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A simple self-driven lattice-gas model for collective biological motion is introduced. We find a
weakly-first-order phase transition from individual random walks to collective migration. A mean-
field theory is presented to support the numerical results.
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I. INTRODUCTION

One of the most interesting aspects of evolution is the
emergence of multicellular organisms due to the appear-
ance of cooperation and differentiation of eukaryotes. Al-
though much research has been done along this line, some
of the related basic questions are still open. As a natu-
ral step towards the understanding of the physical and
physicochemical background of self-organization of mi-
croorganisms several authors considered relatively simple
systems such as the development of bacterial colonies.

The growth of bacterial colonies having complex ge-
ometries has been extensively studied recently [1-5]. One
of the mean aspects was the fractality [6] of the growing
colonies. It has been found that the framework of diffu-
sion limited growth fits these phenomena well [1,3]. In
addition, the various morphologies of growing colonies
have been experimentally investigated recently [4] and
a dynamical model has been introduced which incorpo-
rates a wide range of effects relevant to the phenomenon
of collective bacterial growth and motion, for example,
chemotaxis. In a further related model [7], aimed at
describing the collective motion of self-driven particles
(such as bacteria), a quasicontinuous approximation has
been used with rules (particles moving with the same
absolute velocity take on the average direction of motion
of the neighboring particles) based on biological assump-
tions. As a main result it has been shown that sponta-
neous breaking of rotational symmetry can occur as the
density of particles is increased or the level of random
noise (i.e., the temperature) is lowered. The transition
has been found to be continuous.

One of the basic differences between living and azoic
systems is that living organisms are self-driven: they can
transform energy gained from food into mechanical en-
ergy which allows them to change their position. As the
simplest example we can take bacteria [8,9], having var-
ious ways of motion. One of the mechanisms is motion
by the means of flagella: the bacteria have flagella func-
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tionally analogous to a propeller attached to a motor.
The motion of organisms is not under control of an ex-
ternal field, as is common in physical systems. Instead,
the environmental effects cause only a change in the lo-
cal velocity of the organisms. Since living objects are
capable of communicating in various ways (ranging from
the sensing of chemicals to verbal communication among
humans), an organism is in continuous interaction not
only with its environment but also with other organisms
in its neighborhood. Thus in the first approximation a
system of organisms can be considered as an open in-
teracting multiparticle physical system. Then one can
attempt to apply the methods recently developed in the
investigations of complex systems [10,11].

In this paper we present a simple lattice-gas model
for the collective motion of self-driven particles. A simi-
lar approach has been applied to traffic systems [12-14]
which also belong to the class of self-driven systems.
Further approaches to self-driven systems include the
reaction-diffusion description [15], investigation of the
related integro-differential equations [16], molecular dy-
namics [17], and cellular automata [18,19].

The aim of this paper is to extend the usual statisti-
cal physical description for a particular case of collective
motion in systems of living objects. First we introduce
our model; then we give a theoretical description of the
problem. In Sec. IV we present the numerical results and
in Sec. V we summarize our results.

II. THE MODEL

Our model is defined on a triangular lattice of L? sites
with unit lattice spacing and periodic boundary condi-
tions. We put N particles (bacteria) on the lattice, where
N is not necessarily smaller than the number of lattice
sites. The density of the particles is defined as

o= ﬁ- (1)

Each site can be either empty or occupied by one or
more particles. If more than one particle is present at a
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site then in the calculations only the lowest one will be
considered, where the lowest particle is defined as having
the smallest random number previously assigned to each
particle.

The particles are characterized by their position r; and
velocity v; (¢ = 1,...,N) which is of unit length (Jv;| =
1) and can point in any of the lattice directions (uq,
Fig. 1).

At one time step the positions and velocities of all par-
ticles are updated simultaneously according to the follow-
ing rules.

(1) (a) For the particles which are not the lowest at
their position we assign a random direction; (b) for the
particles which are the lowest at their site we choose a
new velocity u, from a Boltzmann distribution

P(ua)zlexp —Pug Z vil,

2 FELNN

where Z is a normalizing factor so that 22:1 P(u,) =1,
and B is 1/T (kp = 1). The summation goes over the
nearest neighbors which are in the lowest position (LNN).

(2) Every particle is moved one lattice unit in the di-
rection of its velocity:

r; < r; + V;.

Note that the last step may result in sites with occu-
pancy higher than 1; this is the reason why we have to
deal with such cases. The motivation for step 1(a) is that
we try to minimize the effect of multiple occupancy by
letting the extra particles diffuse away. The temperature
parameter is not connected to the ambient temperature
of the bacterial colony, it is rather an effective value which
depends on many external parameters, such as, for ex-
ample, food concentration and agar humidity. The case
of high food concentration is likely to be represented by
high T values since then the bacteria can move faster
and do not need coordinated behavior to extract food
from the agar. On the other hand, when there is a food

FIG. 1.
shown.

One lattice site; the six lattice directions are
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shortage the bacteria tend to cooperate, which results in
a lower effective temperature. The above model is in its
spirit close to the continuum model of self-driven par-
ticles [7]; however, the present version has a number of
features which had to be introduced because of its dis-
crete nature.

One of the quantities of interest is the average veloc-
ity of the particles which we shall consider as the order
parameter and define as

1
m= 5 (2)

EV,’,
%

Obviously 0 < m < 1 holds. To have a closer analogy
with spin systems we define a Hamiltonian

1
H:——z- Z Vi Vj, (3)
4,jELNN

in accord with the simulation rule step 1. Those particles
which are not the lowest at their position do not give a
contribution to the energy; they are regarded as a free
gas. The energy per particle is

(€)==

Having introduced the energy it is straightforward to de-
fine the heat capacity per particle,

o

Although we have similarities with spin systems our
model differs in a very specific way: the spins in our
model are moving and this spatial dynamics is coupled
to the spin dynamics.

Figure 2 shows a possible time evolution of the po-
sition and velocities of five particles. The particles are
lettered from A to E and the arrows show the direction
of their velocity (v;). At time step (b) they form a cluster
(containing a doubly occupied site) which then gradually
breaks up.

III. THEORY

Our system is closely related to the six-state Potts
model [20] since we have ¢ = 6 possible velocity states
for a particle. Unlike the Potts model these states are
not orthogonal, and we have an essentially nonequilib-
rium system; nevertheless, a mean-field theory can be
constructed in a similar way [21].

First we introduce a mean-field Hamiltonian instead of
Eq. (3):

Hyr = —¢ Vi Vj, (4)

where the summation goes over all lowest (L) particles,
not only the nearest neighbors. The mean-field energy
function can be written as
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FIG. 2. A possible time evolution of our model (a)— (d)
shown on a small portion of the lattice. Note the double
occupancy in time step (b).

6
1
Evr = _ENQeﬁ‘ Z zaUa‘ym‘w (5)

a,y=1

where geg = 1 — exp(—p) is the effective density, i.e., a
site has on average 6eg occupied neighboring sites, z, is
the fraction of particles traveling in the lattice direction
a (X8 _, 2o = 1), and Uay = u, - u, which for the case
of the Potts model would be simply Uyy = oy -

The average energy per particle is

Evr

6
1
EMF = _1_\7— = ~§Qeff Z :BQUQ"/:B‘Y' (6)

a,y=1

The entropy per particle is

6
SMF = — E Tolnzg,

a=1
so for the free energy per particle one gets

F, 6
Bfur = ﬁ—%—g =3 (wa Inzq

a=1

6
1
- '2‘Qeffﬂxa Z Ua'y""y) . (7)
y=1

We intend to find the configuration £, which minimizes
the free energy fyrp. Since all the lattice directions are
equivalent we can look for a solution in the form of

5299
1 5
T1 = o+ GMMF (8)
and
1 mMMFE
Ta>1 = '6 - 6’ (9)

where myr is the mean-field order parameter which sat-
isfies the relation

MMF =

6
E TaUq
a=1

according to Eq. (2). Substituting Eq. (8) and Eq. (9)
into Eq. (7) after some algebra one gets for the mean-field
free energy

1 1 5(1 — mMF) 1—mmrp
Bfur = —5eetf myp —Ing + ——p——"In—
145
1+ ‘ZmMFln + GmMF. (10)

For high temperatures (T' > T.) this function has its
minimum at mpmrp = 0 which corresponds to the disor-
dered state of the system. At the critical temperature,
which can be derived from fymr and in our case is

Qeff
=~ 11

¢ 3.353’ (11)
a nontrivial minimum appears. The phase transition, as
in the six-state Potts model [22], is first order. The jump
in the order parameter in this approximation is given
exactly by

AmMF = 0.8.

IV. NUMERICAL RESULTS

We have studied our systems by Monte Carlo simula-
tions. For the initial configuration we chose a random
distribution for the position and velocity of the particles.
Typical configurations of the system for various temper-
atures T and particle densities p are shown in Fig. 3. It
can be easily seen that at low temperature the particles
tend to form clusters as can be expected.

We have performed several long-time runs to obtain
the behavior of the quantities defined in Sec. II as a func-
tion of T and p. We used various system sizes (L) up to
40 for high densities and up to 200 for low densities. The
limiting factor was the convergence time which for the
case of our largest system was on the order of 10® sweeps
of the system. Figure 4 demonstrates the order param-
eter as a function of the temperature for o = 0.9. The
estimated jump at 7T, is smaller but close to the value
obtained by the mean-field theory. In Fig. 5 we present
the average energy which is also subject to a finite jump
at T.. These two figures suggest that a first-order phase
transition takes place at T' = T, in agreement with the
theoretical prediction. Strong evidence supporting this
idea is presented in Fig. 6, where we have plotted the dis-
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tribution P(e) of the energy values for a number of differ-
ent temperatures below and above T.. One can clearly
see a gap in the distributions at intermediate energies
which is a unique feature of first-order phase transitions
[23]. The inset in the figure shows the distribution for an
Ising type interaction of nonmoving particles in the same
system where the transition is known to be second or-
der. In Fig. 7 we present the temperature dependence of
the heat capacity which is the measure of the broadness
of the energy distribution. A characteristic peak can be
observed near T,.. The position of the peak is shifted for
various lattice sizes due to finite size effects.
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We studied the behavior of the model also as a func-
tion of density of particles (p). Figure 8 shows the tem-
perature dependence of the average energy for various
densities obtained. The transition is present even for
very small densities although the position of the critical
temperature is lowered. In Fig. 9, we have plotted the
dependence of the transition temperature on the density.
There is a natural distinction between the high and low
density regimes of the system: at the percolation thresh-
old the behavior of the system is expected to change. In
fact we observe a change in the dependency of the crit-
ical temperature below the percolation threshold of the
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FIG. 3. Some typical snapshots of the system at (a) high temperature, (b) intermediate temperature, (c) low temperature
at o = 0.9, and (d) intermediate temperature at a lower density. Note the appearance of ordered clusters. (Only the particles

in lowest position are drawn.)
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FIG. 6. The energy distribution [P(e)] for various temper-
atures below and above the transition (o = 0.9). Note the
energy gap between € & —1 and € ~ —3.5. Inset shows the
distribution for Ising spins instead of mobile particles where
the transition is continuous.

FIG. 7. The heat capacity (c) versus temperature graph for
the systems as on Fig. 4. The dotted lines are guides to the
eye.
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FIG. 10. Energy difference versus temperature for o = 0.9.
(T. = 0.413,e) = —0.76.)

triangular lattice (0 = 1/2 and ger = 0.39) at gesr =~ 0.25
which corresponds to density ¢ ~ 0.29. The values of the
measured critical temperatures are higher than the one
obtained from Eq. (11) which shows the boundaries of
applicability of our mean-field approximation.

The behavior of the average energy of the Potts model
near its transition temperature can be characterized by
two exponents a(~) and a(*) [22]. These exponents are
present due to the weakly-first-order nature of the transi-
tion. The temperature dependence of the average energy
is given by

(e) =) — A1 — T/T,)1 =7 (12)
for T < T, and similarly
(€) = e 4 AP (1 — 1, /7) =7 (13)

for T' > T,. The difference between (1) and (- is equal
to the energy jump during the phase transition. In Fig.
10 and Fig. 11 we plotted the energy differences versus
the temperature according to Eq. (12) and Eq. (13) for
o = 0.9. The exponents obtained from the slopes are

o) ~1-0.73 =0.27
and
o ~1-05=05.

These values are different both from those of the ¢ = 6
state Potts model (a(*) ~ 0.7 and a(~) ~ 0.7) and in

part from the corresponding mean-field values (a("') =
alm) =1/2).
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FIG. 11. Energy difference versus temperature for o = 0.9.
(T. = 0.413,(7) = —3.75.)

V. CONCLUSION

We have presented a lattice-gas model for collective bi-
ological motion. We have shown both numerically and
theoretically that a weakly-first-order phase transition
takes place in our system separating the phase with zero
net transport and the ordered phase with nonzero aver-
age velocity. We find the exponents a(t) and o(~) differ
from the ones of the ¢ = 6 Potts model and from mean-
field values. This difference can be attributed to the fact
that although we have similarities with spin systems our
model differs in a very specific way: the spins in our
model are moving and this spatial dynamics is coupled
to the spin dynamics. It is remarkable that the behav-
ior of the present lattice model is qualitatively different
from that of the analogous continuum model [7]. While in
the continuum model and in a directly related continuum
equation for a two-dimensional dynamic XY model [24]
a second-order transition was observed, in our lattice-
gas version the transition is more complex and has a
first-order component. Such discrepancies, however, are
not unfamiliar even in two-dimensional equilibrium sys-
tems: in particular, there is no long range ordering in the
equilibrium XY model [25] having continuous symmetry,
while its discrete counterparts (i.e., the Ising model) ex-
hibit a second-order phase transition.
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