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Microscopic description of nematic liquid crystal viscosity
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The problem of nematic viscosity is shown to be successfully solved within the framework of
a microscopic description. The Kuzuu-Doi approach to hydrodynamics [N. Kuzuu and M. Doi, J.
Phys. Soc. Jpn. 52, 3486 (1983)] for a system consisting of anisotropic molecules is reviewed. It
has been shown that the incorrect form of the microscopic stress tensor that is used by Kuzuu and
Doi does not inQuence Gnal expressions for the viscosity coefBcients due to the fact that the external
magnetic Geld is taken into account. Molecular expressions for the Leslie viscosity coefBcients are
calculated by use of the theory of Osipov and Terentjev [Z. Naturforsch. Teil A 44, 785 (1989);Phys.
Lett. A 134, 301 (1989)]. A systematic solution of the differential kinetic equation is presented.
The nonequilibrium distribution function obtained from the kinetic equation allows us to transform
Osipov-like expressions for the viscosity coefBcients exactly into those obtained by Kuzuu and Doi.
The above-mentioned approaches are proved to be equivalent. A realistic mean potential is applied
to the expressions obtained for the Leslie coefBcients for the case of 4-methoxybenzylidene-4'-n-
butylaniline. A comparison of theoretical results and appropriate experimental data is shown to be
very good.

PACS number(s): 61.30.Cz, 83.20.Di, 66.20.+d, 83.70.Jr

I. INTRODUCTION

Since the overwhelming majority of theoretical inves-
tigations into hydrodynamics of liquid crystals has been
made on the basis of phenomenological equations, it
seems to be reasonable to justify them by the use of ap-
propriate statistical theories. Some attempts to create
such theories have been undertaken so far, among which
the pioneer theory of Diogo and Martins [1—3] is worth
looking into. They start their consideration from the
assumption that the viscosity coefFicients of nematic liq-
uid crystals are proportional to the characteristic relax-
ation time that is related to the probability of overcom-
ing a potential barrier during molecular reorientation.
Although Diogo and Martins have obtained microscopic
expressions for the Leslie coefficients, their theory con-
tains too many &ee parameters. Some attempts to pro-
vide an explanation of the exponential behavior of the
viscosity coefficients can be found in papers [4—6].

In 1981 Doi [7] proposed an approach to elaborate a
statistical theory of hydrodynamics of systems made of
ellipsoidal molecules. This theory was improved in [8] by
Kuzuu and Doi. They obtained microscopic expressions
for the Leslie coefficients in terms of order parameters.
Although their predictions were successful, the way in
which they provided their analysis has some shortcom-
ings, which could cast a shadow on the Gnal outcome.
Understanding these weak points allows us to answer
whether or not the expressions for the Leslie coefficients
obtained by Kuzuu and Doi are reliable.

Kuzuu and Doi focused their attention on the fact that
the stress tensor is an average of its microscopic coun-

terpart performed with an appropriate nonequilibrium
distribution function. The point is that the expression
for the microscopic stress tensor they used was not accu-
rately derived and correctly gave only the symmetric part
of it. Moreover, they treated the stress tensor as a com-
pletely symmetric object, which cannot be true, since the
existence of the asymmetric part of it is one of the most
typical features of liquid crystals. They offset that lack
by introducing the inHuence of a magnetic field, which
produces an asymmetric contribution to the microscopic
viscosity stress tensor. On the whole, their analysis gave
the impression that asymmetry of viscous properties of
nematics is not possible without a magnetic field.

Next they noticed that the symmetric part of the stress
tensor can be reconstructed &om the kinetic equation
multiplied by the tensor Q p without de facto solving
it. Since the form of the symmetric microscopic stress
tensor is correct, Doi's whole analysis of the symmetrical
viscous stress tensor should be valid.

Kuzuu and Doi's analysis concerning asymmetry is
based on a perturbative method of solving the kinetic
equation, which in lowest order reconstructs the Leslie
phenomenological constitutive equation containing asym-
metric viscosity coefficients. Prom this equation it
emerges that the contribution &om the magnetic field
to the viscous stress tensor can be replaced by appropri-
ate terms with asymmetric coefficients pi and p2. This
part of Kuzuu and Doi's considerations does not require
knowledge of the asymmetric microscopic stress tensor
so, despite some misunderstandings, the final outcome of
their theory is fully reliable.

Following the idea of Kuzuu-Doi of considering an av-
erage of the microscopic stress tensor with an appropriate
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nonequilibrium distribution function, Osipov and Terent-
jev suggested another approach [9,10]. The main point of
their idea is the form of the distribution function. They
have noticed that flow breaks the cylindrical symmetry
of a nematic liquid crystal and suggested, within the as-
sumption of low velocity gradients, that the nonequilib-
rium distribution function should consist of the equilib-
rium one and the contribution determined by the veloc-
ity gradients combined with the components of the di-
rector n and the azimuth dependent vector e. This ap-
proach seems to be very reasonable and one should expect
that both the Kuzuu-Doi (KD) and the Osipov-Terentjev
(OT) theories should coincide. Nevertheless, such a re-
sult has not been arrived at so far.

The main purpose of this work is to show equivalence
of the above-mentioned hydrodynamic theories, apply
these theories to the particular case, and compare re-
sults to experimental data. In Sec. II the fundamental
phenomenological equations governing viscosity of a ne-
matic are recalled. In Sec. III the KD way of deriving
the Leslie coeKcients is reviewed. Section IV presents
the microscopic expressions for the viscosity coeKcients,
which we have obtained in the OT approach, and then
a systematic analysis of solutions of the kinetic equa-
tion. Section V shows that the KD and OT approaches
lead to the same results as far as viscosity coeKcients
are concerned; in other words, both these approaches are
equivalent. In Sec. VI a realistic mean potential for
4-methoxybenzylidene-4'-n-butylaniline (MBBA) is ap-
plied to the hydrodynamic theories. A comparison of
theoretical results and experimental data is shown to be
very satisfactory.

II. PHENOMENOLOGICAL HYDRODYNAMICS

Equations describing hydrodynamics are formulated as
conservation laws for several suitable quantities related
to the hydrodynamic variables. In the case of an incom-
pressible, undeformed, nematic liquid crystal, the laws of
interests are the equation of continuity, conservation of
linear momentum, and the director equation [ll—16].

The equation of continuity reads

'I7 v =0,

where v is the velocity Beld. Conservation of linear mo-
mentum (Navier-Stokes equation) is

dvi
p = +i + jji& (2)

where "z,' —— z~' + v 9', p is the density, II; = 8 (p$, .)
denotes the pressure term, and o,.~ is the viscous stress
tensor. The viscous stress tensor due to the derivation of
Leslie [12—14] reads

n2+ n3 ——n6 —a5 . (4)

So, electively, there are five independent coeKcients.
Three of them are connected with the symmetric part
of the stress tensor and the other two with the asymmet-
ric part

cr g = —(npN —n Np)

'72+—(npn„A„—n n„)A„p,2

where pq ——a3 —n2 and p2 ——n6 —n5. CoeKcients
pz and p~ determine the viscous torque acting on the
molecule: pq is characteristic for the torque associated
with an angular velocity of the director and p2 for the
contribution due to a shear velocity.

The third important equation in hydrodynamics of ne-
matics is the director equation

0 = n x (pgN+ p2nA). (6)

Within the assumption of undeformed director field
(0 np = 0) the conservation law for angular momentum
can be neglected. If one would like to consider the case
of a deformed system, this conservation law should be
taken into account and also one should extend Eqs. (6)
and (2) to the general forms containing elasticity terms.

III. THE KUZUU-DOI APPROACH

A. Symmetric part of the stress tensor

In this section we review Doi's approach [7,8] which
results in the concept of treating the stress tensor o as
an average of its microscopic equivalent o "' performed
with an appropriate nonequilibrium distribution func-
tion. Under the assumption that microscopic molecu-
lar motion in a nematic liquid crystal can be considered
as a rotational Brownian motion in an external mean
potential, the following kinetic equation determines the
nonequilibrium distribution function f (c7, t) [7—10,18,19]:

f+e~I(ffII) =e oI
~
~of — f I

r„
kT

are the symmetric and asymmetric parts of the velocity
gradient field. The possible system rotations are reflected
by the vector N = n —(cu x n), where w = zrotv is
the flow rotation angular velocity. The viscosity con-
stants nq, . . . , a6 are called the Leslie coefBcients and are
typical for a nematic phase. In the isotropic phase all
of them vanish except a4, which becomes the isotropic
shear viscosity coefBcient. They have to fulfill the On-
sager reciprocal relation, which for a nematic is known
as the Parodi relation [17]

o~p ——o.gn~npnpn„A„p + n2n~Np + n3npN
+&4A~p + n5n~n/App + n6npnpAp~)

where A~p = (0 vp+Bpv )/2 and g p
——(0 vp —Bpv )/2

where the differential operator Bk ——ek,~ a,- describes
an infinitesimal rotation of the long molecular axis a and
I'g = —OgU(a . n) is the moment of force acting on the
molecule in the mean potential U. Thus the Brst term on
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2 —10= ax(A a) —ax(g . a),p2+ 1

2
where ",

z is the form factor based on the length top2+]
width ratio p of the molecule. In (7) the small parameter
e = —- « 1 [9] is the ratio of two characteristic times of
the system: the correlation time 7 = J/A, where A is the
coefBcient of internal friction and J the moment of inertia
of the molecule, and the relaxation time w = gkT/J
On the other hand, e can be treated as the rotational
diffusion coeKcient.

The idea of Kuzuu and Doi is to multiply the kinetic
equation by the tensor (a ap —b p/3) and integrate over
a. Let us quote their results:

OQ p
t

= +~P + +~P~ (9)

where

(10)

Fp ———6e a ap — + a +ay

(11)

p —1
G p = [A „(a„ap) + (u a„}A„pp2+ 1

2(a apa~o, „)—A»] —g „(a„ap) + (a a„}g„p.
(»)

the right-hand side of (7) represents the rotational Brow-
nian motion and. the second is due to the rotation caused.
by the potential U. The second term on the left-hand
side in (7) represents the effect of the velocity gradient,
which rotates the molecule with a certain average angu-
lar velocity O. For an ellipsoidal molecule it has the form
[20,21]

From (14) it emerges that it is possible to replace the
expression for o'~ with the nonequilibrium distribution
function by the expression containing only the known
equilibrium one. Since G p is already linearly depen-
dent on velocity gradients 0 vp, the averages () can be
performed there with the known equilibrium distribution
function. It means that to derive the symmetric Leslie
coefFicients practically only the expression for the angu-
lar velocity is needed. It is convenient to express o'~ in
terms of the two irreducible tensors Q2 and Q4. Equilib-
rium values of these order parameters have forms

b pq, ~=Sg(n np—

1
Q4.„„=S4(n-npn~n~ + —(b-pb~~ + b-~bp~ + b-~b~p)

1
7

(n npb—~„+n~n„b p+ n n~bp„

+npn„b ~ + n n„b~p + n~npb ~)),

where S2 ——(P2), S4 ——(P4), and P2, P4 are the second-
and fourth-order Legendre polynomials.

As a result we obtain

,y kT p2 —10.'rp —— —2S4(A„pn„np)n np
2E p +1

2+—(7 —5S2 —2S4)A p35
1+—(382+ 484)(n n„A„p+ A „n„np)7

kTp —1

26p +1S2(g „n„np —n n„gp„).

Comparing (17) to the phenomenological form of the vis-
cosity tensor (3), the following set of microscopic expres-
sions for the symmetric Leslie coefFicients is obtained:

kT p —1
S4,

p + 1
In (11) and (12) we have deliberately omitted parts con-
taining the magnetic field as originally introduced by
Kuzuu and Doi. We would like to show that their ap-
proach is valid either with or without magnetic field.

By the use of Doi's idea it has been shown [22] that
o. "' has the form

2 —1p" ——3kT
~

p-&'+1& 3 )
p DU 1 BU )+ a ap(@2+1 Oap p2+ 1 Oa~p

From (ll) and (12) it emerges that E p and G p relate
to the symmetric stress tensor as

IT p' —1
0,'2 + 0,'3 = — S2,

E p + 1

kT p2 —1 2
0!4 = —(7 —5S2 —2S4),

2e p2+ 1 35

kT p2 —1
o's + o's =

2
—(3S2 + S4) .

p + 1 7

B. Asymmetric stress tensor

(19)

(2o)

kT p —1 kT p —1 ifBQ 'p i
2e @2+ 1 2e @2+ 1 g Bt

(14)

Now we will try to follow thp Kuzuu-Doi way of an-
alyzing the asymmetric part of the stress tensor. The
solution of Eq. (7) can be performed in the form of a
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perturbation series

f =f.+f + (22)

tion p is

4o = ~) ~„" fo = ~—r~)fo(n) (34)

where fp denotes the equilibrium distribution function
and fi is the first-order perturbation in a small velocity
gradient. Equation (7) can be rewritten by introduciiig
the operator (

Cf = —~kI ~)f+
k

~)U[f]+
k

~)U[fo] ~.
fo f
kT kT

The first two terms in (7) will read

Thus, from (30) we have

o = (&~c)) 4o)

This condition determines the director. It will be shown
that Eq. {35) is equivalent to the second constitutive
Leslie equation (6).

Substituting the explicit form of 0 (8) into (35), after
some calculation one obtains the condition

0 = eel)
~

~) fo + „AU[fo] ~

fo
kT ) (24)

2 —1
p2 + 1

A p + g p .. (a (a x Ogo)p) = 0.

Now we have to establish gp. From (23), the Hermitian
conjugate operator of ( can be obtained as (see Appendix

&Cfi——~) (foal) ) (25) A)

Let A be an eigenvalue of (, and P and g be the
corresponding right-hand. and left-hand eigenfunctions

(26)

foC'0 = [~) [fo(ai)~~4(ai)]

+f ( o~)of()K(a~, am)8a f](0am)BacP(az)]day]

(27)
Setting vP = @p and noticing that (tgp ——0, (37) can be
written in the form

Since the eigenfunctions @„and P are orthogonal, the
normalization condition reads

4 (ai) = —fp(ai) U[4 (ai)] (38)

(@,4 ) =4 where P(ai) denotes
(28)

The solution fi can be expressed in the form of an infinite
series of (P„)

4'(ai) = ~) [fo(ai)~) 4o(ai)]

On the other hand, from (24) it emerges that

(39)

fi = ).a 4'
n=1

(29) (40)

Substituting (29) into (25), and using the orthonormal
condition, one can obtain

eA„a„= (O),c)),@„). (30)

This equation has a solution if A & 0 for all n. However,
the lowest eigenvalue Ap is zero. To see this let us consider
an operation of rotating the director n by a small angle

Multiplying (40) by 6~ and using (34) one arrives at the
expression

4o( ) = —fo( i)U[& ( )]. (41)

It is the same form as (38), so Pp = P and we can replace
the left-hand side of (39) by —Bg(9),fo, which leads to the
kinetic equation

0 @o ( 1 19Uo) (9@o 1 (9 yo

n + n' = n + 6 x n,

which changes fo as

fo ~ f(') = fo+i~') ~),
"

fo,(n)

{31)
1 BUp

{ "'")kT ae ' {

where e is a unit vector parallel to Ou/BP and Up ——U[fp]
Since 6),e), is a linear combination of cosP and sing, @p
can be written as

Cy.~,'"'fo] = o (33)

This indicates that Ap ——0 and the right-hand eigenfunc-

where )9&
——e;~),n; &

and (9&" fp(n. a) = B),fp(n a). —
Now both fp and fp must satisfy (24). This condition
can be written as

@p(8, P) = 8 eg(cos8).

Substituting (43) into (42) one can get

02g ( 1 o)Upl (9g g 1 BUo
~ +~'"'- T ~a —.;.g= kT ae-
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The function gp can be obtained as it is shown in the
Appendix in [8]. By the use of it Eq. (36) can be ex-
pressed as

p2 —1 1 OUO
n x SqA. n — g g n = 0. (45)@2+ 1 2)cT

Comparing the particular results obtained from the for-
mula (51) to the form of the Leslie stress tensor, one
can obtain the corresponding Leslie coefficients, provided
functions p in the correction h are known.

For the rotational coefficients we have obtained the
expressions (see Appendix B)

To obtain exactly Eq. (6) &om Eq. (45) we have to
multiply the latter by a certain constant. By virtue of
the Parodi relation (4) and the form of nz + ns from (19)
it emerges that this constant should be kT/—e Then. the
expressions for the rotational viscosity coefficients will be

OUofp p d(cos]9),

OUO
fp p d(cos8).

(52)

(53)

kTp —1
S2 .

p2 + 1

(46)

(47)

The integral (52) was previously obtained by Kuzuu and
Doi [8] and by Osipov and Terentjev [9].

For the coefficients due to the symmetric part of the
stress tensor we have obtained the expressions

0!y = C 0 3kT po 3cos 0 —1

IV. THE OSIPOV-TERENTJEV APPROACH
TO HYDRODYNAMICS

A. Molecular expressions for the Leslie coefBcients

~ = pon~npA~p + p8n~epA p + p n epg p
+p2e~ep A~p (48)

The idea of Osipov and Terentjev of how to obtain vis-
cous coefficients is to average the expression for the mi-
croscopic stress tensor (13) with an appropriate nonequi-
librium distribution function determined by the kinetic
equation (7). In the equilibrium case the distribution
function depends only on the angle 0 between the di-
rector and the orientation of the molecule. As far as
the Bowing nematic liquid crystal in the molecular field
approximation is concerned, the nonequilibrium single-
particle distribution function must depend, due to the
broken cylindrical symmetry, on two angles f = f(8, P).
In the case of small velocity gradients this function can
be written in the form of f = fp(1 + h), where fp is
the local equilibrium distribution function and the small
correction h is proportional to the velocity gradients.

The general expression for h has the form [9]

&3. ,
+pq l

—s1n 8 —cos 8
l

—p, sm(28)
)l4

1 (9Up
[(1.75pg —3pp) sin(28)

2 88
—2p, coc(28)])d(coed), (54)

l

�no
+ ns ———C fp l

3kTp~sm28

+ p cos(28)
l
d(cos8),

(9Up
(55)

1 . ~ 1BUo
c14 = C fp

l
3kT —pzsin 8 + — pzsin(28)

l
d(cos8),

)2 4 (98

(57)

1 - 2o.s + c1s = ( fo 3kTl P sin8cos8 ——Pzsin 8
l2 )

1BUp ( 1+—
l p, cos(28) —-pzsin(28)

l
d(cos8),

2 ]98 2

(56)

a = ncos0+ esino, (49)

where n is the director, e is the unit vector perpendicular
to the director, A and g are symmetric and asymmetric
parts of the velocity gradient, and p, are correction func-
tions dependent only on the angle 0. The relationships
among the considered vectors and angles are

2
where C = ",

&
. These expressions are difterent &om

p +
those introduced in [10], where the authors did not take
into account the term 3kT(a ap —b p/3) as a part of
the microscopic stress tensor in the derivation of micro-
scopic formulas of the Leslie coefficients. All viscosity
coefficients can be completely determined provided that
we are able to determine the functions p, p, po, p2.

e =cosP, e„=sing, e, =0 (50)
B. Kinetic equation

The macroscopic viscous stress tensor can be calcu-
lated due to the formula

0 p = cT p dG = p60 p de. The kinetic equation (7) can be expressed explicitly in
terms of the coordinates 8 and P
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B'f ( 1 BUol Bf f f g'Uo BUo) I B'f
+ cot0 +

Bf (p2 —1
Ab~ [nsnz cos{20) + (eye~ —nsn~. ) sin 0 cos 0] —gs~. nbe~

~B0 (@2+1

+f Q s~[ 3n—ye~ sin(20) + —cos(20)(e~es —nuns)(n x e)s(n x e)~ —zese~ —2nsn~]
p' —1
p2+ (58)

where terms proportional to the velocity gradients are
placed on the right-hand side of the equation. The solu-
tions of this equation should be linear in 8 vp, so on the
right-hand side we can put fo instead of f The. left-hand
side of (58) transforms into

B2h ( 1 BUoi Bh 1 B2h

B02 kT B0 B0 i 20 B$2

(59)

In the stationary case f is equal to zero, so in a further
analysis we can omit this term.

Taking into account the dependence on P of the func-
tion h, we can Gnd the second derivative of 6

026 = —p~ A~pA~ep —p~g p A~ep

+p2[ 2e e—p + 2(n x e) (n x e)p], (60)

where we have used the relations

t9ep

0
= (n x e)p, (61)

B(n x e)p
0

= —ep. (62)

Using the equality

(nxe) (nxe)p ——8 p
—n np —e e~ (63)

B2p f1B'Uoi Bp p 1 BUo
g02 +~ o

kT g0 ~ g0
— . 20+ TZB

and noticing that in the case of incompressible systems
the term b pA p vanishes, we eventually come up with
four differential equations for the functions p„p~,p2, po
by comparing similar terms on the left- and right-hand
sides of (58):

I

B2p2 ( 1 BUo t Bp2
B02 kT B0 B0

4p2

sin 0

1 p —1 1 OUp
sin(20) —3cos(20) + 3

2e p2+ 1 kT 00

(66)

Bpo ( 1 BUo t Bpo
kT B0

2p2 1 p2 —1 1 OUp+ — sin(20) —3cos(20) —3
sin g 2Ep +1 kT 00

(67)

In Refs. [9] and [10] Osipov and Terentjev have as-
sumed that the time relaxation along the P axis is much
smaller than the time of reorientation with respect to
the angle 0, so they neglected the term with P. The sim-
plest test to check whether this assumption is correct is,
for instance, to compare the numerical solutions of Eqs.
(64)—(67) with the solutions of the analogical equations
deprived of the P terms. It turns out that both these
cases difFer significantly. One can also And justification
of this argument in [23] and [24]. Although the problem
of the P term in the kinetic equation has already been
pointed out, there is no systematical analysis of its solu-
tions. With the object of obtaining viscosity coefBcients,
we have provided such an analysis in the standard man-
ner.

Equations (64)—(67) are linear, nonhomegenous difFer-
ential equations of second order. A general solution of
an equation of that type can be performed as a sum of a
particular solution of nonhomogeneous di8'erential equa-
tion, if we are able to find or guess it, and the general
solution of a homogeneous di8'erential equation

(64) GNE = GHE + PNE (68)

p~ 1p —1+
sin 0 &p +1 cos(20) —3sin(20)

1 DUO

(65)

B2p, f 1 BUot Bp,
B0 kT B0 B0

where GHF denotes the general solution of a homoge-
neous equation (GSHE), PNE the particular solution of a
nonhomogeneous equation (PSNE), and GNE the general
solution of a nonhomogenous equation (GSNE).

GHF is dependent on two integral constants that are
determined by the boundary and normalization condi-
tions: (a) values of the functions p„p~,p2, po should be
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=1p 1.
p, = — sin(20).

2ep +1 (69)

It is apparent that conditions (a) and (b) are automati-
cally fulfilled in this case. Fortunately we happen to find
the desired solution for p, . (While the GSHE is equal to
0, the GSNE is equal to the PSNE. )

For (66) and (67) the particular solutions are

= 1p 1- ~
p2 ——— sin 0,

26p +1 (70)

1p 1- ~
pp ———— sin 0.

26p +1 (71)

Neither fulfills the condition of normalization (b).
To fi.nd the desired solutions that would be in agree-

rnent with conditions (a) and (b) we return to the homo-
geneous equations for p2 and pp

symmetrical at the beginning and the end of the interval
of integration (0 and m) which imposes that they should
be constructed only from the even Legendre polynomi-
als and (b) the integral j fohd(cos 0)dg should vanish to
fulfill the normalization condition.

We have noticed that the particular solution of (65) is

tensor with which we have started our considerations in
the OT way. On the other hand, we can also notice that
it is obtained &om the right-hand side of (7), which for-
mally can be treated as a homogeneous equation

0),(Oi,f —I'i, /kT f) = 0. (76)

O.'2 + 0!3 = 0!6 —0!5 (77)

which equals the symmetric o,2+ o.3 to the rotational p2.
In the OT approach we obtain that the following equal-

ity should hold:

So for each function performing (76), the right-hand side
of (7) vanishes. Only functions that are not solutions of
the homogeneous equation (76) make a contribution into
viscosity coefFicients and, despite the fact that they do
not fulfill the normalization condition, can be regarded as
candidates for averaging functions in (11). In the Osipov-
Terentjev approach these functions are (69)—(71). The
application of them to the expressions (54)—(57) leads
after some calculations exactly to the expressions (18)—
(21). This result can be treated as a convincing proof of
the correctness of two difI'erent KD and OT approaches.
Another important feature of the viscosity theory is the
Parodi relation

(92p2 ( 1 BUoi Bp2
(902 kT BH (90

4p2 =0,
sin 0

(72)
p —1 BUp

fo [6kTsinHcos0 + cos(20)]p d(cos0)p'+ 1

& po |' 1 (9Uol &po

(90 kT 00 o)0

2p2

sin 0
fo p d(cos0) (78)

OUp

The standard method of tackling this problem is to eval-
uate the functions p2 and pp in a series of Legendre poly-
nomials P; (i = 0, 1, . . .)

p, =) aP, ,

which can be rewritten as

fop Lp.d(eood) = f fop. Ip d(eood),

where I is the operator

(79)

po
——) bP;. (75)

02 ( 1 BUo) (9

ct0 kT 80 (90 sin 0
(80)

The boundary condition imposes that only even numbers
of i should be taken into account. The normalization con-
dition sets values of ap and bp. Other coefFicients a, and
6; can be found by the use of an appropriate numerical
procedure for solving a set of linear algebraic equations.

We can also try to solve Eqs. (64)—(67) in a purely
numerical manner, treating them with a procedure for
solving difFerential equations. This method was used to
find out the solution of (64).

V. EQUIVALENCE OF OT
AND KD APPROACHES

A proof of (79) can be found in Appendix C.

VI. VISCOUS PROPERTIES OF MBBA

To apply the above theories to any system one
needs the equilibrium distribution function (EDF) fo ——

exp( —PUo). In further analysis we used the EDF ob-
tained in the standard second virial approximation of the
density functional theory with the intermolecular poten-
tial of the Lennard-Jones type [25,26)

U=4e (81)
Now we would like to show that the OT and KD the-

ories are equivalent. We will analyze the expressions for
viscosity coefFicients obtained in these two approaches.
Let us look at the expression (ll). We can notice that
it is the same as the expression for the symmetric stress

where m, n, e are characteristic parameteres of the above
potential, r is the vector that separates the centers of two
molecules, and a, due to Ruijgrok [25,26], is a function
dependent on orientations of molecules n~, n2 and on the
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unit vector 4 pointed in the direction of r:

0 = pro 1+ S&(h n&)'+ S&(A. n2)' —S2(n& . n2)

(82)

The parameters op, Sy S2 are phenomenological param-
eters connected with shape and size of the molecule. In
this approximation the necessary condition for the min-
imum of the &ee energy allows us to obtain the desired
EDF, which has the form [25,26]

fo(x) = exp(co + cx& + c2& + cs& )

Uo ———kT(co+ coax + c2x + csx ). (84)

Applying the mean potential (84) with coefficients c, cal-
culated for the case of MBBA [25] to the expressions
(52)—(57), we obtain the viscosity coeKcients character-
istic for MBBA.

In Fig. 1 numerical results for the integral (52) due
to pq are introduced and its position is compared to the
experimental data. The difference between one curve and
the other corresponds to the diffusion coeKcient e,p ——

e/kT By the use of. numerical fitting we have found the

where x = cos0 and the coeKcients c, are the numbers
established by the necessary condition equation.

Having obtained EDF it is possible to calculate a num-
ber of static properties such as the temperature of the
phase transition, order parameters, energy, or elastic con-
stants. Now the problem is how to fit potential param-
eters in order to obtain a satisfactory comparison to ex-
perimental data for a given compound. It turns out that
it is suKcient to take only two different values of the Kq
elastic splay constant and the temperature of nematic-
isotropic transition to obtain a good Gtting of poten-
tial parameters that leads to satisfactory agreement of
all possible static properties with experimental data.

Thus, for the mean potential Up, necessary in hydro-
dynamics, we can use the expression

curve for it, which we will use in our further numerical
calculations.

Since, p2 is a simple linear function of S2, we can check
the accuracy of the result obtained for the diffusion e/kT
by comparing it to the similar value emerging &om ex-
perimental data for p2 and S2 [27]. This is shown in Fig.
2.

Taking into account the diffusion coeKcient, finally we
present the following curves for pq (Fig. 3) and p2 (Fig.
4). Coefficients pq and p2 are drawn in comparison with
the experimental data from paper [27], which are recom-
mended as model data. The agreement between theory
and experiment is very good.

This is more apparent kom the analysis of Fig. 5,
where the temperature dependence of the extinction an-
gle 8 is presented. Since cosO is the ratio between pq
and p2, this result is obtained without taking into ac-
count any 6tting for the diffusion coeKcient. Such satis-
factory agreement can be a convincing proof of the accu-
racy of the theory. The dashed line presents results of the
Osipov-Terentjev theory f'rom the Ref. [28]. The inter-
molecular potential used therein leads to the maximum
agreement with experimental values of the extinction an-
gle about 15%. Moreover, it is not checked whether this
potential really describes a mesophase state and gives a
nematic solution. In our case we are completely sure that
our potential describes a nematic. Moreover, it is possi-
ble to predict all static properties for it, as it has been
introduced in [25].

The ratio @=length/width found in [28] is about 2,
while it is expected to be 5. In [28] the authors explain
that two MBBA molecules form a rotating cluster or a
dimer; however, there is no experimental evidence about
it. In our considerations this ratio is equal to 5 and it is
found to be the same at each temperature, contrary to
the results in [28].

In Fig. 6 we show numerical results for the integrals
from (79): circles represent the right-hand side and the
solid curve represents the left-hand side integral. Since
the Parodi relation is fulfilled exactly, the fact that both

0.12 1.00

0.70

" 0.04 0.40

0.00
0.94 0.96 0.98 1.00 0.10

0.94 0,96 0.98 1.00

FIG. 1. Rotational viscosity coefFicient for MBBA pz. Cir-
cles represent results from our theory (without the difFusion
coefficient) and triangles from [27].

FIG. 2. Effective diffusion coefFicient e & obtained by the
use of fitting our results for pq to the experimental data. Cir-
cles are obtained on the basis of data for S2 and p2 from [27].
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0.04
0.70

0.00
0.93 0.95

TR
0.97 0.99

0.60
0.9 1 0.94 0.97 'l .00

FIG. 3. Rotational viscosity coefBcient pz for MBBA. Cir-
cles represent results from our theory, including fitting for the
diffusion coefffcient, and triangles from [27].

FIG. 5. Extinction angle 0 for MBBA (cos8 = —p~/p2).
The solid line represents results from our theory. The dashed
line from OT theory [28], circles from [27], and triangles from
[29].

these curves are not identical is due to the accuracy of
the procedure for solving difFerential equations.

In Figs. 7 and 8 we show numerical results for n~ and
n5 +a6, respectively. The disagreement between theoret-
ical and experimental results is probably mainly caused
by the experimental errors. It is worth remarking here
that the Leslie coeKcients should drop to zero while ap-
proaching the critical temperature (the reduced temper-
ature is equal to I), while it is apparent from Figs. 7 and
8 that experimental data tend to vanish before reaching
T = 1.

In Fig. 9 we introduce values of a4 and its comparison
to the experimental data. Values obtained &om the the-
ory are much lower than values measured in experiment.
To explain we have to pay attention to the fact that the
a4 considered in our theory is the nematic contribution
to n4, which should vanish since the nonequilibrium con-

tributions to the distribution function disappear. The
theories of Osipov- Terentjev and Kuzuu-Doi do not de-
scribe viscosity properties of the isotropic nematic system
and the determination of isotropic part of n4 is beyond
the scope of these theories. On the other hand, &om the
analysis of the experimental data it emerges that this
value must consist of these two parts since it drops to a
finite value at T = 1. What is also apparent &om Fig.
9 is that the isotropic influence on n4 is much stronger
than the nematic efFect. Prom all these results it can be
concluded that the Osipov- Terentjev statistical approach
or the equivalent Kuzuu-Doi theory with the application
of the Ruij grok potential provides a very satisfactory de-
scription of nematic viscosity and can be regarded as a
complete theory at the molecular statistical level.

—0.08

-0.04
0

CL
—0.09

~ ~ ~ ~ ~ Q2 +Q)

—0.08

—0. 1 0

—0.12
0.93 0.95

TR
0.97 0.99

—0. 1 1

0.94 0.96 0.98 1 .00
FIG. 4. Rotational viscosity coefficient p2 for MBBA. Cir-

cles represent results from our theory, including Btting for the
diffusion coefficient, and triangles from [27].

TR

FIG. 6. Numerical results for the Parodi equality (79).
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0.02 0.10

0.08

O~ 0.01CL
O~ 0.05CL

0.03

0.00
0.93 0.95

TR
0.97 0.99

0.00
0.93 0.95

TR
0.97 0.99

FIG. 7. Coefficient nq for MBBA. Circles represent results
from our theory and triangles from [27].

FIG. 9. Coefficient n4 for MBBA. Circles represent results
from our theory and triangles from [27].

VII. CONCLUSION

0.05

0.04

O
cL 0.03

0.02

0.01

0.00
0.93 0.95 0.97 0.99

FIG. 8. Coefficient n5 + o.6 for MBBA. Circles represent
results from our theory and triangles from [27].

The idea of Osipov and Terentjev has been used to
obtain the improved general microscopic expressions for
the Leslie coe8icients. The difference between our ex-
pressions and those presented in [10j is mainly caused by
omitting the term BkT(a ap —6' p/3) in the microscopic
stress tensor in this paper. Only by the use of the exact
expression for the microscopic stress tensor are we able
to arrive at correct results.

We have paid attention to the fact that the symmetric
part of the microscopic stress tensor must be enriched

2
with the form factor 2+] contrary to the one used inp2+] )

theories so far. Only by including this form factor is it
possible to fulfill the Parodi relation. In general, the On-
sager relations, whose particular example is the Parodi
relation, can be treated as a check of correctness of any
transport theory.

In the case of platelike molecules this form factor is of
special interest. Since in this case it has negative val-

ues, the lack of it can cause a change in sign of certain
viscosity coefBcients.

A systematic analysis of solutions of the kinetic equa-
tions has allowed us to show that the expressions for the
Leslie coeKcients in the OT approach can be transformed
to a form that is exactly the same as that obtained by
Kuzuu and Doi. It is the most important outcome of
these considerations that both the KD and OT theories
may lead to the same microscopic expressions for viscos-
ity coeKcients.

Information on the type of system appears in hydro-
dynamic theories mainly as the mean potential. This
potential reflects the influence of the rest of the system
on a given particle. It can be obtained &om the equilib-
rium distribution function. In our consideration we have
used the mean potential coming 6.om the density func-
tional theory on the basis of the Ruijgrok potential. The
analytical form of this mean potential is a sixth-order
polynomial of cos0 with coeKcients c;, which can be ex-
plicitly calculated from the necessary condition equation
for the minimum of the free energy.

Using the mean potential adjusted to the case of
MBBA we have found rotational and symmetric viscos-
ity coeKcients. The results have turned out to be in very
good agreement with the experimental data.

The deviation of o;4 &om the experimental data is sug-
gested to be caused by the influence of the isotropic con-
tribution on the experimental value, which cannot be
established within the framework of the above theories.
The Parodi relation is ful6lled exactly. This has been
presented both analytically and numerically. From the
figure showing the Parodi relation we can conclude about
the influence of the mean potential and numerical errors
especially for integrals that include the asymmetric func-
tion p . We can say that coefficients n2+ns and pq (both
of them are dependent on p ) are the most sensitive to
the mean potential. The di6'usion coeFicient obtained
from the Gtting p2 to the experimental data has been
compared to and found in very good agreement with the
values obtained on the basis of the experimental data for
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S2 and p2.
The parameter p=(length)/(width) is found to be 5,

which in the case of MBBA is correct, whereas from re-
sults of other works it is predicted to be about 2. The
value 2 of the parameter p has been the reason for the
suggestion that molecules of MBBA tend to form a clus-
ter or dirner. However, there is no experimental evidence
about this. Due to the results presented in this paper, we
would rather say that the idea of dimers does not relate
to MBBA.

There is a consistent connection between statics and
hydrodynamics through the point of the mean potential
and, as a matter of fact, the same intermolecular pa-
rameters determine static and hydrodynamic properties
as well. To sum up, we can say that the hydrodynamic

theories mentioned provide a complete description of vis-
cosity properties at the molecular level.

APPENDIX A

The aim of this appendix is to find the Hermitian con-
jugate operator of t',

(p = —Bi,
~

B~p+ „BaU[4]+ k~BkU(fo] (.B
t' fo

(A1)

Taking into account that by the use of operator 8 we can
perform integration by parts (see [22]), let us analyze the
expression

I
B.4+ ' B.U[0]+ B.U[f.] I

B.«
kT

Bg UoBg@da — /BI, Bggda—
kT Bjg tpBQ K(ai a2)p(a2)«i«2

&BI,B&vP —+ B&UoBI,@
~

da + K(ai, a2)$(a2) Be(foBI 4)«ida2kT ) kT (A2)

where Uo ——U[fo]. The first term by virtue of (24) is
equal to —By(/BI, Q), so setting P = fo we finally obtain

The equivalent microscopic expression reads

foC'@ = —B~[fo(ai)B~@(ai)]
fo(ai)+ kT

It (ai & a2) By [fo (a2) Bk@(a2)]da2, where

p: o 1+h cJ p dQ (B2)

where we have used the state equation

(A3) asym, mic
ap

Since U = U(g),

OU—Gp
BG~

(83)

ln[f (ai)] = K(ai, a2) f (a2) da2,
kT

U
where f = e».

(A4)

and

a = ncos0+ esin0, (B4)

APPENDIX. B
0 . 0 nxe t9—= (e cos g —n sin g) —+Ba Bg sing BP'

Let us take into account the asymmetric part of the
stress tensor. From Leslie's theory it has the form

then

BU
a = [n ep cos g+ (e ep —n np) singcosg

Bap
asym

cr p
—— p2(n n„A~p —np—n—„A„)

1
pi(n Np —npN —)

BU——e np sin g] 00 (B6)

asym BU 2 2 2a'
p

= fo(1+ &) [n ep cos g + (e ep —n np) singcosg —e np sin g —n ep sin g

(e ep —n—np) singcosg + e np cos g]da = fo(1+ h) [n ep —e np] dgd(cosg).2 t9U

t90
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It is apparent that the equilibrium contribution to the
asymmetric stress tensor vanishes due to the integration
over the angle P because integrals of odd number of e
are equal to zero BUfp p d(cos 0), (B11)

Comparing (B10) with (Al), we can get microscopic ex-
pressions for the rotational viscosity coeKcients

Thus

2' 2'
e dP = 0, e e)se~dP = 0.

p p BU
fp p, d(cos 0).00 (B12)

asym
fp [n ep —e np]80

x[ppn~npA~p+ p, n~epA~p

+p n e& g & + p2e~ es A~p] dPd(cos 0) .

We 6nally came up with the expression

asym OU
fo [p.(n~n„A„t3 —A „n„np)00

+p (n n„g„p —g„npn„)]d(cos0).

(B9)

(B10)

Using the same technique as above we can evaluate the
symmetric part of the stress tensor.

APPENDIX C

In the derivation of the Parodi relation, the erst and
second derivatives of fp are

Of() OU O2f() O U 2 OU OU

O0 O0
' O02 O02 O0 O0

(Cl)

Using integration by parts we have

fsp Lp d(coo&) = f. fcp +
~

estd —P ~

—— - p. d(costt)
sin 0

02 O . ( OUi . 1
P, p sin 0P —— p sin 0P cot0 — — p sin 0P 2 d0

O02 O0 ( O0 p sin 0
O' f() Of() ( Op ) ( Op O2p i

p, sin 0 p p —p —2 cot0p + —
p 2cot0 + d0

&Ofo Op) ( OUi+ p sln0 p + cot0 pp + p cotO — d0
q O0 O0) ( O0)

~

~

~

~

( 1 O2U) 1
p, »n0fpp

~ 2 + P
~

d0 — fpsin0p, p z d0 .
(sin 0 sin 0

By virtue of (Cl) the expression (C2) can be rewritten

OU OU
Pfpp, p sin0 P

OU 1 OU 1
fpp p, sin0

~

—1 —cot 0+ cot0P + 2 + P —
2 ~

d0
sin 0 O02 sin 0j

fpp, sin0 + OU f OU't—2t) + 2cotd —
~

estd —t)
~ ) dtt

80 O0)

The last line in (C3) is equal to

O2 f OU) O 1
p sin0p, + cot0 — ——

2 p d0 . Ca
O02 O0 ) O0 sin 0

which is the right-hand side of the Parodi relation.
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