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When an object such as a dust particle or spacecraft is immersed in a plasma flowing at a supersonic
speed, an asymmetric screening potential forms around that object. The asymmetry is especially pro-
nounced on the downstream side, with an ion rarefaction in the wake followed by an ion focus region.
This polarized screening potential helps explain recent laboratory results with dusty plasmas, where col-
lective interparticle effects were shown to be asymmetric. Using an electrostatic Quid simulation with
cold ions and Boltzmann electrons, we have simulated the How around spherical and cylindrical bodies,
with and without a negative potential bias. Here, the fIow speed vo is assumed to be supersonic (faster
than ion acoustic) and mesothermal (vy" « vo « v~, ). A numerical method is used, with a diffuse object
that simulates the ion loss and space charge on an object s surface. This works with one or many objects,
of any shape. We present solutions for systems of one and two particles in a simulation box, with period-
ic boundary conditions that help reveal collective effects.

PACS number(s): 52.40.Hf, 52.65.—y, 52.35.Tc

I. INTRODUCTION

Supersonic Qow of a plasma onto a solid object is of in-
terest for dusty plasmas and for spacecraft in low Earth
orbit. A dusty plasma is a low-temperature ionized gas
containing small solid particles, which become charged
by absorbing electrons and ions from the plasma [1]. A
spacecraft becomes charged for the same reason [2,3].
Since the ratio of the object size to Debye length is
roughly the same for a dust particle in a laboratory plas-
ma as for a spacecraft in the ionosphere, the physics
presented here applies equally to spacecraft and laborato-
ry dusty plasmas. The term "object" will be used here to
refer equally to a dust grain or a spacecraft.

Numerous theoretical and experimental studies of the
problem of supersonic How into an object have been re-
ported for both space and laboratory plasmas. Charging
of a spacecraft in the ionosphere was the subject of early
theoretical [4] and numerical [5] studies. They predicted
a so-called plasma wake (rarefaction in the ion density)
immediately downstream of the spacecraft followed by an
ion focusing region (high ion density) farther down-
stream. The wake itself is due to the finite size of the ob-
ject, while the ion focusing is an electrical effect that will
appear regardless of the object size. The wake region was
clearly indicated by measurements around the space shut-
tle [6]. Both the wake and focus regions have been
detected in laboratory experiments [7—9]. Often particu-
lates are found in a sheath or double layer, where there is
an electric field that accelerates the ions to supersonic ve-
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locities, as required by the Bohm sheath criterion. A re-
cent particle-in-cell simulation by Choi and Kushner [10]
showed that wake and focusing effects may be important
for the charging of dust particles in gas discharge plas-
mas. They looked at the charging of two particles,
aligned so that one particle shadows the other, and found
a significant difference in the surface potential of the two
particles.

Theoretical techniques also can be used to find approx-
imate solutions for the electric field and plasma density
distribution around a charged object, moving at a veloci-
ty Uo relative to the plasma. Several methods are de-
scribed by Al'pert et al. [4]. Some of these invoke
quasineutrality, which is an unsuitable approximation.
This is improved by solving the Poisson equation, which
has been done in a Vlasov approach by several authors, as
reviewed by Coggiola and Soubeyran [3]. A linear test
particle approach [11,12] is also possible (see Sec. V) al-
though it does not include any loss of plasma particles,
which is required for plasma wake effects. Test particle
calculations by Chenevier, Dolique, and Peres [13] have
shown that the Mach number M =vo/c;, where c; is the
ion acoustic velocity, is an important parameter for the
shielding. Note that this Mach number is not defined us-
ing the ion thermal velocity, a distinction that is especial-
ly important for gas discharges where T, « T, is typical
for the ion and electron temperatures. The symmetry of
the screening depends on the regime of the Aow speed, as
summarized in Fig. 1. The screening is symmetric, i.e.,
the same on the upstream and downstream sides, for Bow
velocities well below the ion thermal speed, Uo«uz;.
Asymmetric shielding occurs in a regime extending from
slightly below the ion thermal speed to slightly above the
acoustic speed. In highly supersonic Aows, vo))c;, ion
orbits are undetected and thus do not screen the charged
object, resulting in symmetric screening, due to the elec-
trons alone.
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FIG. 1. The regimes of flow speed and screening for a
charged object in a plasma Bowing at velocity vo. For this
sketch, T; & T, . Our simulations are carried out for velocities
that are supersonic and in the mesothermal regime.

The mesothermal regime, which we have simulated, is
specified by the velocity range vT ((vp &(VT ~ It 1s typ1-
cal of both a particle in a gas discharge and a spacecraft
in low Earth orbit. In a laboratory plasma, micrometer-
sized dust particles are typically found near the edge of
an electrode sheath, where the ion drift velocity has
M =1, or within the sheath, where M & 1. In low Earth
orbit, oxygen ions flow toward a spacecraft with an ener-

gy of 5 eV, which is supersonic.
In this paper we report numerical solutions of a self-

consistent fluid model describing the plasma flow into a
charged object. The simulation was carried out in three
dimensions (3D) for a spherical object and in 2D for a
cylinder aligned perpendicular to the flow. The plasma
How velocity vo is assumed to be supersonic (M ) 1).

We use a two-fluid model with cold ions and
Boltzmann electrons in an unmagnetized plasma, and a
fixed potential on the surface of the object in the plasma.
Using Boltzmann electrons is a good approach for meso-
thermal flows where VT; «vp «vT, . Our fluid approach
should offer a good description of the overall structure of
the flow, but it will not reveal kinetic effects such as elec-
tron heating, thermal wake filling, or velocity-space insta-
bilities in the wake and ion focus region. The unmagnet-
ized plasma assumed here is suitable when the ion Debye
length and object diameter are very small compared to
the gyroradius. For dust particles in a gas discharge this
requirement is easily satisfied. It is somewhat less appli-
cable to spacecraft in low Earth orbit, where the cyclo-
tron motion of ions alters the wake, as shown in experi-
ments aboard the space shuttle [6].

The polarity of the potential on the object is a crucial
factor in determining the structure of the flow. We con-
sider here only negative potentials. Of course this at-
tracts ions, which is readily apparent in our results. Neg-
ative potentials are typical of laboratory dusty plasmas
and of some cases with spacecraft and dust in space. Pos-
itive potentials, however, develop sometimes on space-
craft, due to photoelectric or secondary electron emis-
sion.

The geometry assumed in our numerical method is
nonperiodic along the streaming direction and periodic in
the transverse directions. Periodic boundary conditions
introduce collective effects since ghost objects are regu-
larly spaced outside the computational domain. Collec-
tive effects can be enhanced by reducing the spacing I.

„

(and L, for the 3D case) in the periodic directions and in-
troducing several objects in the nonperiodic x direction.
Collective effects are discussed further in Sec. III B.

We report a method of using a diffuse body to simulate
a solid object in the plasma. The key physics that must
be retained are the surface charge and the surface collec-
tion of plasma ions. In a diffuse body, the charge and ion
loss are distributed throughout the object's volume. The
diffuse body is described by a distribution function S(x)
in the spatial coordinate x, as discussed in Appendix A.

We were motivated by two types of recent laboratory
experiments with dusty plasmas. High-power sputtering
plasmas produced unusual arrangements of particles that
had coagulated [14], and low-power discharges levitated
microspheres in a way that they were spaced in a crystal-
linelike lattice [15—17]. There were two surprising obser-
vations that might be explained by collective effects in-
volving dipole attraction. One is that the conglomerate
that forms from coagulation is string shaped rather than
fractal-like (as expected for isotropic coagulation) when
they collide and stick [14]. Another is the vertical align-
ment of microspheres in the plasma crystals [15—17].
While it is not surprising that the spheres arrange them-
selves in hexagons in horizontal planes (perpendicular to
the Sow), it was unexpected that they tend to align direct-
ly above one another, rather than staggered as in bcc and
fcc crystalline structures. These experimental observa-
tions suggest that the interparticle potential is not strictly
an isotropic repulsive monopole repulsion, but might in-
clude an anisotropic dipole attraction.

Our simulation reveals that the wave effect causes the
flowing plasma in the vicinity of a charged object to have
a significant polarization and dipole moment. It also
causes the ion flux collected by the object to differ on the
up and downstream sides, leading to a polarization of the
object itself, if it is nonconducting. These polarizations
of the plasma and the object will lead to interparticle di-
pole forces that are attractive parallel to the flow, thereby
partially overcoming the repulsive monopole forces be-
tween two negative charges. The force between a particle
and its own sheath is also influenced by a dipole moment
in the sheath [18,19].

The flowing plasma considered here is not the only way
the sheath can acquire a dipole moment. A plasma
nonuniformity, such as a density gradient and an external
electric field, also polarizes the sheath. A density gra-
dient corresponds to a gradient in the Debye length, lead-
ing to a slight positive potential region on the high-
density side of the sheath. This effect was studied by
Hamaguchi and Farouki [18,19]. They were chielly con-
cerned with finding the force on a single isolated particle
in a laboratory plasma. Our results are also revealing for
the behavior of a single particle, but it is collective effects
between multiple charged particles that we are most con-
cerned with explaining.
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II. FLUID EQUATIONS
B,v, +V(u; /2)=—eZ;

VP. (6)
The plasma is modeled by a cold ion fluid and

Boltzmann electrons, which respond self-consistently to
the Poisson equation. With this treatment, the ions have
a density n; and a flow velocity v, while the electrons are
characterized merely by a prescribed uniform tempera-
ture T, and a density

e
p

Here n,o is the ion density at a point well away from any
object in the plasma.

In computing the flow of the ions around the object, we
model the ion absorption with loss terms in the continui-
ty and momentum equations. In the Poisson equation, a
fixed charge is specified, and it is assumed to be uniformly
distributed on the surface, neglecting the tendency of the
upstream side to collect more ions and charge more posi-
tively than the downstream side [3]. Based on our re-
sults, we will discuss later in qualitative terms how this
nonuniform charging will take place.

The continuity and momentum equations for the ion
fluid can be written with the ion loss on the right-hand
side:

B,n, +V (n;v;)= —y, 5(r —ro),

B,(m,.n, v; )+V (m;n;.v;v; )

= —m;v;y, 5(r —ro) —eZ;n;VP .

(2)

(3)

0 for v; n&0. (4)

Here n is a unit normal vector to the surface (pointing
outward).

In the momentum equation [Eq. (3)] we have assumed
cold collisionless ions by neglecting the pressure and col-
lision terms. Since the object in the plasma is massive,
ions are assumed to lose all their momentum when they
strike. The momentum equation can be rewritten by
combining it with Eq. (2) to yield

a, v, +v, .V
eZ;

VP,
m;

(5)

where the ion loss term has conveniently canceled out.
The plasma flow is assumed to be irrotational. This is

valid provided it is irrotational as it enters the simulation
region, since the circulation is a conserved quantity for
our conservative force [right-hand side (RHS) of Eq. (5)]
[20]. Thus the convective term v, .Vv, can be written as
V(u, /2) and the momentum equation [Eq. (5)] becomes

Here the ion mass, electronic charge, and flow velocity
are denoted m;, Z;, and v;, while r and ro represent the
position vector and the object's surface, respectively.

The ion loss in the continuity equation is the ion Aux,

y;, multiplied by a Dirac delta function 5, which de-
scribes the object's surface. For a perfectly absorbing
surface, the ion fiux at the surface can be written as [4]

—n v n for v n(0

The Poisson equation is

V P= — —[n, —n, +zd5(r ro)/—p],
60

(7)

where zd is the total number of elementary charges uni-
formly distributed on the surface, and p=2mro or 4~ro
for a cylindrical or spherical surface, respectively.

The full set of fiuid equations we will solve are Eqs. (1),
(2), (4), (6), and (7). These equations can be cast in dimen-
sionless form by normalizing all the variables: T=co;t,
X=x/AD„V=v;/c;, N=n;/no, N, =n, /no, b, =5AD„
I'= y; /co~; A,D,no, Zd =zd /pnoA, D„and 4= eP/—KT, .
The time has been normalized by the ion plasma frequen-
cy co~; = (e Z; no/eom; )', where the density n, at a large
distance from the object on the upstream side is specified
as no. Distance is normalized by the electron Debye
length AD, =(eOKT, /e no)'i, which is consistent with
normalizing velocities by the ion acoustic velocity
c;=(Z k~T /m )'

The continuity, momentum, and Poisson equations in
dimensionless form become

dTN+Vz (NV)= —I b,(X),
a,v+V (V'/2)=V e,
V~@=N —exp( —4&)+Zdh(X) .

(9)

(10)

For the loss term, the flux I can be written in terms of
the Heavyside step function H as

dN/dX(X=L, Y,Z)=0, (12)

I"= NV nH( ——V n) .

For given boundary and initial conditions, this self-
consistent set of equations can in principle be solved. We
do this numerically in a rectangular simulation box, using
the method described in Appendix B. The flow is in the
positive X direction, and the component of the velocity V
in that direction is denoted U.

The boundary conditions, which are summarized in
Fig. 2, include specifications of the density, velocity, and
electrical potential on the sides of the simulation box.
The boundary conditions are periodic in the transverse
direction and nonperiodic parallel to the fiow (X direc-
tion). For supersonic fiows (M ) 1) given by Eqs.
(8)—(11), boundary conditions for N and U must be
specified only on the upstream side (X=O) of the box,
while 4 must be specified only on the downstream side
(X=L„).However, in our numerical solutions we also
were required to specify gradients of N and U on the
downstream sides, because we added small diffusion and
viscosity terms to Eqs. (8) and (9), respectively (see Ap-
pendix B for more details). This changed the character of
Eqs. (8) and (9) from hyperbolic to parabolic, requiring
that N and U also be specified on the outflow boundary.

Neumann boundary conditions were used on the down-
stream edge of the simulation box
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FIG. 2. Computation domain and boundary
conditions used in the 2D and 3D simulations.
The Aow enters a rectangular simulation box
from the top with a velocity vo =Mc; in the X
direction. In 3D, the box is the same in the F
and Z directions. The object is a cylinder (2D
simulation) or a sphere (3D), and it is diffuse;
i.e., it does not have a distinct surface. Our
solutions are assumed to be nonperiodic in this
direction and periodic in the transverse direc-
tions. Dirichlet and Neumann boundary con-
ditions are used for the inAow and outAow
sides, respectively in the X direction. Periodic
boundary conditions used in the other direc-
tions lead to ghost particles outside the com-
putation domain, which for a dusty plasma
simulates collective effects. In the simulation
results presented below, only the left half of
the simulation box is shown, since the problem
is symmetric about the center line.

outfiow
boundary
conditions:

Bv& /Bx = 0

Bn&/Bx = 0
ay/ax = 0

aUrax(X=I,„,Y,Z)=0,
B@IBX( X=L„,Y, Z) =0

(13) initial potential found by solving the Poisson equation
[Eq. (10)] with a uniform ion density N = 1.

and Dirichlet boundary conditions on the upstream edge

N(X=O, Y,Z)=1,
U(X=O, Y,Z)=M,
C&(X=O, Y, Z)=0 . (17)

N =1, U=M, %=4O, (18)

where the Bow is initially in the X direction and @0 is the

Intuitively, one would expect the Neumann boundary to
be physically correct far downstream from a charged ob-
ject, where the disturbance due to geometrical effects and
shielding by the plasma is small. However, our numeri-
cal tests show that even if the downstream boundary is
close to the charged object, using Neumann boundary
conditions results in only a very small disturbance in the
plasma How as it propagates out of the simulation box.

In addition to the boundary conditions, we also must
specify initial conditions. The exact choice is not impor-
tant, as we shall only seek the steady-state solution. At
T=O we used the initial conditions

III. THK OBJECT IN THK PLASMA

A. Numerical treatment of the object

While Eqs. (8)—(10) can in principle be solved, the Pois-
son and ion continuity equations have an infinitely sharp
6 function that cannot be resolved numerically. We shall
replace the 6 function with a finite radial distribution
that describes the object's shape:

S&(R)=c,R exp[ (R —
y&) lo, ],—

where R is the normalized distance from the center line
of a cylinder or the distance from center of a sphere, in
2D or 3D, respectively. Our motivation for using this
distribution function is described in Appendix A, togeth-
er with information about how the constants c& and y,
are chosen. A plot of S, is shown in Fig. 3, where it is
compared to another diffuse function So, as discussed in
Appendix A.

In the Poisson equation, Eq. (10), the 5 representing
the object's charge distribution is replaced by S. The ion
loss in the equation of continuity, Eq. (8), is written as the
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FIG. 3. Distribution function S of a di6'use object. This
function replaces the delta function representing the object's
surface in the Poisson and ion continuity equations. The dimen-
sionless distance R =r/A, D, is measured from the center of a
spherical or cylindrical object. The two functions shown are
given by Eqs. (A3) and (A8). In these plots the parameters
Ro = 1 ciao= a& =0.5yo= 1, and y, =

4 were used, for a disuse

cylinder.

product I,S, (R), where the fiux into the diffuse object is

V.RI = PN H—( —V.R) .
R

(20)

The factor P) 1 corrects for insufficient ion loss, as ex-
plained in Appendix A.

B. Collective e8ects for dusty plasmas

In a dusty plasma there can be many charged dust par-
ticles per unit volume. This is mimicked in our simula-
tion by using periodic boundary conditions, which pro-
vide ghost particles at a regular spacing. For this reason,
we summarize here the use of a parameter P, which is a
common measure of the dust particle density I21]. This
parameter is defined as

P =Z&n&/(noeu /KT, ~, (21)

P =4vrRO(1+Ro) 1

L„LL,
(22)

and it depends on eu /KT„where u is the particle poten-
tial with respect to the surrounding plasma potential.
For eu/KT, of the order of unity (which is typical for
solid objects in a thermalized electron/ion plasma), P can
be used to determine whether a solid object can be as-
sumed to be isolated (P «1) or if collective effects are
dominant (P ~ 1).

To use Eq. (21) for charged objects, we find the charge
on the object as Z&=Cu/e and model C as the capaci-
tance of two concentric conductors. For spheres, the
inner conductor is placed at ro (the radius of the object's
surface) and the outer at ro+A, D, (the Debye sheath edge)
so that C=4meoro(1+ro/AD, ). Using the normalization
R p

= 7"
p /A Dc this yields

where L, L„,and L, are the mean separations between
the particles in the x, y, and z directions. Similarly, for
cylindrical objects the capacity per unit length of two
concentric cylinders is C =2m eo/ln(1+ A, D, /ro ) giving

1 1P =2~
ln(1+Ro '

) LxL~
(23)

IV. RKSUI.TS

A. One object in a plasma

For a single object in the plasma, our calculations
simulate the problem of a spacecraft or an isolated parti-
culate in a plasma. Or more precisely, they simulate a
planar array of such objects, separated fairly widely by 8
Debye lengths, due to the periodic boundary conditions.

To assess the importance of the electric potential on

Our simulation yields spatial profiles of the steady-state
ion density and electric potential. These are our main re-
sults, shown in the color plots Figs. 4 and 5. The ion den-
sity is shown in the upper half of these figures, and the
plasma potential in the lower half. The plasma Aows into
the simulation box from the top, parallel to the X axis.

We use a spectral method to solve the Quid equations,
Eqs. (8)—(10). This is done with boundary conditions
Eqs. (12)—(17) and initial conditions Eq. (18). In our
solutions the steady state was reached after a time of
40/co; with Mach number M = 1.5 and 20/co, . for
M=3.0. Details of the numerical method are presented
in Appendix B.

Our simulation of the Row was carried out for a single
object (Fig. 4) and for two objects aligned parallel to the
flow (Fig. 5). Results for a 3D simulation of a sphere are
shown in Figs. 4(d), 4(e), and 5(e), while the panels in
Figs. 4(a) —4(c) and Figs. 5(a) —5(d) show 2D calculations
with a cylindrical object (axis aligned perpendicular to
the fiow). The reader should refer to Fig. 2 for the
geometry and axis coordinates in Figs. 4 and 5. Half the
simulation box is shown in a cross-sectional view, since
the problem is symmetric about the vertical axis passing
through the objects. In examining these figures, recall
that the object is diffuse. The black circle on these figures
indicates the nominal radius of the diffuse object, Rp, but
the diffuse object has a charge and ion absorption that is
finite both inside and outside this radius. The diffuse na-
ture of the object means that there is a finite ion density
everywhere, even at the center of the object. Also recall
that the density n; is normalized by its value on the
infiow side, N =n; /no, and the potential P is also normal-
ized, but with a reversed polarity so that a negative bias
on the object appears as a positive value of

eP/KT, . —
The parameters used in the simulations for the diffuse

object were Ro= 1 (radius equal to the Debye length at
the infiow side), and a profile width half that large,
o.&=0.5. Except as noted, the size of the simulation box
was L„=16 and L =8, and for the 3D simulations the Z
dimension was L, =8.
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FIG. 4. Simulation results for the plasma flow into a single object. Here spatial profiles of the dimensionless ion density N =n;/no
and plasma potential N= eP/KT, are shown in the u—pper and lower panels, respectively. The axes are the dimensionless spatial
coordinates X and Y, where the plasma Bows in from the top (as sketched in Fig. 2). In all panels the size of the object is Ro = 1 and
the simulation box is L = 16, L~ =8, and L, =8 (for 3D calculations). The physical parameters that are varied between the figures
are the object potential eu/kT, and the entering Mach number M. These are (a) 2D, eu/kT, =0, M=1.5; (b) 2D, eu/kT, = —2.0,
M=1.5; (c) 2D, eu/kT, = —2.0, M=3.0; (d) 3D, eu/kT, = —2.0, M=1.5; and (e) 3D, eu/kT, = —2.0, M=3.0.
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the object, we first ran the simulation with a zero poten-
tial, relative to the plasma at the inflow side. The results
in Fig. 4(a) show that even when the object is unbiased,
there is a wake (ion rarefaction) and an ion focus region
(enhanced ion density) that form behind it. The ion loss
on the object accounts for this disturbance of the plasma.
The wake and ion focus appear as red and green regions,
respectively, in the density profile of Fig. 4(a). The
reason for the ion focus region is that the wake has an
enhanced potential that attracts ions, causing them to
stream inward toward the central axis at the same time as
they stream downward. These results are for M = 1.5.

When the object has a 6nite negative potential, it at-
tracts ions. This leads to a shorter wake and a stronger
ion focus region, compared to the unbiased object at the
same Mach number. The enhanced ion focus effect is
seen in the density profile of Fig. 4(b) as a purple region
along the axis downstream of the object. We also see a
(green) cone of ion density propagating downward and
outward from the focus. This is probably an ion acoustic
wave generated by compression, in this region. The num-
ber of elementary charges on the object Zd was chosen in
this figure, and also in Figs. 4(c)—4(e), to yield a plasma
potential 4-2 through the diffuse object. This simulates
a physical object with negative surface potential
eu/KT, = —2.0. This is typical for a dust particle in a
laboratory plasma.

A higher Mach number leads to a larger downstream
extension of the wake and focus regions. This is shown in
Fig. 4(c), where the Mach number was M =3.0, twice
that of Fig. 4(b). The wavelike cone is also compressed to
a smaller angle.

All the results discussed above are from a 2D simula-
tion for an infinite cylinder. Now we turn to the 3D
simulation for a spherical body. Results are shown in
Figs. 4(d) and 4(e) for M=1.5 and 3.0, respectively.

The ion focus region is greatly enhanced for a sphere,
as compared to a cylinder. The wake, on the other hand,
is smaller for a sphere. This is probably a geometrical
effect, since the sphere attracts ions from all around it, in-
cluding both the Y and Z directions compared to only the
Y direction for a cylinder. At the higher Mach number,
the focus region is extended farther downstream and the
wavelike cone has a smaller angle, similar to the results
for a cylinder.

One of the most significant results to note is the polar-
ization of the plasma around the diffuse object. It can be
seen most easily in the plasma potential profiles (lower
panels in the figures). The normalized potential

eP/KT, is much—more positive within and near the
diffuse object, and less positive or even negative in the
focus region.

The polarization of the plasma surrounding the object
means that the object together with the nearby plasma is
a dipole. Within the object and in the wake region the
space charge is negative, due to the object s negative bias
and the low ion density in the wake. The focus region, on
the other hand, contains a positive space charge due to a
high ion density.

If the uniform potential on the object assumed in the
simulation were replaced by a dielectric surface, the ob-

ject itself would gain a dipole moment that would add to
that of the plasma. Polarization of the object would be
significant mainly if the object size is not much smaller
than the Debye length.

B. Two objects in a plasma

By placing two objects in the plasma so that they are
aligned parallel to the flow, we can better simulate collec-
tive effects between charged particulates. These calcula-
tions are relevant to dusty plasma experiments, as dis-
cussed in Sec. V.

Two identical particles were placed in the simulation
box, with the downstream one positioned in the wake or
focus region of the upstream particle. In Figs. 5(a) —5(d)
the particles are cylindrical, and in Fig. 5(e) they are
spheres. All the results shown are for M=3.0. The Y
spacing (transverse to the fiow) was reduced to L =6 in
Figs. 4(c) and 4(d) to test the effect of a higher dust parti-
cle number density. Otherwise the same parameters were
used as in Fig. 3.

When two particles are spaced closely in the direction
of the flow, the ion focus region between them disap-
pears. This is seen in comparing Figs. 5(a) and 5(b),
where the spacing is L =8 and 4 Debye lengths, respec-
tively.

When the particles are spaced widely enough to get a
focus region between them, the downstream particle lies
in that focus region. It collects an enhanced ion flux on
its upstream side due to the focus. This is seen in Fig.
5(a), but not in Fig. 5(b), where the spacing is small
enough to preclude a focus from forming. To quantify
this effect, we have plotted in Fig. 6 the radial component
of the incoming ion flux as a function of angle for both
particles. The flux is computed for a surface at a radius
2RO, which is outside the diffuse cylindrical object. Fig-
ures 6(a) and 6(b) correspond to Figs. 5(a) and 5(b). With
the large interparticle spacing in Fig. 6(a), the down-
stream particle lies in the focus region created by the
upstream object, and it collects a greatly enhanced ion
fiux on its upstream face (at 0').

An artifact of the use of diffuse particles can also be
seen in Figs. 6(a) and 6(b). The ion density in the wake
(at 180') would be nearly zero in the physical system with
no thermal filling. However, in our simulation the ion
flux there is finite, due to the use of a loss factor ~ X, in
Eq. (20), which causes the ion density to approach zero
exponentially rather than becoming zero. Other numeri-
cal effects that might 611 the wake arise from the small
diffusion and viscosity terms. However, we checked this
by varying these terms and found that they yield only a
minor wake-filling effect for the values we use in our main
results, e&=F2=0. 1. Details of this and other numerical
tests are presented in Appendix A.

As a test of collective effects due to many particles, we
reduced the spacing in the transverse direction. In Figs.
5(c) and 5(d), the spacing is only L~ =6, compared to
L„=8in Figs. 5(a) and 5(b). This increases the collective
effects due to the ghost particles outside the simulation
box. The effect is seen more prominently in the potential
(lower panels) than in the ion density. The plasma poten-
tia1 between the downstream particle and its ghost parti-
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cle is enhanced. Plasma with a large @ (more negative
plasma potential P) fills the region between downstream
particles.

There are two effects that cause the plasma potential to
be modified when particulates are closely packed. One
phenomenon is the depletion of plasma electrons due to
the negative charge on the particulate. This effect is
parametrized by the value P [21], given in Eqs. (22) and
(23). Second is the absorption of ions due to the finite
size of the particulate. Both of these collective effects
lead to a plasma potential P that is negative, compared to
the infinite plasma. This is also in good agreement with
the lower panels in Figs. 5(a) —5(d), where decreasing the
particle spacing causes the normalized potential

eP/K—T, to increase to a higher positive value
throughout the simulation box, relative to the infinite
plasma on the inQow side of our simulation box. In phys-

ical systems the second effect (absorption) is usually
smaller than the first one, when ro/A, D, «1, which is
typical in space and laboratory dusty plasmas. This con-
dition is not met in our numerical solutions, where our
choice of ro =AD, probably leads to significant collective
effects.

Spherical particles were simulated in 3D in Fig. 5(e).
Other parameters were the same as in Fig. 5(a), which is
for cylindrical objects. The potential distribution around
the downstream particle is nearly the same as around the
upstream one. This is probably because the parameter P
is smaller for the spherical simulation than for the cylin-
drical. For the sphere in Fig. 5(e), P=0.049, which is
only one-third of the value P =0.14 for the cylinders in
Fig. 5(a). These values were computed by doubling the
results from Eq. (22) and Eq. (23), since our simulation
box contains 2 particles. Despite our use of the same
simulation parameters, P varies between these two cases
because of the different electrical capacitance of a sphere
and a cylinder.

An analytic theory for the dependence of the plasma
potential on the parameter P was presented by Havnes,
Aslaksen, and Melandsd [21]. It has been adapted by
Goree [22] to use a fixed ion density to better simulate
discharge conditions. This theory predicts that the plas-
ma potential, averaged over all the volume in a dusty
plasma, varies from 0 to about 3 times the electron tem-
perature, as P increases from zero to large values. This
model is not strictly comparable to our simulation, be-
cause the model neglects ion absorption, and depends
slightly on two parameters that do not appear in our
model, the ion mass and the ratio of the ion and electron
temperatures. Nevertheless, it is possible to make an ap-
proximate comparison of our results to the Havnes mod-
el. We find that the plasma potential is highly nonuni-
form in our simulation, and averaging over the simula-
tion volume the potential is modified somewhat more
strongly than predicted by the Havnes model. This
difference is probably due to ion absorption, which is
quite significant for the large (ro/A, D, ) particles in our
simulation. This conclusion is consistent with a compar-
ison of Figs. 4(a) and 4(b), where the plasma potential is
modified approximately twice as much when the particle
has a negative bias compared to when it is unbiased.

90

V. DISCUSSION

A. Wake efFects

24 20

180

FIG. 6. The ion Aux collected by two cylindrical objects.
The data in (a) and (b) correspond to Figs. S(a) and 5(b), respec-
tively. The Aux was calculated at a radius Rp which is outside
the diffuse body. Far more ions are collected on the inAow side,
0, than on the outQow side, 180 . In (a), the downstream object
lies in the beamlike ion focus region of the upstream object, and
it collects an enhanced ion Aux concentrated at 0 .

The wake is a region of low ion density close to the ob-
ject on the downstream side. It is due to absorption of
ions. The extent of the wake should increase with the
size of the body. It also depends strongly on the Mach
number M and the object charge Zd, as shown in Fig. 4.
When the size of an object is comparable to XD„asin our
numerical calculation, this wake alters the total space
charge and creates an asymmetric field around the object.
This effect is clearly seen from Fig. 4(a) where the object
is uncharged.

For most dusty plasmas in space and laboratory,
ro «A, D„and the wake probably will have little effect on
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the total space charge. This is because the extent of the
wake in the transverse Y direction scales as the particle
cross section, which is ~ ro for cylindrical and ~ro for
spherical particles. The volume occupied by the wake
would therefore become much less than the plasma
volume that determines the Debye screening (sphere with
a radius —A,D, »ro around the charged object).

B. Limitations of the Oebye-Hiickel and
Bernstein-Rabinowitz approximations

Our results verify that the potential is strongly aniso-
tropic in mesothermal flows. This is shown in our nu-
merical solutions and the test-particle approach described
below. In view of this, we conclude that central poten-
tials such as the Debye-Huckel approximation, which in-
cludes only electron screening, are accurate for superson-
ic flows only for high Mach numbers (M »1) and small
objects ro «XD, so that the wake region does not con-
tribute significantly to the space charge. In subsonic
flows, which we have not simulated, the Debye-Hiickel
expression is probably valid also in the velocity regime
vo «uz-, , provided that A,D, is replaced by a Debye length
that includes both electrons and ions. For dust particu-
lates in gas discharges this low velocity condition will sel-
dom be fulfilled, due to a very low uz;.

Models such as Debye-Hiickel that assume a central
potential may have some utility if they are applied only in
the plane perpendicular to the flow. In that direction the
ion density remains fairly constant. It is along the direc-
tion of flow where the potential is most strongly noncen-
tral, with ion focus and wake regions on the downstream
side. In that direction Debye-Hiickel is unsuitable for
mesothermal flows.

Another model that has been suggested in several pa-
pers (e.g. , Ref. [18])uses a Bernstein-Rabinowitz equation
for n;, which was derived for Langmuir probes [23]. This
equation would replace a Boltzmann relation for the ion
density, in cases where T, is low compared to T, . This
model will, unfortunately, not be useful for mesothermal
flows because of two unsuitable assumptions: (1) The
theory in Ref. [23] assumes a central potential, which is
accurate only for small object at a high Mach number
M »1. For other velocities, the previously discussed an-
isotropy will exclude the central force assumption. (2) It
also assumes a monoenergetic velocity distribution far
from the object with cylindrical or spherical symmetry.
This model cannot be applied for a mesothermal flow
where ions enter from one direction, or have a finite ve-
locity distribution.

For dusty plasrnas in gas discharges, the only use for
the expression for n; derived in Ref. [23] seems to be dust
in the center of a discharge where uo «uz;.

Yet another approach to modeling the potential
around an object in a flowing plasma is a test particle
method. This neglects ion loss, and thus it can be used
only for ro «XD, . It is a linear theory that assumes
small perturbations in the ion orbits. We therefore ex-
pect this theory to be imprecise for highly charged dust
particles when vo is in the subsonic or low supersonic re-
gimes.

C. Polarization of the object surface

The charge on an object in a plasma is due to collecting
ions and electrons. If the object is a conductor, charge
will adjust on the surface so that the surface is an equipo-
tential. On the other hand, if the object is a dielectric
(and in most applications it is) the surface potential need
not be the same everywhere.

A dielectric object in a flowing plasma will charge
di6'erently. Due to the wake, it will collect few ions on its
downstream side, and acquire a more negative potential
there. This means that the object will acquire a dipole
moment p. The electric force experienced by the particle
will include not only the monopole force qdE but also a
dipole force. Since p is proportional to the particle size,
this will be important mainly for large particles.

In a dusty plasma, a dust grain in the shadow of anoth-
er will be polarized in an even more irregular way. As
shown in Fig. 5, a downstream particle rests in the ion
focus region of an upstream particle if they are separated
by a sufhcient distance. This causes the downstream par-
ticle to collect an enhanced ion flux on its nose, but less
elsewhere, as shown in Fig. 6(a). On the other hand, if
the two particles are not greatly separated, the down-
stream particle will rest in the wake, where X is dimin-
ished, and the ion flux will be reduced on the nose of the
object, as shown in Fig. 6(b). In either case, the surface
polarization will have a more complicated charge distri-
bution than on an isolated particle.

One might ask whether rotation of the object could
average out the unequal collection of ions on the front
and back surfaces. The time scales determine whether
this can happen. The charge on an object can vary on a
time scale called the charging time, which varies inverse-
ly with plasma density and the size of the object [1,24].
In ionospheric and laboratory plasmas the plasma density
is high enough that the object will charge much faster
than it could rotate. This means that rotation would not
be a factor.

D. Explanation of observations in dusty plasma experiments

By placing two identical objects in the plasma, we
simulate collective eFects between charged particulates.
These calculations are relevant to dusty plasmas. Of par-
ticular interest are two types of laboratory experiments
that have been reported recently.

In sputtering plasmas coagulated particles form into an
unusual stringlike shape. This has been observed by
several experimenters (cf. Ref. [14]). The string shape is
quite diFerent from the isotropic fractal shape, which is
well known for conglomerates grown by isotropic coagu-
lation. This morphology is strong evidence that before
two particles can collide and stick, they interact by a po-
tential that is anisotropic. The polarization of the plasma
and the particle itself may explain this phenomenon.

In a second type of laboratory experiment, a crystal-
linelike lattice forms from particles suspended in the plas-
ma [15—17]. In these so-called plasma crystal experi-
ments micrometer-sized spheres become charged, and
they are electrostatieally levitated in the plasma above a
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E. Plasma shielding

Our solutions in Figs. 4 and 5 show a significant polar-
ization of the plasma as it Qows around charged cylinders
and spheres. This polarization is due to both ion absorp-
tion and asymmetric screening of the object charge by the
ions.

To understand the latter of these effects we invoke here
a test particle approach, which is commonly used in the
theory of ordinary dust-free plasmas, to study screening,
drag forces, and wave-particle interactions. It does not
include ion loss and therefore wake effects, which is suit-
able if rp (&A~, . Even though our numerical simulation
does not meet this requirement, the test particle approach
is useful to gain an understanding of the nature of the ion
screening, and to identify when ion screening is impor-
tant.

In a test particle approach the plasma potential P is
found from the dielectric function D (co, k) of the plasma
medium, and can be written in terms of an inverse 3D
Fourier transform, as

1 A
y

exp(ik x)
8~ &o k D(co=Ok)

(24)

where co and k are a wave frequency and wave number.
This equation is given in a frame in which the object is at
rest. This differs slightly from expressions found in most
textbooks on plasma physics, which use the plasma rest
frame [11,12].

Although the integral in Eq. (24) in general must be
evaluated numerically [13], it is not necessary, since
much can be learned about the shielding of the particle
by examining the dielectric function D. This is

horizontal electrode, where there is a balance between
gravity and the electric forces. The vertical direction is
also the direction of ion flow toward the electrode.
Through their interparticle interaction, the microspheres
separate themselves by a few Debye lengths, and they ar-
range themselves in a pattern that is hexagonal, as one
would expect, in a horizontal plane. Surprisingly, howev-
er, in the vertical direction they usually align in columns,
so that the 3D structure is one of hexagons aligned
directly above one another with no displacement. This is
contrary to the staggered planes familiar in hexagonal
close-packed solid crystals. One would expect staggered
planes for an isotropic repulsive interparticle potential.
This too is a strong experimental indication that the in-
terparticle interaction in a plasma is anisotropic.

In both the coagulation and plasma crystal experi-
ments there is an ion flow where the particles are located.
They are typically levitated near the sheath edge, where
the ion speed is M=1. As our results have clearly
shown, under these conditions the plasma is asymmetric
on the upstream and downstream sides of a particle. This
should cause a significant anisotropy that qualitatively is
in good agreement with the experimental results.

assuming an isolated object in a cold-ion, Boltzmann-
electron plasma.

The first two terms in Eq. (25) correspond to the well-
known Debye-Huckel shielding of the charged object
[11],which is due to electrons only, while the last term
contains the screening from the ions. We can compare
these terms by taking their ratio

1

cos (8)M
(26)

written in terms of the Mach number M and the angle 0
between k and vp. It should be noticed that this expres-
sion will not be valid for angles in the vicinity of m/2 or
3m. /2 where cos(8)~0. This is due to the cold ion mod-
el, which breaks down at these angles [13]. For angles
not in the vicinity of these two, we see that s ~0, i.e., the
ion screening is negligible, only for a very high Mach
number M ))1. This result is also in agreement with the
discussion of ion motion presented by Chenevier,
Dolique, and Peres [13].

Equation (26) predicts that asymmetric shielding
should be apparent in our solutions, at least for the lower
of the two Mach numbers we used, M=1.5. To see this
best, one should compare Fig. 4(a) with Fig. 4(b). The
object is uncharged in Fig. 4(a), and the plasma polariza-
tion is thus due only to the absorption of ions. In Fig.
4(b) the object is charged, and the plasma is more asym-
metric, due to electrostatic effects. We have confirmed
that this is due to shielding in a numerical test, by turn-
ing off the ion absorption and thereby excluding the space
charge contribution from the wake region. In this case
we also see an asymmetric flow around the charged ob-
ject, which can be explained only in terms of the shield-
ing. Our results as shown in Fig. 4 are therefore in agree-
ment with the theory of Chenevier, Dolique, and Peres
[13]and Eq. (26) for low M numbers.

For subsonic Qows M(1 (not considered in this pa-
per), Eq. (26) predicts s ) 1, i.e., a larger screening from
the ions than from the electrons, for all 8 angles. It
should, however, be noticed that our cold ion assumption
will break down when vp approaches the ion thermal ve-
locity UT;. Eq. (26) would therefore not be valid for sub-
sonic flow in space plasma where T, = T;, but can to
some extent be used in a gas discharge where T, ))T;.

Note added in proof. Since writing this paper, the au-
thors learned of a related paper by Vladimirov and Nam-
bu [25] in which an approximate analytic treatment is re-
ported that is similar to our numerical solution for a sin-
gle sphere in Figs. 4(d) and 4(e).

APPENDIX A: DIFFUSE OBJECT
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D(co=0, k) = 1+ 1

k k~,
(25) In this paper we report a method of simulating an arbi-

trary number and shape of objects in a plasma. The way
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BTN+Vx. (NV) = —I'S(X),
Vx@=N —exp( —4)+Z&S(X) .

(Al)

(A2)

Choosing a suitable function requires attention to mod-
eling the absorption in a physically meaningful way, as
discussed in the sections below. Any finite distribution
that will work well numerically will have certain disad-
vantages in how well it models the physical object. For
one thing, a diffuse object is prone to allowing ions to
flow through the object, requiring a correction to avoid
insufhcient ion loss. For another, there is a gradual
reduction of the plasma density in the vicinity of the sur-
face instead of an abrupt decay on the surface itself. The
latter is handled best by choosing a function with an ex-
ponential decay at large distances from the surface.

Our method is general and can be used easily to simu-
late any surface shape. Here, we will consider cylindrical
and spherical objects, with a characteristic radius ro, or
Ro=ro/A, D, in dimensionless form. The dimensionless
distance from the center of the cylinder or sphere is
denoted R.

we do this is to model the object as a difFuse body rather
than a hard surface. This eliminates boundary conditions
and discontinuous functions on the body's surface.

Diffuse particles have been used previously in particle
(PIC) simulations of electrons and ions, but our difFuse
objects have a different character and serve a different
purpose. In PIC simulations, the Poisson equation is
solved for super plasma particles, which typically have a
high charge and mass to simulate many real pointlike
particles. The super particles are diffuse to avoid exag-
gerated Coulomb collisions and numerical problems. We
use a diffuse particle for a different reason, to simulate
the surface charge and surface absorption on the object.
The diffuse nature of the particle avoids dealing with the
surface boundary conditions and the numerical problems
introduced by a sharp edge that is not aligned with a
finite grid. Diffuse particles also offer large flexibility in
simulating two or more solid particles and particles with
arbitrary shapes. One diffuse dust particle represents a
single physical object in the plasma.

The diffuse object is characterized by a distribution
function S(X), which is a function of the dimensionless
spatial coordinate X. This function indicates where the
ion loss occurs and where the electrical charge resides. It
replaces the delta function b, (X) in the charge density in
the Poisson equation, Eq. (10), and in the ion loss term in
the continuity equation, Eq. (8). These equations are then

So(R) =coexp[ —(R —yo) /pro] (A3)

(A4)

for a cylindrical and

Ro= I R SdR
0

(A5)

for a spherical particle. For a general ratio of o o/yo, the
integral in Eqs. (A4) and (A5} can be written in terms of
the error function and the relation between yo and Ro
will be complicated. For small 0 o/yo values this relation
can, however, be approximated by

yo=Ro (A6)

yo=[1 —(ao/Ro} /4]Ro (A7)

for cylindrical and spherical particles, respectively, with
an error of the order of (o o/R o ) .

A difhculty in using So arises because it has a finite
value at R =0. Nor is its spatial derivative at R =0 well
de6ned, as it depends on the direction as R approaches
zero. These problems can be overcome by choosing a
difFerent function S, which has BS/BR =0 at R =0.

We found a suitable choice,

centered at yo, where yo is evaluated to provide the
correct ion loss into the diffuse particle. This is plotted in
Fig. 3.

The parameters oo, co, and yo are chosen as follows.
The distribution width o.

o should be specified as small as
numerical aliasing allows. We found that o o/R o-0.5—0.25 is the smallest usable value to resolve the
particle when Ro is of the order of or less than the Debye
length and 64 or 128 grid points were used. The normali-
zation constant co is determined from the integralI" So(R)dR =1 [which gives co=(v'~oo) '] so that
this function approaches h(R —Ro) in the limit pro~0
The parameter yo will, on the other hand, be determined
analytically so that in the high velocity limit M»24
the diffuse particle will absorb the same ion current as a
physical one with radius Ro. In this limit ions are unper-
turbed by the electric potential, and the total ion loss is
2RO and PRO for a cylindrical and spherical particle, re-
spectively. This total ion loss should equal the loss found
by integrating the right-hand side of Eq. (Al) over all
space. For N =1 and V constant we then get

Ro= I RSdR
0

i. Choosing a Snite distribution S&(R)=c&R exp[ (R —y&) /o.—,], (AS}

Here we discuss two functions that can be used for
S(R). The first, which we denote So, has the advantage
that it approximates a delta function, but it has undesir-
able properties at R =0. The second, S„avoids those
problems, so we used it for all the simulation results in
Sec. IV.

Since S(R) for a physical object with a hard surface is
a 5 distribution centered at R o, it is obvious to choose a
Gaussian centered at Ro. In a slight variation on this, we
tested the Gaussian

which is compared to So in Fig. 3. Like So, this function
peaks around y„in the limit of small width o.

&
&&y&.

The normalization constant c
&

is determined from the in-
tegral f " S,(R )dR = 1 which gives

c, = —
2 [1+(o'i/yi) /2]

77CT )y)
(A9)

and y &
can be related to Ro by Eq. (A4) or Eq. (A5) if o'&

is specified. This relation can be approximated for small
cri/y) by



S324 F. MELANDSQ AND J. GOREE 52

and

y, = [1—(o, /Ro) ]Ro

y, =[1—5(o, /Ro) /4]R0

(A10)

(A 1 1)

(a)

I f II I ~

5 = 1/2——-5= r/4
--------- 5 —t/8

for cylindrical and spherical particles, respectively. The
error will be of the order of (o, /Ro) .

2. Correction for insufBcient ion loss

A diffuse object does not absorb ions in the same way
as a physical solid object. The effect of using a finite
S(R) instead of the h(R —Ro) function in Eq. (8) is a
smaller ion absorption than into a physical dust particle

'
h d' R In our numerical simulations, t e a-

sorption was typically only 30—50% of the p ystca
value. This happens because the ion density is imin-
ished before it arrives at the nominal Ro surface, and be-
cause some ions Row right through the object.

the ion absorption by a difFuse object. The first met o is
to use e ionthe ion density N = 1 far away from the dust parti-
cle instead of the actual ion density N in Eq. (11), w ic
gives a more eKcient ion absorption inside the diffuse ob-

t small. Physically this is a suitable approxi-
mation for large M values where the ion orbits are on y
slightly perturbed as they enter the dust particle. The ion
Aux I can then be approximated by

I = — H( —VR).VR
R

(A12)

For numerical reasons H must be approximated by a
smooth function, where we have used

1
(A13)1+exp[R V/(5 V) ]

which approaches H in the limit 6 (( jl. We have shown
the effect of changing 5 in Fig. 7. Here we plot N and

m the fi urealong the center line indicated in Fig. 2. From e gu
we see only a small change in the solutions, as 5 is re-
duced from —,

' to —,'. This test [with parameters from Fig.
4(b)] and tests on other parameters, shows thaws that 5=—'

gives sufhcient accuracy.
The second method is to multiply the ion loss term by

a fudge factor p) 1. This gives

I = PN H( —V—R). (A14)
R

The constant p must be calibrated to a known expres-
sion for the ion loss. We chose p by running our simula-

f r M ))2N, where we know that the cross sectiontion or, w
2 R forfor ion absorption should be mR 0 for a sphere or 2 0 or

a cylinder. The ion loss is underestimated by a factor
1/P. This yields a value for P, which we assume is va i
for the lower Mach numbers for which our results are re-
ported. To give an example of how the solution depends

along the center line in Fig. 8. Here we show numerica
solutions for difFerent S values [Eqs. (A3) and (A8)] and I
values [Eqs. (A12) and (A14)] for the parameters used in
Fig. 4(b).
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FIG. 7. Numerical test of the sensitivity of the simulation re-
sults to the parameter 5 in Eq. (A13). This equation gives a
smooth approximation of the Heavyside step function H in our
numerical calculations. Equation (A13) approaches H in the
l' 't 6 0 Shown are X and @ along the center line for three
values of 5. The other parameters are the same as in Fig.
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FIG. 8. Numerical test of the sensitivity of the simulation re-
sults to the choice of functions for the diffuse object distribution
S and the ion flux I lost on the object. The functions So and S&
are given by Eqs. (A3) and (A8), and I o and I

&
are given by Eq.

(A12) and (A14). Shown are N and N along the center line for
the same parameters as Fig. 5(b).
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APPENDIX 8: NUMERICAL METHOD

Here we provide details of our numerical method of
solving the system of Quid equations, which are qs.
(8)—(10) with b, replaced by S to define the diffuse object.
We are interested in finding the steady-state solution.
The boundary conditions are described earlier in this pa-
per and are illustrated in Fig. 2. Recall that the Aow
enters a rectangular simulation box in the positive X
direction. The boundary conditions are periodic in the
directions transverse to the Qow, and nonperiodic
(Dirichlet and Neumann) on the inflow and outflow sides.

We carried out our simulations in 2D and 3D for an
infinite cylindrical and a spherical object, respectively.
The infinite cylinder is aligned perpendicular to the Aow.
The principles involved are the same for both geometries,
so we shall give details below only for the 2D calculation.

The system of equations is solved by a spectral method
where the solutions q (q =N, U, V, and N) are expanded
in m„ terms of Chebyshev (P ) and m terms of Fourier
polynomia s in1 1

'
the nonperiodic and periodic directions,

respective y. e1 . Th dimensions of the rectangular simula-
tion box are [O,L„]X [O,L~ ].

The solution procedure involves first a Fourier expan-
sion of q

change the solution, we have shown solutions for
different values of e=e, =e2 in Fig. 9. These figures,
which show X and 4 along the central line, indicate that
reducing e causes a strong increase for N in the ion focus
region. The N value in this region will, on the other
h d t d nd so much upon e. When there is no dis-
sipation or viscosity (e=O), the cold fiuid mode pre ic s
the ion density profile is a delta function, which p ysica-
ly is not viable, as nonlinear effects would lead to wave
breaking, or thermal effects would broaden the profile.

The Row is assumed to be irrotational. However, it
should be noticed that the numerical viscosity term may
change the circulation. We believe the effect is small due
to our choice of a small ez ( ~ 0. 1) in the numerical calcu-
lations, although we were unable to test this.

In the time integration of Eqs. (8)—(10), we used an im-
plicit time integration for the terms with the highest-
order spatial derivative (diffusion and viscosity terms),
since the stability of the time integration is determined
mainly by these terms.

The ion velocity in Eqs. (8) and (9) is written as
V. =Vo+ V

&
where Vo is the streaming velocity at a dis-

tance far away from the dust particle. A11 the terms that

q(g, Y, T)=
m /2 —1

3'

k= —m /2
qk(g, T)exp(2vrikY/L ), (B1)

where the Fourier coefficient Qk(J, T) is a function of
time T and a spatial coordinate g, which is related to X
b X=(L /2)(1+/). This new variable is introduced to
map the X interval [O,L ] into the interval [—1, 1] nor-
mally used for the Chebyshev polynomials.

The Fourier coefficient is then expanded in terms of
Chebyshev coefficients as

. (a) .05
.1
~2

qk(g, T)= g q k(T)T (g),
j=O

(B2)

where the expansion coefficients are assumed to be time
dependent.

In the g (i.e., X) direction, q is found at the so-called
Chebyshev-Gauss-Lobatto points g' =cos(~j /I, ,
'=0, 1, ] which allow us to specify boundaryJ= ~, . . . , m~, w

conditions at ob th ~~= —1 and 1. Gauss integration tech-
niques can be used to obtain the expansion coefficients

Expansion in terms of Chebyshev polynomials also a-1-

lows us to use a fast-Fourier transform in the g direction,
which gives an effective computation of the expansion
coefficients for large m and m„values.

In order to obtain a stationary solution of the set of
equation, Eqs. (8)—(10), it is necessary to add small
d'ff '

( VXX, ) and viscosity terms (ezV~V;) to Eqs.
(8) and (9), respectively. This is due to a nonlinear nu-
merical efFect, which after a finite time leads to unreason-
ably large gradients in the solution at the wake edge an
at the ion focusing point behind the wake. To illustrate
how the diffusion (e, ) and viscosity (ez) coefficients

t- 1.5

1
II

6
0.5

Cg

0CD

O
CL
Cg

E -0.5—
6$
CL obj ect focal region

I I s I s I ~ s ~ I

160 4 8 12
distance X = x/X, D,

FICx. 9. Numerical test of the sensitivity of the simulation re-
sults to the numerical diffusion (e, ) and viscosity (e2) terms.
Shown are N (a) and @ (b) along the center line for three values
of 6=E'&=E'2. The other parameters are as in Fig. 5(b). Note
that due to our assumption of cold ions, the ion density profile
in the focus region becomes more like a delta function as the
viscosity and diffusion are turned off (e~O).
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&TC =e,[Vxz@—N+exp( —C ) —Z„S(X)]. (83)

involve Vo V~ are also integrated implicitly to improve
stability for large M values.

The Poisson equation (10) is rewritten as a diffusionlike
equation

pn+ I Irn
k k

C n+1 C~n
k

24 g2 k2 4~ Pn+i Ln
L2 0 L2

X

4 2
g2 k2 C n+1 Ln

k &3 4~
X

(86)

(87)

The stationary solution of this equation will be identical
to that of the Poisson equation.

Since we are mainly interested in finding the stationary
solution of Eqs. (8)—(10) and not an accurate time in-
tegration, we used a time integrator with only a first-
order accuracy with respect to the time step AT. For the
implicit and explicit terms we used forward and back-
ward Euler integration, respectively.

After applying this time integration to the equations
and applying a Fourier transform, the equations are re-
duced to a relation between the Fourier coeScients given
by

~Il +1 " +U a A'"+'
0 L g k

where

a,[X"(U"—U, ) ]+a,(X"V")—r"S(X),Pl—

X

L2 = B~[@—
—,'(U" —Uo) —

—,'(V") ],2

Ln g [C l(Un)2 1(Irn)2]

L,"=exp(4") —~"—Z„S(X).

+ UO a4Uk

2'
a —I'4

2 L2 ~ L2 k 2
X

(85)

—e t) —k 8'"+' =L" (84)
X

The Chebyshev coefficients given in Eq. (82) can be
found from these equations by a method described in
Dennis and Quartapelle [27]. This method involves
transformation of Eqs. (84)—(87) to the Chebyshev space
where it is shown (from the properties of the Chebyshev
polynomials) that q~ k can be found by solving a quasi-
pentadiagonal matrix where the boundary conditions are
imposed. For more details see Ref. [26] or [27].

[1]J. Goree, Plasma Sources Sci. Technol. 3, 400 (1994).
[2] E. C. Whipple, Rep. Prog. Phys. 44, 1198 (1981).
[3] E. Coggiola and A. Soubeyran, J. Geophys. Res. A 5, 7613

(1991).
[4] Ya. L. Al'pert, L. Gurevich, A. Quarteroni, and L. P. Pi-

taevskii, Space Physics with Artificial Satellites (Consul-
tants Bureau, New York, 1965).

[5] J. C. Taylor, Planet. Space Sci. 15, 155 (1967).
[6] G. B. Murphy, D. L. Reasoner, A. Tribble, N. D'Angelo,

J. S. Pickett, and W. S. Kurth, J. Geophys. Res. 94, 6866
(1989}.

[7] N. H. Stone, J. Plasma Phys. 26, 351 (1981).
[8] N. H. Stone, J. Plasma Phys. 26, 385 (1981).
[9] R. L. Merlino and N. D'Angelo, J. Plasma Phys. 37, 185

(1987).
[10]S. J. Choi and M. J. Kushner, J. Appl. Phys. 75, 3351

(1994).
[11]D. R. Nicholson, Introduction to Plasma Theory (John Wi-

ley k Sons, New York, 1983}.
[12] P. K. Shukla, Phys. Plasma 1, 1 (1994).
[13]P. Chenevier, J. M. Dolique, and H. Peres, J. Plasma

Phys. 10, 185 (1973}.
[14] G. Praburam and J. Goree, Astrophys. J. 441, 830 (1995).

[15]J. H. Chu and Lin I, Phys. Rev. Lett. 72, 4009 (1994).
[16]Y. Hayashi and K. Tachibana, Jpn. J. Appl. Phys. 33,

L804 (1994).
[17]J. B.Pieper, J. Goree, and R. Quinn (unpublished).
[18]S. Hamaguchi and R. T. Farouki, Phys. Rev. E 49, 4430

{1994).
[19]S. Hamaguchi and R. T. Farouki, Phys. Plasma 1, 2110

(1994).
[20] L. D. Landau and E. M. Lifshitz, Fluid Mechanics (Per-

gamon, Oxford, 1959).
[21] O. Havnes, T. K. Aslaksen, and F. Melandse(, J. Geophys.

Res. 95, 6581 (1990).
[22] J. Goree (unpublished).
[23] I. Bernstein and I. Rabinowitz, Phys. Fluids 2, 112 (1959).
[24] F. Melandse(, T. Aslaksen, and O. Havnes, Planet. Space

Sci. 4i, 321 (1993).
[25] S. V. Vladimirov and M. Nambu, Phys. Rev. E 52, 2172

(1995).
[26] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A.

Zang, Spectral Methods in Fluid Dynamics (Springer, New
York, 1988).

[27] S. C. R. Dennis and L. Quartapelle, J. Comput. Phys. 61,
218 (1985).






