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Models of linear polymers with competing interactions favoring ramification into thin branches
on one hand, and compactification on the other hand, are shown to possess a phase diagram with
swollen linear, swollen branched, and compact regimes. Between each pair of these regimes, a
multicritical transition occurs. The three transitions merge in a single, very unstable multicritical
point. Evidence of such behavior is obtained by renormalization methods applied exactly to a
model on a hierarchical lattice, and approximately to a system on a square lattice. The hierarchical
model calculations, discussed in much detail, are particularly extensive and give the advantage of an
almost complete characterization of the different scaling behaviors, exact at least within the limits
of numerical accuracy. The strong qualitative evidence from renormalization group approaches
is further confirmed by an extensive exact enumeration analysis for a third model on the square
lattice. The scalings at various multicritical transitions are studied in detail and universality issues
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are discussed.

PACS number(s): 61.41.+e, 64.60.Ak, 64.60.Cn, 64.60.Kw

INTRODUCTION

Both chainlike and branched polymers behave at high
temperatures in good solvents as swollen fractal struc-
tures, in their self-avoiding walk (SAW) and branched
polymer (BP) regimes, respectively. This is reflected by
a value v > 1/d for the exponent in the law R o« N”, con-
necting the average linear size R to the total “length” N
(the molecular weight). As the temperature is reduced, a
collapse transition is expected to occur in these systems
at a certain © temperature. This collapse is induced by
van der Waals attractions between the monomers. Be-
low the © temperature, the polymer behaves as a com-
pact object (v = 1/d) with the same finite density at all
length scales, in the limit of infinite molecular weight.
This is called the compact phase (CP).

These © transitions were the object of many investi-
gations in recent years [1-12], mostly in connection with
universality issues. Indeed, whereas the universality of
the v exponents for the swollen (high 7T') and the col-
lapsed (low T') phases is both theoretically and numeri-
cally well supported, difficulties in the determination of
the exponents at the © point, like vy, make the exis-
tence of a unique multicritical universality class more
controversial. Moreover, in the case of branched poly-
mers, there exist models [10-12] displaying clearly two
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distinct lines of © collapses, most likely belonging to dif-
ferent universality classes.

Until now, much less attention has been devoted to
the possibility that, due to peculiar interaction mech-
anisms, collapses could occur with some intermediate
scaling regime separating, in a whole interval of tem-
peratures, the fully swollen from the compact phases.
Another case is that of a “collapse” in which the attrac-
tive interactions cause a transition to a low temperature
regime with higher fractal dimension (lower v, but still
> 1/d), which is never followed by a complete collapse
into a constant density regime.

The possibility that such type of scenarios could re-
place, under suitable conditions, the standard picture
of collapse implies a more substantial degree of non-
universality than contemplated in the usual ©-point sta-
tistical mechanics. The fact that modified interaction
mechanisms can alter the standard “phase diagram” of
an interacting polymer system should also be more easily
detectable at the experimental level.

In a recent Letter [13], it was proposed that, for cer-
tain models of interacting linear polymers, the interme-
diate, partially collapsed phase should be identified with
the swollen regime of branched polymers, which have a
higher fractal dimension than self-repelling chains. The
mechanism leading to a partially collapsed intermediate
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branched polymer regime is connected with the pres-
ence in the Hamiltonian of at least two competing in-
teractions: one favoring collapse (an attractive force),
the other representing some repulsion between different
branches of the collapsed structure (this force counter-
balances the previous attractive one). A collapse from
linear to branched polymer behavior was clearly obtained
in Ref. [13] for a model defined on a hierarchical lattice.
Convincing evidence of a collapse into a swollen branched
polymer regime was also given by a series analysis of a
linear model on a two-dimensional (2D) Euclidean lattice
[13], which was not supposed to possess a CP. Unfortu-
nately, the existence of a further collapse transition from
branched polymer to compact regime, claimed in Ref. [13]
for the hierarchical model, was revealed to be spurious
and had to be excluded on the basis of a much more ac-
curate numerical analysis. So, at the present stage, both
the exact and approximate model calculations reported
in Ref. [13] materialize only the second scenario outlined
above, in which the collapse from linear to branched poly-
mer regimes is never followed by a further collapse into
a CP.

Some of the ideas of Ref. [13] were further developed
by Bradley [14], who considered the phenomenon of a
partial SAW-BP collapse within the framework of the va-
cancy mediated interactions for self-avoiding vesicles on
the 2D hexagonal lattice. For the model of Ref. [14], a
collapse from BP to CP is indeed taking place. However,
in this context, the mechanism leading to the interme-
diate phase is an asymmetry between the interior and
the exterior of the vesicle. While this could be plausible
for some polymer ring problems, such a model does not
seem meaningful for open chains. In addition, this ap-
proach does not throw light on the multicritical scaling
properties and on the flow of the model parameters under
renormalization.

In this work we reconsider a basic suggestion of Ref.
[13], that the BP regime can occur as intermediate be-
tween the swollen linear and compact ones, and we show
that such a possibility is indeed realized in models with
suitable competing interactions.

The possibility for a linear polymer system that an in-
termediate BP regime is realized besides the swollen and
the collapsed ones, suggests that one should look for a
rich phase diagram, displaying lines (or surfaces) of tran-
sitions between each pair of phases, and a multicritical
point where these lines meet. A further intriguing fea-
ture to check is whether there could exist more than a
single compact regime for such systems. Such a feature
has recently been debated [9-12] for models of interacting
lattice animals and branched polymers.

The purpose of the present paper is to discuss in detail
different models and approaches that allow a description
of such phase diagrams, and of the associated critical and
multicritical scaling properties. On one hand, the variety
of models in which we recognize the basic phenomena
outlined above is an indication that these phenomena are
not so-exceptional as one could suspect at first sight. At
the same time, the different models are chosen to make
the application possible of methods with varying rigor
and power.
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In the first section, we consider a model defined on
a finitely ramified hierarchical lattice (the 3D Sierpinski
gasket) and present the results of an extensive investi-
gation of exact renormalization group recursions for it.
In view of the large size of such recursions and the dif-
ficulty of numerically determining fixed point solutions
and their stability, particular care must be used in the
analysis. Our discussion tries to present in a very explicit
and clear way the various difficulties and their solutions.
Hopefully it will also be of methodological value for read-
ers who want to embark on similar extensive calculations.
As already mentioned above, in Ref. [13] results for a
similar, less complicated model on the two-dimensional
gasket were presented. In that case only one interac-
tion parameter was present and no complete phase di-
agram in the sense discussed above could be obtained.
Due to insufficient numerical precision in the analysis, a
collapse from BP to the compact regime was erroneously
predicted to follow the SAW-BP partial collapse at very
high values of the attractive interactions. The results of
the first section also supply a valid illustration of some of
the collapse properties which were incorrectly attributed
to the model of Ref. [13].

In spite of the partly artificial character of models de-
fined on hierarchical lattices, these can provide, through
exact calculations, a correct qualitative description of
phenomena occurring on Euclidean lattices for more re-
alistic models, especially in the case of polymer systems.

In Sec. II, we describe an approximate real space renor-
malization group (RSRG) approach to multiple scaling
regimes in a model on a 2D Euclidean lattice. Besides
confirming the physical picture extracted in Sec. I in
a relatively more simple, though approximate technical
framework, this approach gives a further example of how
competing interactions, inducing intermediate collapse,
can be cast within a model.

A third example is finally considered in Sec. III, where
this time results of an extensive analysis of exact enumer-
ations on the square lattice are reported for a different
model, containing nevertheless the same characteristics
of two competing interactions. Some concluding remarks
are made in Sec. IV.

I. A MODEL ON A 3D FRACTAL LATTICE
A. Introduction

There are many motivations for studying problems of
polymer statistics on fractal lattices. Fractal lattices are
somehow intermediate between periodical and disordered
ones, and the study of critical phenomena occurring on
them is interesting in its own right [15].

The connectivities of fractal lattices are simple enough
to allow often an exact renormalization treatment ex-
ploiting their hierarchical and scale invariant structure.
Especially in the case of polymer problems, the ap-
proaches on hierarchical lattices have been revealed to
be useful, because, in contrast with, e.g., spin models,
nontrivial critical thresholds can be obtained. Most im-
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portant for us here, both for linear and branched self-
attracting polymers, models on fractal lattices have even
shown the occurrence of standard © transitions, of the
type commonly studied on regular lattices. In these tran-
sitions the v exponent remains at the value appropriate
to the swollen regime for all T > Ty, whereas v = 1/d for
T < Ty, d being the fractal lattice dimension. At T = T,
the tricritical point, v = vy, with vy different from both
previous values.

As already mentioned in the Introduction, in a previ-
ous publication [13] a polymer was modeled by a static
one-tolerant trail [16] on a 2D Sierpinski gasket. Since
in such a lattice twice visited sites are allowed for this
trail (but not twice visited bonds), an attractive (nega-
tive) energy was introduced, favoring such double sites.
Upon increasing this energy (or lowering the tempera-
ture, which is the same in this case), one can only find
a single collapse from the swollen SAW to a swollen BP
regime. A natural choice in order to enrich the phase dia-
gram is to ntroduce an extra interaction energy, favoring
nearest neighbor visited sites not directly connected by
chain steps. If we assume in the one-tolerant trail that
the double site energy becomes repulsive and grows to
400, we are left with a strictly self-repelling chain with
nearest neighbor attractive interactions. We know that
this model, on a 2D Sierpinski gasket, does not lead to a
standard © transition from SAW to CP, as normally ex-
pected. So, while the above two interactions in the trail
can have competitive effects in the sense discussed in the
Introduction (enhancing the twice visited sites ends up
in reducing the number of nearest neighbor pairs of not
consecutively visited sites), the phase diagram to be ex-
pected on the 2D Sierpinski gasket is not satisfactory
enough for us, because it lacks as a basic ingredient the
standard linear polymer © transition.

In order to introduce this feature, the solution is to
upgrade the gasket to a 3D one. In this case we know
that the self-repelling chain has a standard © transition
and we can expect interesting effects to be introduced
as soon as we start decreasing from +oo the interaction
energy for twice visited sites.

B. Model and method

The model that we study here is somewhat different
from those commonly used in order to model linear [17]
and branched [18] polymers on fractals, both by the ge-
ometrical restrictions imposed on the walks and by the
kind of attractions considered. More precisely, we impose
that the edges of the gasket are visited at most once and
sites at most twice. A walk which can visit a bond at
most once is called in the literature a one-tolerant trail.
Here we add an extra restriction on the site visitations. It
should be noted here that the restriction that we impose
on the sites of the gasket is not a direct consequence of
the constraint on the edges. In fact, thanks to the rami-
fication number of the 3D Sierpinski gasket, a site could
also be visited three times without breaking the edge con-
straint. We have made this choice for two reasons: first,
we have with this restriction a natural generalization of
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the two-dimensional model mentioned before [13]; sec-
ond, without this restriction we would have to manage
an enormous number of partial generating functions in
the RG treatment. As a matter of fact, the situation
is just difficult enough with the 19 functions we have to
consider with our choice, as will become clear in the fol-
lowing. In order to simplify the exact treatment, without
making the physics poorer, we impose an additional ge-
ometrical constraint on each internal vertex by imposing
that the walk has always to move out of the elemen-
tary up-tetrahedron visited in the last step. In this way
we realize recursions analogous to those valid on a, so-
called, four-simplex lattice [19]. The simplex character of
the recursions again makes the numerical problem more
tractable. The problem we consider is static, so, in spite
of the terminology, we actually consider as independent
walk configurations the silhouettes of a class of dynami-
cal one-tolerant trails on the gasket. Concerning the kind
of interactions considered, in addition to the standard
monomer-monomer interaction introduced by assigning
an energy €; (¢; < 0) to each pair of nearest neighbor
nonconsecutively visited sites, we weight with an energy
€4 (€4 < 0) each site in which a self-crossing of the walk
occurs.

By switching on only the ¢; interaction, we expect to
model the standard situation of a linear polymer in a
bad solvent. Indeed, a chain with a large scale exclu-
sion and attractive interactions is known to undergo a
© transition from the SAW to a compact regime [17],
when embedded in a 3D Sierpinski gasket. On the other
hand, if the twice-visited site attraction is dominant, we
will observe numerically two consecutive transitions tak-
ing place [13]: the first one is from a linear to a branched
polymer behavior followed by a further collapse from the
swollen branched regime into a compact regime. When
the two interactions compete, we expect that the multi-
critical lines will converge in a supermulticritical point.

In a grand canonical description of the model we in-
troduce a step fugacity z, a fugacity v = exp (—e;/kT)
conjugate to the number of monomer-monomer interac-
tions, and a fugacity u = exp (—eq/kT) associated with
each twice visited site. The generating function, normal-
ized per lattice site, can be written as

Z(z,v,u) = E N yNigyNe
walks

C(N, N;, Ng)zN vNiqNa
N,N;,Na

Z Zn (u,v)
N

I

(1.1)

where C(N, N;, Ng) represents the number of configura-

tions of N-step trails with IV; nearest neighbor pairs and

N4 self-crossings, normalized per lattice site, and Zy is

the canonical partition function for a walk of N steps.
An average end-to-end distance can be defined as

R(z,u,v) = 27 (z,u,v) Z R(N, N;, Ng)
N,N;,Nq

xC(N, N;, Ng) 2N oNiulNe | (1.2)
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where R(N, N;, Ng) is the average end-to-end distance
for walks with given N, N;, and Nyi. In analogy with
the behavior on Euclidean lattices, we can expect that
Zn (u,v) < pu(u,v)¥ N79 for N — oo, where 0 is the en-
tropic exponent. The critical surface is given by z. =
zc(u,v) = p~(u,v), and for z — z

1-6

Z(z,u,v) ~ [zc(u,v) — 7] (1.3)
and

R(z,u,v) ~ [zc(u,v) —x] (1.4)
if

> R(N,N;,Ng) C(N, N;, Ng) v™eul4
N;,Na
R u,v) =
(R)~( ) Z C(N, N, Ng) o NigyNa
N;,Na
~ N*¥ for N - oo . (1.5)

For quantities like Z, a normalization per lattice site is
implicitly understood in the thermodynamic limit.

Exponents like 6 and v in Egs. (1.3)—(1.5) will in gen-
eral depend on the point at which the critical surface
is approached. The renormalization group helps in de-
termining all this. For simplicity, we discuss only the
“thermal” exponents, like v. We thus set up an iter-
ative scheme for calculating Z in Eq. (1.1), restricted
to ringlike closed walks. With such a restriction, Eq.
(1.3) is replaced by Z(z,u,v) ~ [zc(u,v) — :c]z—
a=2-—dv.

The knowledge of a certain number of partial gener-
ating functions X, ; for walks on a gasket of generation
n(j =1,2,...,19, in our case) allows one to determine
Zn+1, the generating function (1.1) for the gasket of side
27+1 as well as the same kind of partial generating func-
tions for the (n + 1)th generation gasket, X, 1 ;. Figure
1 represents schematically all these 19 generating func-
tions, each one with its specific restrictions on the walk,
or walks, stepping on the gasket. Due to the large num-
ber of partial generating functions, the transformation

a
, where

Xnt1,; = Fj ({Xn,k}) (1.6)

can be determined only by exact enumeration techniques
on the computer. An example of one of the many config-
urations that have to be counted in this process is given
in Fig. 2. The set of nonlinear equations (1.6) is too large
to be reported here, but it is available upon request [20].
One important simplifying feature is the fact that z, u
and v do not explicitly appear in the recursions (1.6), but
only enter the initial conditions of the various Xy ;. This
feature is due to the simplex character of our recursions.

The equations (1.6) can be interpreted as a stan-
dard RG transformation, with rescaling £ = 2, in a 19-
dimensional parameter space. At a critical fixed point
X} one defines a set of scaling fields h; with dimension
y; and a quantity like the singular part Z, of the gener-
ating function will transform as
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FIG. 1. Diagrams representing typical contributions in
terms of walks for the 19 restricted generating functions.

Z,({hi}) = €79 Z,({£% hi}), (1.7)
where y; = 1/v > 0 is the only relevant eigenvalue. If
the fixed point is tricritical, there will be an additional
relevant field, i.e., y2 = ¢/v > 0. Since in the RG itera-
tion the initial X; and h; are specified in terms of three
fugacities, a critical fixed point singles out a critical sur-
face (hy = 0) in the (x, u, v) space, while a tricritical fixed
point singles out a line (hy = 0, hy = 0). A last possibil-
ity is that of three relevant fields (y; > 0, y2 > 0, y3 > 0),
which singles out a fully unstable multicritical point on
the surface.

FIG. 2. Example of the renormalization procedure in the
Sierpinski gasket. The graph on the left gives a contribution
X2X2 to X1.
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C. Results

For fixed u and v, at = z.(u,v) the thermodynamics
of the model is determined by the fixed point reached by
the RG recursions as the order of the iteration n goes to
infinity. The possible fixed points can be divided into two
categories. In order to explain this, we have to give a few
details about the recursion equations, which we rewrite
symbolically as

X' = F(X). (1.8)
All 19 components of the vector X are non-negative
weight factors and the 19 functions X; are all built up as
a sum of positive contributions. The component Xg, re-
lated to the simple loop diagram in one corner of the
tetrahedron, plays a peculiar role in these equations.
Some of these equations read as follows:

Xs=Xe+---,
X;=X5+-,
Xg=X3+---,
Xir=Xa+---.

From this, it is immediately clear that X¢ can never de-
crease under the renormalization flow. Three different
situations can occur.

(1) If a finite fixed point X* is encountered, it must
mean that the remaining terms in the equation for X{,
represented with the ellipses, go to zero upon iteration.
It turns out that in such a case also the terms correspond-
ing to the ellipses in the other equations written above
go to zero. In that case, however, X§ can take an ar-
bitrary value: this implies a marginal eigenvalue (y = 0)
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in the linearized renormalization equations around the
fixed point, and there exists a line of fixed points. The
particular choice of X does not affect the critical expo-
nents. Such a situation has been previously discussed in
Ref. [13]. In this sense even the high temperature fixed
point is a fixed line, where all X; are zero, except for the
arbitrary Xg, with X7, Xg, and X7 its second, third,
and fourth powers, respectively. Other nontrivial fixed
points of this type have some fixed nonzero components,
whereas other components may also be functions of the
arbitrary X¢ (see Table I).

(2) A second possibility occurs in the case of a fixed
point when in the above equations the remaining terms
go to zero only for Xg = 0. In such a case, we have a
true isolated fixed point and not a fixed line. An example
of such a point is found at X}y = 3743, the remaining
X being zero. The sixth recursion equation looks more
specifically as

(The terms that are left out become zero at this fixed
point.) This recursion equation still leads for this fixed
point to a marginal eigenvalue, corresponding to the Xg
direction, but the full nonlinear equation makes this di-
rection marginally repulsive.

(3) If the ellipsis in the equation for X does not vanish,
Xe is an ever increasing function of the renormalization
flow, which finally goes to infinity. It is then convenient
to rescale the other components by appropriate powers
of Xg, such that the remaining equations become inde-
pendent of Xg. We therefore define a vector Y by

Y; = X3 X;, (1.9)

TABLE 1. Relevant fixed points of the recursion system for the model on the Sierpinski gasket.
In the left part of the table, E stands for an arbitrary value of Xs and indicates a line of fixed
points. The right hand part of the table gives fixed points for the rescaled variables.

I 11 111 v \Y% VI VII VIII
SAW CcP SAW-CP T BP SAW-BP BP-CP S-BP-CP

X: 0.429445 0 1/3 0 0 0.429445 0 1/3 Y:
X, 0.049984 2271/3 1/3 0 0 0.049984 22°1/3 1/3 Y2
Xs O 0 0 0 0 0 0 0 Ys
X:s O 0 0 0 0.054986 0.054986 0.054986 0.054986 Y,
Xs O 0 0 0 0.152751 0.152751 0.152751 0.152751 Y;
Xe E E E 0 2.0785 2.0785 2.0785 2.0785 Xé/Xe
X, FE? E? E? 0 0.661873 0.661873 0.661873 0.661873 Y~
Xs E3 E? E3 0 0.372061 0.372061 0.372061 0.372061 Ys
Xo  f(E) 0 f(E) 0 0 0.22109 0 0.130412 Y,
X100 O 0 0 0 0.061444 0.061444 0.061444 0.061444 Y3,
X1 O 0 0 0 0 0 0 0 Y11
X2 O 0 0 0 0 0 0 0 Y2
X3 O 0 0 0 0 0.011031 © 0.005203 Yis
X114 O 0 0 0 0.001746 0.001746 0.001746 0.001746 Yia
X5 g(E) 0 §(E) 0 0 0.105536 0 0.054944 Y5
X6 O 0 0 0 0.024467 0.024467 0.024467 0.024467 Yie
X7 E* E* E* 0 0.190351 0.190351 0.190351 0.190351 Yir
Xi1s O 0 0 0 0.018793 0.018793 0.018793 0.018793 Yis
X1 O 0 0 374/3| 0.023467 0.023467 0.023467 0.023467 Yio
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TABLE II. Eigenvalues and critical exponents of the recursion system linearized around the

relevant fixed points given in Table 1.

1 II 111 v \'% VI VII VIII

SAW Ccp SAW-CP T BP SAW-BP BP-CP S-BP-CP
A1 2.79645 4.0 3.70370 4.0 3.06817 3.06817 4.0 3.70370
Az 2.22222 1.0% 2.79652 3.06817 3.06817
A3 2.22222
v 0.67404 0.5 0.52939 0.5 0.61828 0.61828 0.5 0.52939
¢ 0.60986 0.91731 0.80869 0.85622
«a 0.36028 0.90985 0.76343 0.83208

®This marginal eigenvalue corresponds to an unstable manifold of the nonlinear equations. The

corresponding direction is marginally repulsive.

with nzg = ng = 1, ny = nys = nyg = —2, ng = —3,
ng = nig = —1, N33 = nyg = 2, ny7 = —4, and the re-
maining n; equal to zero, in our case. Dropping the sixth
component, we can then rewrite the remaining recursion
equations as a nonlinear transformation

—

Y' =T(Y) (1.10)

for the 18-component vector Y. If this vector goes to a
finite fixed point ¥*, then also the ratio X}/X¢ reaches
a finite fixed point value.

We have collected in Table I the fixed points of all
three types that are relevant for our further discussion,
and we will refer to them by the corresponding roman
number. In addition, we report in Table II the eigenval-
ues associated with the linearized transformation around
the fixed points of Table I, and the corresponding critical
exponents.

In order to discover which, among these fixed points,
play a role for our problem, it is necessary to iterate
the 19 recursions numerically, starting from initial val-
ues given in terms of the bare physical parameters. The
initial values of the zeroth-order tetrahedra partial gen-
erating functions are

X1 =,
X, = 2?0,
X3 = z?ul/?,

X4 = m3u3/2,
Xll = msuva,

_ 4,22
Xlg—zuv,

and X; = 0 for the other j’s.

We now describe the behavior of the vector X (or 17)
under the renormalization flow, starting from these val-
ues.

(1) For u < 1 the monomer-monomer interaction v is
dominant and the polymer shows a © transition from a
linear to a compact regime of the type studied in Ref.
[17].

In the range of v < ve the system of equations flows
towards the SAW fixed point I. Linearizing the recur-
sion equations about fixed point I, we find one relevant

eigenvalue Agaw = 2YsaW = 2.796 45 which gives a crit-
ical exponent ¥ = In2/InAgaw = 0.67404, the same
v exponent obtained for other models of a SAW on 3D
Sierpinski gaskets [17,21]. This result is rather natural
because on this gasket, as in the case of Euclidean lat-
tices, for a one-tolerant trail silhouette model with not
strong enough attractive interactions, only excluded vol-
ume effects can affect the thermodynamical behavior of
the system, giving rise to the physics of swollen linear
polymers.

By fixing precisely the monomer-monomer interac-
tion at the value v = wveg(u), the basin of attraction
of fixed point III is reached. The linearized renormal-
ization transformation around this fixed point has two
relevant eigenvalues: A; = 100/27 and A, = 20/9.
This is the tricritical point corresponding to the usual
© chain behavior, with a radius of gyration exponent
vg =1In2/InA; = 0.52939 [17]. The crossover exponent
is = InAz/InA; = 0.60986 and the relative thermal
exponent is & = 2 — 1/¢ = 0.36028. To get an idea of
the location of this © line, notice that for u = 1 we have
Ve =~ 1.4.

For v > ve the RG recursion equations flow towards
the fixed point II. We note that for this fixed point the
only surviving configuration in the thermodynamic limit
is the one described with X5; in this configuration all
sites are occupied (see Fig. 1), suggesting the possibility
of a compact phase with a finite density of monomers per
site. In fact the linearization around point II gives only
one relevant eigenvalue A, = 4 (the subscript ¢ means
“compact”) with a corresponding critical exponent v, =
%2—% = 1/d, where d is the fractal dimension of the 3D
Sierpinski gasket, confirming that indeed the polymer is
in a compact phase.

(2) For fixed u >> 1 and v varying, the twice visited
site interaction prevails over the monomer-monomer at-
traction and we observe a new physical behavior, anal-
ogous to that found for the previously mentioned 2D
model [13]. The strength of this twice visited site in-
teraction opens the possibility for the polymer to assume
a branched structure. Between the regions corresponding
to a swollen structure (SAW) and to a collapsed struc-
ture (CP), which are dominated by the fixed points I and
II, there is a region in the phase space that is dominated
by fixed point V which describes the branched polymer
(BP). The transitions between these three regions are
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controlled by the tricritical points VI and VII, both with
two relevant eigenvalues. All the fixed points related to
this branched structure are of the second type described
above, i.e., the parameters X; have to be rescaled to pa-
rameters Y; according to (1.9).

It should be pointed out that the numerical determi-
nation of the critical parameter z = z.(u, v) is rather dif-
ficult in the branched polymer region, especially close to
the CP phase. This is due to the fact that the phase tra-
jectory of the variables Y under renormalization comes
in the neighborhood of the fixed point T', also reported in
Table I. However, this fixed point can never be reached
from physical values for © and v. In order to arrive in
the neighborhood of the branched polymer fixed point
V, one would have to start from the exact x. with a pre-
cision of several hundred digits. In order to verify the
fact that the whole region between the SAW phase and
the collapsed phase is dominated by the same fixed point
V, we have therefore followed a different strategy. We
worked with a precision of 40 digits (in MATHEMATICA)
and determined for given values of u and v two values
.1 and z.z, almost equal to each other but leading, re-
spectively, to the trivial fixed points Y =0 and oo. The
true z.(u,v) must then lie between these two. Along
the trajectories starting from these z.j, we determined
two points Y'l and }72 in the parameter space, both in
the neighborhood of the fixed point T', and sufficiently
far apart from each other to allow reasonable interpola-
tions with the working precision of the computer. We
then generated new iterations starting from intermediate
values a}-;l + (1 - a)Y’z, adjusting the value of a in the
search for the final fixed point. Since this could still not
be achieved by a 40-digit precision on «, the same pro-
cedure had to be repeated several times, until it became
finally clear that the iteration really reached the fixed
point V.

A transition between SAW and BP regimes has previ-
ously been observed, for example, in the study of two-
dimensional vesicle models with an associated osmotic
pressure difference Ap between interior and exterior, ei-
ther on Euclidean [22] or on fractal [23] lattices. More
specifically, in an exact study of a vesicle model on a frac-
tal lattice [23] it has been shown that the perimeter of the
vesicle in the flaccid regime, corresponding to Ap = 0,
behaves as a self-avoiding ring (with a v exponent char-
acteristic of SAW behavior). As soon as the vesicle is
deflated (Ap < 0), it falls in the universality class of the
BP, and there is no multicritical fixed point separating
the two different regimes; the role of the multicritical
point is in this case played by the SAW fixed point, cor-
responding to Ap = 0. This behavior reproduces exactly
the one found for previously studied models on Euclidean
lattices [22].

The deep difference between the situations described
in the above-mentioned works and the model treated in
this section consists in the presence, in the latter case,
of an extra multicritical point, with its own exponents,
separating SAW from BP regimes; we stress that such a
point has also been found by some of the present authors
in a study of a similar two-dimensional model [13].
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In the BP regime only one relevant eigenvalue Agp =
0.306 817 is present, giving the exponent vgp = 0.618 28.
This exponent is slightly larger than the one found in
a previous study of a collapsing BP in the 3D Sierpin-
ski gasket involving only 11 partial generating functions
[18]. The small discrepancy is not due to different lev-
els of accuracy. In fact, one has to conclude that there
is a slight nonuniversality in the way the two models on
the 3D gasket are reproducing the properties of the BP
scaling regime. A priori, similar or even more conspic-
uous discrepancies could have been found for the other
regimes. Altogether it is certainly a point in favor of hier-
archical lattices that they tend to respect, either strictly
or to a high degree of precision, universalities that we
would expect to hold on Euclidean lattices.

At the multicritical fixed point separating the branched
from the collapsed phase, we have again two relevant
eigenvalues. The corresponding exponent v = 0.5 is in
good agreement with that given in Ref. [18] for the ©
point of the collapsing BP, but the crossover exponent is
quite different, resulting here in a more singular free en-
ergy, with a positive a exponent. This difference should
be attributed to the richer structure of the allowed poly-
mer configurations: the fact that sites may be visited
twice allows for a different transition to the branched
polymer phase. It is not clear to us whether the nonuni-
versality of the crossover exponent with respect to that of
Ref. [18] is only a consequence of the hierarchical lattice,
or follows from more general reasons.

(3) Where the strength of the two competing pa-
rameters © and v is comparable (u ~ 1.8, v ~ 1.6) the
three multicritical lines converge into a supermulticriti-
cal point. Due to its highly repulsive nature, it has not
been possible to find the precise location of the point in
the (u,v, z) space that is flowing into this fixed point, but
the root finding algorithm of MATHEMATICA delivered the
values reproduced in Tables I and II for the fixed point
VIII with three relevant eigenvalues.

We present a qualitative phase diagram of our model
in Fig. 3.

BP

SAW CcP

v

FIG. 3. Schematic representation of the phase diagram of
the model in Sec. I.
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D. Discussion

We have presented exact results for a model of lin-
ear interacting polymers embedded in a 3D Sierpinski
gasket. Varying the two parameters u and v, which
tune the effects of competing interactions, we obtain a
rich phase diagram characterized by different swollen and
compact phases of the polymer and corresponding mul-
ticritical transitions between them. In particular, we ob-
serve a transition from a swollen linear phase to a swollen
branched phase, the two phases being separated by a tri-
critical point with its own exponents. This transition is
followed by a next multicritical transition into the com-
pletely collapsed phase. Moreover, we have been able to
show the presence of a higher order multicritical point,
that separates the regions attracted by the three tricrit-
ical points between pairs of phases. We do not believe
that these features are solely due to the nature of the
gasket; in fact, as we will see in the next sections, a tran-
sition from SAW to BP regimes, followed by a collapse
into a compact phase, can also be observed on Euclidean
lattices.

Another result that we could verify exactly for our hi-
erarchical model is the absence of a transition separating
the CP into different regimes. This occurs in spite of
the fact that the RG recursions allow for two distinct
fixed points (II and IV) with v = 1/d = 1/2, describ-
ing compact regimes. The presence of more than one
such fixed point is a clear prerequisite for the realization
of a scenario with two distinct CP phases. Fixed point
IV, however, has two unstable directions and can there-
fore never be reached from physical initial conditions.
It can be considered as a multicritical point, separating
our physical part of the phase space from the unphysical
part with Xg < 0. Since one of the unstable directions is
only marginally so, it cannot be excluded that some small
variations in the physical model might eventually stabi-
lize this marginality and turn it into a second physically
accessible compact fixed point. Such new models would
then exhibit two distinct compact phases with a sharp
transition in between (controlled by a new multicritical
point).

II. RSRG ON A 2D EUCLIDEAN LATTICE

A. Introduction

The RG treatment of the previous section, though ap-
plied to a hierarchical lattice, has the important virtue of
being exact. While interesting in its own right, this kind
of approach is also believed to give a qualitative picture
of the physics on more realistic lattices. As a matter of
fact, the use of a well defined hierarchical structure is
a clean way for avoiding the proliferation problems in-
herent in any RG approach on regular lattices. Thus,
an exact approach to a problem on a hierarchical lattice
has certainly also a value as an approximate treatment
for the same problem on regular lattices, where arbitrary
truncations would be unavoidable.

With such a perspective, taking into account the con-
siderable mathematical complexity of the calculations in
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the previous section, it is natural to ask whether the
physics obtained there can also be described within rel-
atively more simple approximate schemes, which are not
intended to be exact on some hierarchical lattice. Work-
ing within such approximate RG schemes directly should
offer a more immediate and visualizable description of
the phenomena, in terms of flows in relatively low di-
mensional parameter spaces.

In order to set up an approximate RG transformation
with such features, one has to choose a suitable model
and work on it with the techniques of the real space RG
(RSRG) approach to polymer statistics. RSRG methods
have been used to study different problems of polymer
statistics during the last few years (for an early review
see Ref. [24]).

Several applications of RSRG to polymers have been
limited to the noninteracting SAW [25-28]. The first
attempt to study linear and branched polymers embed-
ded in a two-dimensional lattice and the crossover be-
tween them is due to Family [29]. He developed a two-
parameter RSRG: besides the usual step fugacity z, also
the concentration b of polyfunctional units was renormal-
ized. Two fixed points in the (z, b) plane were found: the
SAW fixed point with two relevant eigenvalues and the
BP fixed point with one relevant eigenvalue. The SAW
fixed point turned out to be unstable; in fact, as soon
as the parameter b was switched on, the renormalization
flow moved towards the BP fixed point. In this scheme
there is no multicritical point separating the two phases;
this role is played by the SAW fixed point, similarly to
the situation encountered in Ref. [23] for vesicle models.

RSRG techniques applied to the study of the usual @
point for two-dimensional SAW’s appeared for the first
time in Ref. [30]. These authors studied a two-tolerant
trail [16] with an energy favoring overlaps of two differ-
ent steps on the same lattice bond, and gave for the v
exponent on the square lattice the values v = 0.73 in the
swollen phase, v = 0.66 at the © point, and v = 0.62
in the collapsed phase. However, it has been pointed out
in Ref. [31] that, because of the special kind of interac-
tion considered, this result is more likely to describe a
collapse into branched polymers, whose v exponent in
d = 2 is about v ~ 0.64 [32]. Note that the vy expo-
nent reported above agrees very well with that obtained
for the SAW-BP multicritical point in Ref. [13] and also
in our model described in the next section. The physics
of the ®-point transition for the SAW within a RSRG
approach was also treated in Ref. [33]. In both two and
three dimensions the results of this study turned out to be
qualitatively consistent with other numerical predictions
and theoretical conjectures. In particular, the collapsed
phase was correctly described in this approach.

We also want to mention the work of Wu and Bradley
[34], which investigates © points by means of a three-
parameter RSRG in the attempt to elucidate the univer-
sality classes of SAW’s and self-avoiding trails (SAT’s).

B. The model

We consider walks on the square lattice. The bonds of
the lattice can be visited once (in order to model linear
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polymers), or twice. Favoring twice visited edges with
respect to singly visited ones allows a possible mecha-
nism of transition from swollen linear to swollen BP be-
havior. Indeed, dominant configurations should look like
tree structures, with mutually excluding branches made
of twice visited bonds. We again assign a fugacity v to
all monomer-monomer interactions. In this model, how-
ever, this means that an attractive energy is attributed
to each pair of nearest neighbor bonds nonconsecutively
visited either by single or by double steps. Furthermore,
we introduce two different step fugacities: z is the once
visited step fugacity and p is the twice visited step fugac-
ity. The grand canonical partition function can then be
written as

Z(z,p,p) = Y, C(Ni, Ny, )zVipMo!
N1,N2,l=0

(2.1)

where N;, Ny, and [ are, respectively, the number of once
or twice visited bonds and the number of nearest neigh-
bor interactions. C(Ny, N2,!) is the number of different
configurations of the polymer with fixed values of Ny,
N,, and I. Note that for N, = 0 we have self-attracting
linear polymers and vice versa.

C. Method and results

We work on a square lattice and partition it into cells
that cover the lattice while maintaining its original sym-
metry. Often in the RSRG approach to critical phenom-
ena of polymer systems an M x M cell is renormalized
into an L x L cell, with M and L integers such that
1 < L < M. Under this transformation the correlation
length is rescaled by a factor L/M.

The fugacities z’, p’, and u’ in the rescaled system are
given in terms of the old ones by recursion equations

' =z'(z,p,v); P =p(z,pv); v =0'(z,p,v). (2.2)
Critical exponents characterizing different regimes of the
system are obtained in terms of the eigenvalues of the
renormalization transformation, linearized around rele-
vant fixed points. In particular the v exponent control-
ling the divergence of the correlation length at criticality
is given by v = Inb/In Ay where b = M/L is the rescaling
factor and A is the largest eigenvalue of the renormaliza-
tion transformation. We have obtained the renormalized
z' and p’ by considering 2 x 2 cells rescaled onto 1 x 1
cells, so that the rescaling factor is b = 2. A basic step in
the renormalization procedure consists in choosing which
polymer configurations within a cell should contribute to
a renormalized bond. We map a walk within a cell into
a rescaled bond if the walk traverses (i.e., spans or gets
across) the cell; in our case this means that it has to
enter the cell at site 1 and to come out at site 2 or 3
[see Fig. 4(a)]. We restrict the entrance to the cell to a
corner (e.g., the lower left corner), following the so-called
corner rule [24]. We want to stress that other definitions
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(2)

=L

(b)

FIG. 4. Cell renormalization chosen for the model in Sec.
II: (a) cell renormalization for the fugacities z and p; (b) cell
renormalization for the fugacity v.

of “getting across” may be used, and it is expected that
all acceptable rules would converge to the same results
in the large cell limit.

We now describe our scheme for renormalizing = and
p. We allow one or two chains to come in through the
origin 1. If two chains share the same bond, this bond
contributes with a factor p, otherwise it contributes with
a factor z. Moreover, a walk can fold onto itself and
retrace twice the same bond; also in this case there is a
p contribution. This folding is allowed also if the chain
is in site 2 or 3, by which we mean that the chain in 2 or
3 is not obliged to come out of the cell (see Fig. 5).

.’134[)'1)2 x4p2 ’1)3

FIG. 5. Examples of configurations renormalizing into p'.
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A A4

$2p31)2 mBPU

FIG. 6. Examples of configurations renormalizing into z'.

N
a'plug,

-1

2
P’ Upp - TP uppvl, P v,
(b)
FIG. 7. Examples of proliferation in the renormalization
of v. The factorization of the contributions is given as an
indication of their origin.

N

Configurations in which one end is occupied by a p
contribution and the other end is empty or in which both
ends are spanned by a double line (see Fig. 5 for some
examples) will contribute in the renormalization trans-
formation to the p’ fugacity; all remaining configurations
will contribute to the z’ fugacity. Note that among con-
figurations renormalizing into ' we consider also, rather
arbitrarily, cells with one end occupied by an z step and
the other end by a p step (see Fig. 6).

For the renormalization of the parameter v, we follow
a procedure previously used in Ref. [33], consisting in
the mapping of a 4 x 2 cell into a 2 x 1 cell [see Fig.
4 (b)]. The renormalized interaction v’ is obtained by
considering all configurations that simultaneously span
two adjacent 2 x 2 cells. This in principle gives rise to
different fugacities v, v}, and v}, according to the type
of crossed cells (Fig. 7). Since we would like to avoid
such a proliferation of parameters, we introduce an extra
approximation by defining an appropriate averaging

12,,1

, _ ZPug, + 2a'p'vg, + pPuy, (2.3)

v = xlz + 2£E’p’ +p12

Along these lines, using the computer to enumerate all
possible configurations, we obtain a set of three recursion
equations for three parameters. The full recursions are
reproduced in the Appendix.

The analysis of the system of equations and of the
renormalization flow gives a set of relevant fixed points
reported in Table III along with their corresponding
eigenvalues and critical exponents v. Apart from the
fixed point at v = oo, corresponding to the collapsed
phase, we find three fixed points in the v = 1 plane: a
SAW point (A in Fig. 8) with p = 0, a BP point (B)
with # = 0, and a multicritical point (C) in between,
governing the crossover between the two previously men-
tioned points. While A and B are characterized by only
one relevant eigenvalue, C is a multicritical point having
two eigenvalues greater than 1; it controls the SAW-BP
transition. For attractive interactions (v > 1) we have
the usual © fixed point for SAW’s (D) characterized by
two relevant eigenvalues and the analogous © fixed point
for BP’s (E) separating the swollen branched phase from
the compact one. Finally we have a highly repulsive mul-
ticritical point (F') with three relevant eigenvalues gov-
erning the entire flow diagram.

The RG flow in the parameters z, p, and Inv is visual-
ized in Fig. 8. We verified that the fixed point structure

TABLE III. Eigenvalues and critical exponents for the model in Sec. II.

A B D E F
(SAW) (BP) (CP) (SAW-BP) (SAW-CP) (BP-CP) (S-BP-CP)

z 0.45339 0.0 0.0 0.28338 0.37906 0.0 0.22840
P 0.0 0.29780 0.0 0.29546 0.0 0.23942 0.24538
v* 1.0 1.0 oo 1.0 2.91142 2.37160 2.07446
A1 2.72430 3.13766 3.17285 3.28742 3.66305 3.78401
Az 2.40046 1.55590 1.43933 2.42034
A3 1.84678
v . 0.69162 0.60617 0.60032 0.58243 0.53389 0.52086
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FIG. 8. Schematic representation of the flow diagram of
the model studied in Sec. II.

is consistent with a phase diagram qualitatively similar
to that already reported in Fig. 3, with the interactions v
and p here playing roles corresponding to v and u there,
respectively.

So, also for the model treated by RSRG in this section,
the competition between the compactifying interaction,
v, and p, which controls the formation of double bonds,
gives rise to the transitions and regimes we wanted to
identify. It is somehow remarkable that the complicated
fixed point structure sketched in Fig. 8 could be associ-
ated with RG recursions certainly based on drastic ap-
proximations, albeit full of different contributions.

III. EXACT ENUMERATION FOR A MODEL
ON 2D EUCLIDEAN LATTICE:
SERIES EXPANSIONS FOR THE FULL
PHASE DIAGRAM

A. The model

The approaches in both previous sections have mostly
a qualitative value and give results which are highly sug-
gestive of the possibility that a polymer system with suit-
able interactions could display the rich phase diagram al-
ready discussed, encompassing SAW’s, BP’s, and CP’s.
In an attempt towards a more quantitative characteriza-
tion of the various regimes and of the transition between
them, we also decided to apply exact enumerations anal-
ysis to a system on the square lattice with competing
interactions. Although we also studied series expansions
for other models (e.g., two-tolerant trails with bond over-
lap fugacity and nearest neighbor attractive interaction),
the most satisfactory numerical results were obtained for
the one described below.

Consider self-avoiding walks on the square lattice, in
which, as in Sec. I, a fugacity = is given for each step
and a fugacity v for every pair of nonconsecutive nearest
neighbor sites on the walk. These two fugacities lead to
the usual © transition between SAW and CP. In order
to enhance the formation of thin branchlike structures,
we have in addition given a fugacity y to every step of
the walk that separates two squares whose four corners
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FIG. 9. Examples of walks for the model in Sec. III: contri-
butions are z2?v7y from (a) and z?3v'?y” from (b). Crosses
indicate the origins of the y factors.

all belong to the walk. We have illustrated this idea for
two walks in Fig. 9, where we indicated with the symbol
X each step that gives rise to an extra factor y. A sim-
ple branch formed by parallel steps will not generate y
fugacity factors; once such a branch is formed, however,
every attempt to align to it a new step of the walk, as in
Fig. 9(a), will generate (apart from the standard fugac-
ity v) also this fugacity y. For sufficiently large values
of v we then expect to find a transition from the col-
lapsed phase to the branched phase if we decrease the
value of y. Physically, this y parameter represents a re-
duction in the monomer-monomer interaction due to sat-
uration by other neighboring monomers. If we fix y = 1,
we should get back the previously studied linear poly-
mer model [35,36,4] where a © transition is expected at
ve & 1.95 [4].

B. Method and results

We have enumerated all possible SAW’s up to 26 steps,
and counted the number of v and y factors that should
be associated with them. Furthermore, we have also cal-
culated their radius of gyration. Previous experience has
taught that the radius of gyration leads in general to a
faster convergence for the asymptotic analysis of series
expansions than the end-to-end distance. In this way
we obtained the numbers C(N,1,j) and R(N,1,j ), rep-
resenting, respectively, the total number of walks and the
accumulated radius of gyration corresponding to IV steps,
1 nearest neighbor interactions, and j steps sandwiched
between two fully visited squares. For each set of values
(v,y) we can calculate the average radius of gyration of
an N-step walk by

Z Z R(N,3,5)v'y
<R(v’ y))N - ==

Z ZC(N,i,j)viy-’" '

K 7

(3.1)

If this (R), behaves asymptotically as N¥, we then ex-
pect that the generating function F(z), defined by

F@) = 3 (R(v,9))y =V,

N

(3.2)

should behave as
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F(z)~ A(1—z)~(+) (3.3)
when z — 1.

Since 26 is still a small number, we cannot expect to
find in the (v,y) plane sharp transitions between regions
with constant v values. Nevertheless, we can clearly
distinguish the three expected phases through large re-
gions in which v remains approximately constant. For
weak monomer-monomer interactions (v = 1) we have
the swollen SAW phase with v = 0.75. For strong inter-
actions (typically v > 3) and y = 1, we have a collapsed
phase (CP) with v = 0.5; for the same v values but low y
(y = 0), we have the branched polymer (BP) phase with
v =~ 0.6.

In order to determine more precisely the transition be-
tween the different regions of the phase diagram, one can
use the scaling relation suggested by de Gennes [37] for
finite chains in the neighborhood of the ® point:

(R(v))y < N*F (N?®Av) (3.4)
with Av = v — ve. A crossover form like (3.4) can of
course be applied also to the other transitions that we
expect to meet in our model. This allows a nice numer-
ical determination of both veg and v, since this equation
implies that the curves

fvm(v) = ln[<R(ll’i>(lj‘<,;$(”)>M]

cross each other at v = vg, where they attain the mul-
ticritical value of v [36,4]. Using this criterion, we can
determine both the v between SAW and CP and that
between SAW and BP phases. Due to the odd-even os-
cillations typical for the square lattice, we only use the
functions fy = fn,n—2. In Fig. 10 we reproduce a typical
example of such curves, exhibiting here two intersection
points. We observe that in the SAW phase the functions
fn increase with increasing N values, while they decrease
with N in the collapsed and BP phases; at the respective

(3.5)

0.65
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Y
FIG. 10. Double intersections for functions fn(y) at

v = 2.7; the numbers on the curves indicate the values of
N.
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FIG. 11. Phase diagram for the series expansion of the
model in Sec. III.

transitions they are stable, which leads to an intersection
point. From these facts, however, we can hardly expect
to find an intersection of the same lines at the transition
line between CP and BP phases: we can at most expect
a point of close encounter, since these functions decrease
with increasing N in both phases. One criterion which
we applied for this last transition line would then be to
choose the point where all these f values have the small-
est variance, or where there is an intersection point for
the derivatives of these functions. We have also applied
other, more sophisticated, methods of series analysis for
determining these transition lines, and they are all consis-
tent with each other within a few percent. The resulting
phase diagram is shown in Fig. 11. Along these transi-
tion lines one can analyze the critical exponents v and ¢,
as defined in (3.4). Our best estimates from this analysis
are given in Table IV.

The v exponent for the SAW-BP transition appears
compatible with that obtained in Ref. [13] for a different
model displaying the same transition (¥ = 0.66 & 0.03).
Also the v exponent for the SAW-CP collapse is close
to the value expected in 2D. Our estimate of ¢ for this
same transition is far off the expected exact value (3/7)2,
as is the case in all series determinations attempted so
far. Our value of v for the collapse of BP into CP does
not fall far from one of the two which are presently most
accredited [11] for the BP © transitions in 2D (v = 1/2
and v = 8/15).

Taking into account the obvious limitations affecting
our extrapolations of exact enumeration data, the rea-
sonable consistency of our determinations with known
or expected exponents at the various multicritical tran-
sitions gives strong confidence that the features of the
phase diagram already encountered in the hierarchical
model and in the RSRG approximate treatment apply
also to the model in this section.

TABLE IV. Critical exponents at the multicritical transi-
tions for the model in Sec. III.

SAW-CP SAW-BP BP-CP
v 0.57 0.65 0.56
@ 0.8 0.56 1.2
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IV. DISCUSSION

In this paper we have given evidence, based on differ-
ent models and approaches, that a linear polymer sys-
tem can display swollen, swollen branched, and compact
regimes under the effect of a competition between in-
teractions inducing mere ramification and interactions
producing complete collapse. The resulting phase dia-
gram is intriguing because, besides simultaneously in-
cluding the more familiar © transition lines for linear
and branched polymers, it displays the additional type of
SAW-BP transition already predicted in Ref. [13]. The
above three transition lines join at a highly unstable mul-
ticritical point.

Both our results for the hierarchical model and those
based on enumerations in 2D seem to suggest that the lin-
ear polymer © transition should normally belong to the
universality class expected for standard ©-point models
[2,17]. For the BP’s © transition, it is more difficult to
draw precise conclusions. On the other hand, already
in relatively more conventional 2D models of lattice an-
imals and BP, at least two distinct universality classes
with rather close values of v are expected [11].

For the SAW-BP transition, which is certainly the
most unconventional line in our phase diagrams, we got
strong evidence of scaling controlled by a peculiar mul-
ticritical fixed point, distinct from those associated with
both swollen linear and branched regimes. In this re-
spect we are thus facing a different type of multicritical
point, which is not met, e.g., in models of 2D vesicles,
where cross-overs from SAW to BP regimes are also ob-
served [38,39]. A precise characterization of the scaling
properties at this multicritical point remains an inter-
esting challenge for both numerical and theoretical ap-
proaches, especially in 2D, where our understanding of
linear and branched polymer © transitions has made im-
portant progress in recent years [10-12]. Our enumera-
tion result for v at the 2D SAW-BP transition appears
compatible with that obtained in Ref. [13] for a different
model. Another interesting point in our phase diagram

J
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is that joining the three multicritical lines. We could ob-
tain a precise location of this point and of its exponents
only for the hierarchical model.

The phase diagram that we found in our models de-
pends of course on the competitive effects determined
by the chosen interactions. It would also be impossible
to find a SAW-BP transition in most of the standard
models of O transitions studied so far in the literature.
Indeed, these models normally include only one attrac-
tive interaction. An exception is the system studied in
Ref. [13], which was initially conceived for describing a
linear polymer © collapse [30,31]. In this case, however,
the absence of competition leads to only SAW and BP as
possible phases [13].

To establish whether real polymer systems can present
competition effects leading to phase diagrams of the type
we prospected remains, of course, an open issue. It is per-
haps worth recalling that in 3D the vy of linear polymers
is 1/2, while the v of swollen branched polymers is also
1/2 [40]. We are confident that, at the theoretical level,
our findings open an interesting and still largely unex-
plored chapter.
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APPENDIX

The recursion equations obtained in Sec. II are as fol-
lows:

o' = z? + 22% + vz* + v2z® + p(22% + 6vz® + 20%2* + v32®)

+p? (4vz? + 8v2z3 + v3z?) + pP(4v%2? + 20°2®) + phoia?,
P = 2pvz® + p?(1 + 2v3z*) + 4p® + 10p*v + 10p°v? + 2p%v?,

(A1)
(A2)

vl =zt + 22+ v +02) + 283 + 20 + 0?) + 27 (v + % +v?) + 28(20% + 20% + v?)
+2z%0% 4 21%8 + p[dz? + z°(4 + 8v + 5v? + 3v3) + 28(16v + 120% + 3v® + v*)
+a27 (502 + 1703 + 30v* + v°) + 28(40® + 100* + 6v°) + 2°(40° + 20°) + 22'%07)
+p%[z*(4 + 5v + 3v?%) + 2°(18v + 2007 + 1203 + 6v?) + 2°%(34v? + 390 + 12v* + v°)
+27(8v% + 36v* + 120°) + 28(20v* 4 16v° + 160°) + 2°(20® + 407) + 2%
+p3[z* (100 + 20%) (1 + v) + 2°(3307 + 380> + 28v* + 3v°) + 28(30v® + 73v* + 330°)
+a7 (4v* + 370° 4 250°) 4 28(8v® + 18v7) + 22%08)
+ptz?(120% + 1703 + 4v* 4 v°) + 2°(28v* + 53v* + 47Tv°) + 2%(9v* + 68v° + 490°)
+27(1408 + 24v7) + 72808 + p®[2* (6v® + 200* + 100°) + z°(8v* + 43v° + 490°)
+25(220° 4 3807) + 8278 + P8z (v? + 110° + 120°) + 2°(120° + 28v7) + 112%0®]

+p7[z*(20°® + 6v7) 4 62°v®] + pPz?v®,

(A3)
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v;p = p[x8(20% + v® + v*) + 27(3v% + 403 + v*) + 28(0® + 30?) 4+ 22°(v5 + v®)]
+p%[22% + 23(2 + v + v?) + z* (v + v?) + 2°(v? + v*) + 28 (4v? + 20° + 4v* + 20°)
+27(50% + 16v* + 9v° + 208) + 28(v* + 50° + 60°) + 2°(20° + 207 + 40®)]
+p°[2%(10 + v + v?) + 23(10 + 10v + 5v% + 30°) + z*(3v + Tv? + 03 + v?)
+2°(3v% + 30v® + 3v* + v°) + 25(3v% + 13v* + 40° + 408) + 27 (40*
+200° + 2208 + 1007) + 28(208 + 607 + 408) 4 42°0°] + p*[2?(12 + 18v + 110? 4 303)
+z3(45v + 38v? + 150> + 60*) + 2*(120% + 220> + 3v* + v°) + 2°(50° + 12v* 4 110°)
+z8(v* + 110° + 120°% + 807) + 27 (6v° + 1807 + 200®) + 425v?]
+p°[2%(38v + 38v% + 150 + 9v*) + 23 (8002 4 10303 4 44v* + 30°)
+z4 (140> + 43v* + 110°) + 2°(2v* 4 160° + 220°) 4 25(20° 4 607 + 1208) + 122707
+p®[z?(55v% + 660> + 34v* + 3v°) + z3(64v> 4 160v* + 88v°) + z*(5v* + 37v° + 2209)
+2°(6v8 + 18v7) + 42%0°] + p"[2? (340> + 85v% + 57v%) + z3(16v* + 1240° + 10405)
+z*(100° + 18v") + 42508 + p®[z?(Tv? + 51v° 4 58v°) + z3(300° + 6207)
+4z*08] + p°[2? (1008 + 2607) + 122308] + 4p%2%08, (A4)
vl = p?z®(3v° + v8) + p3[z*(20% 4 v + v*) + 428 (v + v¥)]
+p*[1 + 2% (Tv? + 6v3 + 5v* 4 20%) 4+ 428v1%) 4 p°[6 + v + v? + z*(8v3 + 30v*
+12v° 4 6v8)] 4+ p®[11 + 14v + 8v% + 303 + z*(4v* + 260° + 3408 4 16v7)]
+p7[41v + 38v% + 1403 + To* + 2*(4v® + 1607 + 280%)] + p®(640? + 820° + 36v*
+2v° + 82%0%) + p?(420° + 112v* + 620°) + p°(8v* + 67v° + 650°)

rp

+p't (1208 + 28v7) + 4pZ08.

(A5)
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