivity (Fig. 7) is given by the
Spitzer formula in the low-density limit up to 10 cm

partiall——- fully io
———genera
—- —- Spitze

2
6

C)

CBo 5

T= 15 00

4

I I I I I I I I I

17 18 19 20 21 22 23 24 25
log„[n(cm )]

FIG. 7. Electrical conductivity cr of hydrogen plasma for
T = 15 x 10 K as a function of the particle number density n
within different models: Spitzer curve [47] (dash-dotted line),
generalized Ziman formula (dashed line), fully ionized plasma
within the T matrix approximation (dotted line), partially
ionized plasma within the T matrix approximation (full line)
including (a) and neglecting (b) the structure factor.
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FIG. 8. Thermop ower o. of hydrogen plasma for
T = 15 x 10 K as a function of the particle number density
n within different models: generalized Mott formula for the
Lorentz plasma (only electron-ion interaction, dashed line),
fully ionized plasma within the T matrix approximation (dot-
ted line), partially ionized plasma within the T matrix ap-
proximation (full line) including (a) and neglecting (b) the
structure factor.

and has typical values of cr = 10 /(0 m). The Spitzer
curve diverges for higher densities. The T matrix results
for the fully ionized plasma merge into the Ziman for-
mula above 10 cm . This is a result of the strong
screening of the Coulomb interaction so that the erst
Born approximation becomes valid. Furthermore, the
electron distribution function is determined already by
one momentum P0 in the degenerate domain, whereas
two three momenta P are needed in the nondegenerate

3.5
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Q)

E
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nz law
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FIG. 9. I orentz number L of hydrogen plasma for
T = 15 x 10 K as a function of the particle number density n
within different models: Spitzer result [47] (dash-dotted line),
Wiedemann-Franz law (dashed line), fully ionized plasma
within the T matrix approximation (dotted line) including
(a) and neglecting (b) the structure factor, partially ionized
plasma within the T matrix approximation (full line).

region. Employing the Ziman formula also for nondegen-
erate plasmas leads to conductivities that are too low by
a factor of about two.

Partial ionization of the plasma, i.e., the formation of
neutral and charged clusters, leads to a strong decrease
and a typical minimum behavior of the isotherms for
the electrical conductivity. The decrease is a result of
the diminishing fraction of free electrons and their re-
duced mobility due to scattering at neutrals. The min-
ima occur at about 10 cm and run to values less
than cr = 10z/(0 m) dependent on temperature (see Fig.
10). The conductivity shows then a subsequent sharp in-
crease due to the Mott effect, i.e., the bound states van-
ish, and the plasma becomes fully ionized again. Further-
more, electron-electron and electron-neutral scattering is
no longer of importance so that the free electron mobility
is also increasing. Ion-ion correlations are described by
the structure factor in the electron-ion correlation func-
tion (41) and lead to a sharper increase of the conduc-
tivity in the high-density (liquid) branch compared with
the case of S(k) = 1.

This typical behavior at low temperatures can be in-
terpreted as a nonmetal-to-metal transition. Utilizing
the Mott criterion for the minimum metallic conductiv-
ity of cr = 10 /(0 m) also for T g 0 in order to locate
this transition, a critical density of about 0.16 g cm
can be found that is close to the critical density of the
thermodynamic instability at 0.42 g cm; see Sec. II.

B. Thermopower

The general behavior of the thermopower is shown in
Fig. 8. Again, the low-density asymptote within the
present T matrix approximation for the fully ionized
plasma coincides with the Spitzer result, o. = —60.60
pVK . The high-density limit is given by the Mott
formula. However, already the T matrix results for the
fully ionized case show an interesting behavior between
10 cm and the critical density of 10 cm . In this
region, a resonancelike behavior of the scattering phase
shift sum that enters into the expression for the electron-
ion transport cross section (40) is obtained when the low-
est bound states (1s, 2s, 2p, . . .) disappear (see Sec. III C).
For the thermopower, two Onsager coeKcients L;I, have
to be determined according to Eq. (22) which average
this resonancelike behavior in different ways so that we
obtain a "wiggle" for the thermopower. This distinct be-
havior of the thermopower has already been found for
hydrogenlike systems such as cesium plasma [73]. Ptn'-
thermore, the density region between the local maximum
and the local minimum of the thermopower is connected
with the decreasing slope of the curve for the electrical
conductivity in Fig. 7.

The Mott formula (Born approximation) yields values
for the thermopower that are too small by a factor of
about two in the low-density limit. In addition, the in-
Auence of electron-electron scattering that is important
in that region is not accounted for in this I orentz plasma
model.

Consideration of partial ionization leads to drastic ef-



5382 HEIDI REINHOLZ, RONALD REDMER, AND STEFAN NAGEL 52

C. Lorentz number

The thermal conductivity behaves very similar to the
electrical conductivity so that we have plotted in Fig. 9
the Lorentz number

L= e2

k~~T 0. (45)

For the nondegenerate case, the Lorentz number is 4.0
for a I orentz plasma (only electron-ion interaction), or
1.5966 considering also electron-electron scattering. For
the degenerate domain, the Wiedemann-Franz relation
is fulfilled, which gives I = vr /3. In the intermediate
region, the numerical results for (45) interpolate between
these limiting cases dependent on temperature. Again,
the oscillatory behavior at densities between 10 and
10 cm stems from the resonancelike structures in the

t
scattering p ase shift sum as already discussed for thor e
hermopower. Ion-ion correlations have little inQuence

on the Lorentz number in the partially ionized. domain
and yield only a small reduction of the values.

fects. At aboabout 10 cm, a strong increase up to
slightly negative values is found. However, positive val-
ues for the thermopower as proposed earlier in that do-
main [3] could not be verified. This might be an inherent
feature of the Born approximation for the collision inte-
grals D ~ and/or result from the simpler evaluation of
the equation of state within the Debye-Huckel approxi-
mation utilized in that paper.

Taking into account ion-ion correlations again, the
sharp increase of the thermopower becomes more pro-
nounced in the high-density —low-temperature region, i.e. ,
for T & 15 x 10 K and n & 10 cm . Furthermore,
small positive values and, thus, a change of sign have
been obtained. A similar behavior was recently found
or liquid Cs [74] as a result of structure factor effects

and local-6eld corrections.
It would be of high interest to calculate the ther-

mopower along the liquid-vapor coexistence curve of mer-
cury within our improved model where such strong posi-
tive values for the thermopower have been measured [75].
Then, general conditions for the coincidence of the den-
sity for the zero-point transition of the thermopower and
the critical density of the liquid-vapor phase transition
as found for mercury can be veri6ed.

6
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22 23 24 25

FIG. 10. Electrical conductivity o for partially ionized hy-
drogen plasma for various temperatures as a function of the
particle number density n.

0

-20

demonstrates the occurrence of a smooth nonmetal-to-
metal transition near the critical point of the hypotheti-
cal plasma phase transition.

Another ind. ication for such a transition is the strong
increase of the thermopower towards positive values and
the subsequent steep slope in that density region (Fig.
ll). This behavior is similar to that observed experi-
mentally for mercury along the coexistence line [75], al-
though high positive values for the thermopower could
not be verified for hydrogen plasma at the nonmetal-to-
metal transition contrary to the mercury results.

There are few experimental data for the transport coef-
ficients of dense hydrogen plasma [76] but some other the-
oretical approaches exist. For instance, Boercker, Rogers,
and DeWitt [50] determined the electrical conductiv-
ity for strongly coupled plasmas within the Chapman-
Enskog scheme for solving the Gould-DeWitt kinetic
equation [54]. They calculated the correct quantum, De-

M. Metal-nonmetal transition and comparison

40-

In Figs. 10—12, the present results for the transport co-
ef6cients are shown for various temperatures as a func-
tion of the number density. The deep minima for the
electrical (Fig. 10) and thermal conductivity (Fig. 12)
vanish above T = 30 x 10 K because the plasma re-
mains nearly fully ionized over the entire density domain
For low temperatures, a steep increase of the conductiv-
ities over four orders of magnitude in the narrow den-
sity region around 10 cm can be seen, which clearly

-60

-80
17 18 19 20 21 22 23 24 25

log„[n(cm )]

FIG. 11.. 11. Thermopower o, for partially ionized hydrogen
plasma for various temperatures as function of the particle
number density n.
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FIG. 12. Thermal conductivity A for partially ionized hy-
drogen plasma for various temperatures as function of the
particle number density n.

bye screened cross sections for electrons scattering &om
finite-sized ions, neutrals, and other electrons. Their
schexne coincides completely with the present approach
in the nondegenerate case.

The correlation function method utilized by Ichimaru
and Tanaka [51] is based on the Ziman formula for Z = 1
and yields conductivities between the T matrix results
and the generalized Ziman formula. A prefactor was
adopted to give the right Spitzer values in the low-
density limit. In the high-density limit, structure factor
effects and local-Beld corrections have been included self-
consistently, which goes beyond the present approach.

Djuric et al. [77] derived a fit formula for the electri-
cal conductivity based on the Ziman formula for Z = 1
taking into account screened Coulomb interactions and
local-field corrections and obtained slightly smaller re-
sults than those of Ichimaru and Tanaka.

Rinker [52] also utilized the Ziman formula to calcu-
late the electrical and thermal conductivity for a large „

domain of the density-temperature plane, whereas the
conductivity model of Lee and More [60] is based on the
relaxation time approximation, which neglects electron-
electron correlations. Both models are valid for Z & 1
and arbitrary degeneracy.

V. CONCLUSIONS

We have presented a quantum-statistical approach to
the equation of state and the transport properties of
dense hydrogen plasma. A thermodynamic instabil-
ity has been found within the chemical picture where
the critical point coincides with results of Ebeling and
Richert [8,9], and Saumon and Chabrier [6,7] for the
hypothetical plasma phase transition. Within our ap-
proach, at least the two-particle correlations have been
accounted for correctly by an improved Beth-Uhlenbeck
formula. The concentration of higher clusters such as
dimers H2 and molecular ions H2+ has been determined

from respective laws of mass action. Near the instability
region, all species have strongly varying concentrations,
which indicates the significant inhuence of nonideality
corrections on the thermodynamic functions.

The implications of this thermodynamic stability be-
havior on the transport properties have been studied for
weakly coupled, nondegenerate plasmas up to strongly
coupled, degenerate plasmas. We have utilized a gen-
eralized linear response approach in the formulation of
Zubarev [20], which yields the Spitzer as well as the Zi-
man theory as limiting cases.

Again, two-particle correlations have been accounted
for by the correct quantum cross sections for electron
scattering at ions and &ee electrons. Electron scatter-
ing at neutral atoms was also considered on a T matrix
level with respect to an effective optical potential. Strong
ion-ion correlations are of special importance at high den-
sities. The respective ion-ion structure factor was deter-
mined numerically within the HNC scheme, taking into
account local-Geld corrections to the screening function
of the effective ion-ion interaction potential.

The results for the transport coefBcients clearly indi-
cate that a nonmetal-to-metal transition occurs near the
critical point of the hypothetical plasma phase transi-
tion. This can be seen &om the sharp but smooth in-
crease of the conductivities and from the drastic shift
of the thermopower towards positive values in a narrow
density range. This typical behavior is a consequence of
the vanishing of neutral two-particle states (atoms) with
increasing density, which is usually described as a Mott
transition. Subsequently, the fraction of free conduction
electrons that is determined by the ionization degree in-
creases strongly. Although the energy levels of the atom
disappear one after another, this transition is a contin-
uous one because the respective contributions are taken
over by the scattering states. This is a general charac-
teristic of the physical picture which treats bound and
scattering states on the same level. This concept was ap-
plied in this paper at least for two-particle correlations
when calculating the two-particle partition function Z,
Eq. (9).

Such a continuous behavior has already been found by
Hohne and Zimmermann [78] for the oscillator strength
of hydrogen atoms as a function of the density. As a
consequence, a transparency windom in dense plasmas as
predicted by some authors [79] for the region where only
one bound state remains is very unlikely to occur. Nev-
ertheless, due to the Levinson theorem, a resonancelike
behavior is obtained in the electron-ion scattering cross
section whenever a bound state disappears. In particu-
lar, the vanishing of the lowest-energy levels in hydrogen
yields the distinctive structures that are apparent in the
conductivities and the thermopower; see Figs. 7—9.

The nonmetal-to-metal transition discussed for hydro-
gen is experimentally verified for expanded alkali-atom
metals and mercury &om measurements of the ther-
moelectric, structure, magnetic, and optical properties
[23,24]. There, the transition occurs near the critical
point of the liquid-vapor phase transition so that the
thermodynamic properties of the system have to be de-
termined considering simultaneously the drastic varia-
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tion of the electronic properties. Quantum-statistical
approaches have been successful in describing general
features of such a combined thermodynamic and elec-
tronic transition for the alkali-atom metals [25,30,36,80]
and mercury [36,81]. Therefore, the present approach
supports the presence of a thermodynamic instability in
dense hydrogen plasma the hypothetical plasma phase
transition with a second critical point at about T
16 x 10 K and p = 60 GPa, far apart from that of the
ordinary liquid-vapor phase transition.

However, the present approach is also based on the
chemical picture when treating higher clusters such as H2
or H2+ and the various interactions between the species.
Therefore, we are not able to decide whether or not this
plasma phase transition is a real thermodynamic phase
transition with a second critical point, or an artefact of
that approach. The occurrence of the nonmetal-to-metal
transition is not affected by that shortcoming of the the-
ory so that it can serve as a precursor for a real phase
transition.

A more detailed theoretical approach should be based
on a consistent physical picture. Simultaneously, one
should go beyond the quasiparticle picture by taking into
account the damping of one- and two-particle states via
the imaginary parts of the self-energy. For this, the
spectral function in Eq. (9) has to be determined self-
consistently for a Coulomb system at arbitrary degener-
acy. Having in mind the relatively simple approximations
that were utilized for the evaluation of the expressions for
some of the nonideality corrections, this problem seems
to have been out of reach until now. Furthermore, typical
efFects for solid-state-like densities such as band structure
and disorder should be taken into account in a more uni-
fied approach.

The estimate for the discontinuity of the density be-
tween the two hypothetical phases is 20% according to
Saumon and Chabrier [7]. A direct observation of this

discontinuity might be diKcult in strongly coupled plas-
mas. Therefore, it should be of great interest to study
the behavior of other quantities that are directly corre-
lated with the equation of state data as, for instance, the
transport properties. Further quantities to be discussed
are, for instance, stopping power, opacity, or reflectivity
in order to narrow down the parameter domain where
future experiments have to look for precursors of the (up
to now) hypothetical plasma phase transition.

Besides hydrogen, other systems are also candidates
for the observation of a plasma phase transition. Inert
gases are especially well suited for that purpose because
clusters do not occur virtually and the polarizability of
neutrals is small, which implies weak polarization and
van der Waals interaction. Therefore, inert gas plasmas
can be treated theoretically within the physica/ picture
adequately contrary to hydrogen plasma. The effective,
but limited concept of a chemical picture has already
been applied to inert gas plasmas [15], and yields results
very similar to those for hydrogen plasma. Advanced
shock-wave techniques have been applied, e.g. , to xenon
[16], which are considered to be eligible of reaching the
proposed instability region so that the phase transition
could be studied experimentally. Furthermore, new tech-
niques such as ultrashort, high-intensity laser beams [82]
or high-energy heavy ion beams [83] should be utilized
to produce strongly coupled plasmas with parameters in
the required range.
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