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Effect of polymer nonideality in a colloid-polymer mixture
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We present a theory for the effect of polymer nonideality on the phase behavior of a hard-sphere
colloid plus nonadsorbing polymer mixture. Starting from the behavior at the 0 temperature, which
has been treated previously within a mean-field framework [H. N. W. Lekkerkerker et al, Europhys.
Lett. 20, 559 (1992)], we use perturbation theory to take into the account the polymer-polymer
interaction up to the second virial level. Theoretical predictions of the phase behavior are compared
with data obtained in one particular model system: sterically stabilized polymethylmethacrylate
particles and random-coil polystyrene dispersed in cis-decahydronaphthalene. Within the same
theoretical framework the potential of mean force is calculated between a pair of plates immersed
in a nonideal polymer solution. The result, showing a potential barrier in front of an attractive
depletion well, is in agreement with a recent calculation by Walz and Sharma [J. Y. Walz and A.
Sharma, J. Colloid Interface Sci. 168, 485 (1994)].

PACS number(s): 82.70.Dd, 64.70.—p, 64.75.+g

I. INTRODUCTION

The phase behavior of colloid-polymer mixtures has at-
tracted attention for many decades (see, e.g. , references
in. [1]).The addition of enough nonadsorbing polymer to
an otherwise stable colloidal suspension causes phase sep-
aration. The earliest model for this process, which has
remained popular since it was suggested 30 years ago,
was due to Asakura and Oosawa [2]. In the Asakura-
Oosawa (AO) model, the colloids interact as hard spheres
of radius a. The polymers are assumed to be freely inter-
penetrable coils. The center of a polymer coil is, however,
excluded &om coming closer than a distance b &om the
surface a hard sphere (colloid), where h, in reality, would
be something like the radius of gyration of a polymer
molecule. Each hard sphere is therefore surrounded by
a "depletion zone" of thickness b. The only efFect of the
colloid on the polymer is to restrict the volume in which
the latter can move: the free volume; see Fig. 1. The
overlap of the depletion zones from neighboring colloids
increases the total &ee volume and thus the entropy of
the polymers. At high concentrations of either compo-
nents, this efFect leads to phase separation.

The AO model has been used in an efFective poten-
tial" treatment of the colloid-polymer problem [3]. The
increase in entropy due to overlapping depletion zones of
neighboring particles can be seen as inducing an attrac-
tion between the particles. Thus the efFect of the added
polymer can be modeled by an efFective potential, the
depletion potential Us, z [4,5]. The phase behavior of the
polymer-&ee colloid is assumed known. Up ~ is then used
in thermodynamic perturbation theory to calculate the
modified phase behavior.

Lekkerkerker et al. [6] recently solved the "primitive"

version of the AO model in the mean-field approxima-
tion. In this primitive approach, the polymer transla-
tional degrees of &eedom are not integrated out to give
an efFective potential. Instead, the colloid and polymer
degrees of &eedom are treated on a more equal footing.
The &ee energy of the whole mixture is minimized. The
topology of the resultant phase diagrams depends sensi-
tively on the ratio of the size of the polymer to that of
the colloid, which is given by

FIG. 1. Schematic illustration of depletion and free volume.
Each particle is surrounded by a depletion zone (white), the
region immediately next to each particle surface, which is in-
accessible to the centers of polymer coils. The hatched area is
the free volume Vq„„which is available to the centers of poly-
mer coils. The overlap of depletion zones (black) gives rise
to extra free volume for the polymers and therefore a larger
negative contribution to the entropic term of the free energy.
This mechanism induces an effective attraction between the
particles.
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II. STATISTICAL MECHANICS

in the model. For ( & 0.32 = (c~ (the crossover size
ratio), the only effect of the polymer is to expand the re-
gion of coexisting colloidal crystal and fluid phases, which
occurs at 0.494 & P & 0.545 for a pure hard-sphere col-
loid (where P is the colloid volume fraction). At larger
size ratios, however, colloidal liquid-gas coexistence be-
comes possible and a critical point appears on the phase
dlagraIn.

These predictions have been tested extensively in
one particular model system: monodisperse poly-
methylmethacrylate (PMMA) particles sterically sta-
bilised by chemically grafted poly-1. 2-hydroxystearic
acid and random-coil polystyrene dispersed in cis-
decahydronaphthalene (cis-decalin) [7—10]. These exper-
iments, together with similar results reported recently by
Leal Calderon et al. [11],confirm the broad picture pre-
dicted by theory, e.g. , the sensitive dependence of phase
diagram topology on the polymer-colloid size ratio. How-
ever, significant quantitative di8'erences between theory
and experiment remain. Reasons for expecting such dis-
crepancies have been discussed in detailed before [7,10],
one of which is the very simple model used for the poly-
mer. In the AO model a polymer molecule is supposed to
interact with a colloidal particle as a rigid hard sphere.
In reality the polymer coil is deformable. The recent
computer simulations of Meijer and Frenkel [12] has ad-
dressed this issue. In their work, colloidal particles are
again hard spheres; the polymer molecules are, however,
represented by a simple lattice model. In this way, both
the nonpairwise additivity of the polymer-induced inter-
action and the deformability of the polymer molecules
are taken into account. (Nonpairwise additivity is also
included in the theory of Lekkerkerker et al. ) Meijer and
Frenkel found that, indeed, nonspherical conformations
make significant contributions to the &ee energy, espe-
cially at high colloid volume &actions or for long poly-
mers, thus modifying the phase behavior.

In the Meijer-Frenkel simulation, however, the poly-
mer is still treated as ideal. That is to say, polymer-
polymer interactions are not included. In this paper we
present an extension of the statistical mechanical treat-
ment of I ekkerkerker et a/. in order to take into account
polymer nonideality up to the second virial level. The
model developed is then used to predict the positions of
phase boundaries for the colloidal PMMA plus random-
coil polystyrene system for two molecular weights M =
0.39 x 10 and M = 2.85 x 10, at a range of temper-
atures starting &om the theta temperature Tg ——12 C.
The predictions are compared with experimental obser-
vations. Data for the case of M = 0.39 x 10 have been
presented before [7], while data for the larger polymer
have not been presented until now. We also use the same
model to calculate the potential of mean force between
a pair of plates and compare our result with a recent
calculation of Walz and Sharma [13]. Finally, in the Ap-
pendix, we use the key result of our theory to evaluate
the accuracy of an ad hoc &ee energy expression used
in the literature recently to treat the phase behavior of
hard-sphere mixtures.

The model statistical mechanical system is as follows.
There are Nc colloidal particles and NP polymer coils
in a volume V. The colloidal particles are taken as hard
spheres of radius a. That is to say, the colloid-colloid
pair interaction Ucc(r) is given by

Ucc(r) = 0 (r ) 2a)
(r & 2a). (2)

0
UcI (r) = (r ) a+8)

(r & a+ b).

Finally, the polymer-polymer interaction is modeled by
a pair interaction UI ~(r), which is assumed to be short
range. It turns out that its e8'ect on phase behavior will
be measured by the usual second virial coefficient of the
polymer B2.

Denote the colloid positions individually by r, (i
1, . . . , Nc) and collectively by rc. Similarly the individ-
ual and collective polymer coordinates are denoted by r„
and rP. The canonical partition function for the colloid-
polymer mixture is given by

Z(id) Z(id) ~C U~~/&~Tc P Vga

P —Uc; p/k g T —Up p/kg T
V (4)

where Ucc stands for the total colloid-colloid pair inter-
actions P,&. Ucc(r"; —r~). Uc~ and U~~ have similar

meanings. The Z('")'s are the ideal partition functions
in the absence of interactions:

~c
&c! I ~c)

1 (V'r
N ' (A

(6)

where Ac and AP are the de Broglie thermal wavelengths
of the colloid and polymer, respectively.

In outline, the idea of our treatment is as follows. First,
the exp ( U~I /k&T) in Eq—. (4) is expanded in terms of
Mayer f functions. Once this is done, the factor () in
that equation can be evaluated exactly in the form of
a power series in f functions. A weighted sum of the
resultant expression for Z over values of NP may then be
performed to convert it to a semigrand partition function
:-. This gives an effective many-body depletion potential
for the colloid particles whose magnitude is controlled
by the polymer activity. This depletion potential is then
handled by a mean-field —van der Waals approximation.
Note that if UPP ——0 then this approach corresponds

Insofar as their interaction with colloidal particles are
concerned, each polymer coil behaves as a hard sphere of
radius b. In other words, each colloidal particle excludes
polymer &om a sphere of radius a + b around its center.
Thus the colloid-polymer pair interaction Uc~(r) is given
by
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exactly to that already developed by Lekkerkerker et at.
[6].

Z Z{id)g {id) ~ ~C U~~/y~Tc s Vgc ~

A. Semigrand canonical formalism

To account for the colloid. -polymer interaction given by
Eq. (3) we introduce a void function y(r"„;rc)

V(r~ r~) = ~(lr —r'I —(a+ ~)) (7)

if r„e Vg„,
otherwise.

where 8(x) is a step function: 8(x) = 0 for x ( 0 and
0(x) = 1 for x ) 0. Hence the void function in Eq. (7)
is zero if the polymer coordinate r"„ lies inside any of the
excluded volume spheres of radius a+ h centered on each
colloid and unity if r„ lies in the free volume (or "void" )
Vg„„see Fig. 1:

Ty8 T2 2x 2 fi2y(ri, rc)y(r2, rc) + O(f ), (14)V2

where we have used the definition of the exact kee volume
fraction introduced in Eq. (9).

Now form the semigrand partition function = by intro-
ducing the polymer chemical potential p,~

) Np pp/k gTZ(~ (15)

The physical picture motivating this approach is that of a
reservoir of pure polymer solution in osmotic equilibrium
with the colloid-polymer mixture [15].

The two terms in Eq. (14) give rise to two terms in =

M IK W
4areJ ] 1earJ 2 ~

Defining the integral operator

Z{id) +C —Ucc/ka T
v& )

a Yc) = —f v (i;ic)d'r (9)
we find that the first term in Eq. (16) is

Note that p is a function of the complete set of colloid
coordinates rc, which should be considered fixed at this
stage. The void function also gives an expression for the
exact free volume Paction, which we define here for later
use:

(16)

(17)

e
—U~p/k gT &(r~ rc).

In terms of these void functions, the Boltzmann factor of
the total colloid-polymer interaction is given by

1 /V'l
Zc ),I I

[n(rc)] exp[pp2VJ /k~T],
N

. &~! E&J, )

which sums to

To deal with the polymer-polymer interaction, we intro-
duce the Mayer f function

f —f(l„- r I)
—1 e pp(l~p —~=I)/k~

(Note that this f is the negative of that usually defined. )
f„ is small and nonzero only for Ir"„—r"„I = h or smaller.
The total polymer-polymer Boltzmann factor appearing
in Eq. (4) can be written as a product

:-i ——Zc exp[(V/A~)n(rc)e"p/"~ ]

Similarly the second term in Eq. (16) is

oo pV )Np —2

Zc ),I ~, I
exp[pp&p/I'a&]

N~(KJ —1) d rid r2
X

2
fi2%1%2~

—Upp/kgT [1 f ] (12)
where we have introduced the obvious abbreviations

y(r pi rc) = &p.

Upp/kg3T 1 ) f + O(f 2) (13)

Our perturbative approach is in terms of the Mayer func-
tions, just as in the theory of ordinary, imperfect gases
[14]. Thus we write

This second term sums to

(20)

2

e "P/"~ ex [(V/A )n(r" )e"P/k~ ](g)
CL f]G P2

fi2%'i P2.

Introducing the polymer activity

Using Eqs. (7), (10), and (13), we can now integrate over
the polymer degrees of freedom in Eq. (4). This yields

&pp/k~T
Gg =
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we find that the two terms in " now combine to the
simple form

(:- = Zc exp[vn(pc)as ] ~

1 ——as, d rid P2 fi2(pi@2
~

.
2 )

(22)

Noting that 1 —T = e to first order in x and substitut-
ing back the integral operator for Zc &om Eq. (17) we
get finally

d T~
Zc exp[ Ucc—/4T+ as cx(rc)V

~1d r2 12+ ~1 rc 'p r2 rc + 0
(23)

This equation is exact to first order in the Mayer function

C. Free volume fraction and void correlation

A closed-form expression for the average &ee volume
fraction as a function of the colloid volume &action o.(P)
can be obtained through scaled particle theory results for
hard-sphere inixtures (see references and explanation in
[6] and [15]):

n = (1 —P) exp[ —Ap —Bp' —Cps], (28)

in which p = (5/(1 —$), A = 3(+3(2+(s, B = 9(~/2+3$,
and C = 3( (( = h/a is the size ratio). Meijer and
Frenkel [12) have shown recently by computer simulation
that this expression is reasonably accurate even for dense
Quid and crystalline phases.

A corresponding expression for the void-void correla-
tion function is not available. Its value in two limits is,
however, obtainable trivially. First, as r ~ oo we expect
the two void functions to be decoupled, so that

{~(ri'c)~(r2 rc)}o~ {~(ri rc)}o{~(r2 rc)}o = ~'

B. Mean-Beld —van der Waals approximation

To proceed further we make the mean-field —van der
Waals approximation, which consists of replacing the
(rc)-dependent terms in the exponential in Eq. (23) by
their auernges over the unperturbed colloid (hard-sphere)
system

c"(rc) ~ (~(rc)}o= ~(4),
'pl+2 + {&pl'p2)0 g»(~ri —r~], 4).

(24)

(25)

In these equations, the subsript in ( }o denotes preaverag-
ing over the unperturbed colloid configurations. We have
introduced the average &ee volume &action n(P) and the
void-void correlation function g„„(]ri —r2~, P), both of
which are now functions of the colloid volume &action P.
Note that pqy2 takes the value unity only if both rq and
r2 are in the &ee volume; otherwise piy2 ——0.

The semigrand potential 0, related to the semigrand
canonical partition function by

i.e., g„„(r) -+ n as r = ]xi —r2~ -+ oo. Second, as
r ~ 0, the two void functions making up the correlation
function are either both zero or both unity, i.e., p
so that

(~(ri;rc)V(r2;rc)}o ~ {4(ri;rc)]'}o
= (V(ri;rc)}o = ~. (30)

That is to say, g„„(r)m n as r = ]rq —rq] m 0.
A summary of the current knowledge on the void-void

correlation can be found in the very illuminating review
on scaled particle theory and related subjects by Reiss
[18). These results, plus our own simulations [19],suggest
that (i) the range over which g„„(r) is expected to decay
&om n (at r = 0) to n is of the order of the colloid radius
a and (ii) g„„(r) has finite (negative) slope at r = 0. We
therefore approximate the void-void correlation function
by a simple exponential with the appropriate range and
limiting values

0 = —kgyTln=, (26) g„„(r)= n'+ o.(1 —n)e (31)

is therefore given by

0 = F~ —Vk~TaI o.

+—VkgyTa& d r r g„„r + 0
2

(27)

Equations (28) and (31) are the results we need for use
in the semigrand potential Eq. (27).

D. Temperature efFect on the polymer

where F~ ———k~TlnZ~ is the Helmoltz free energy of
the (unperturbed) colloid. In Eq. (27), I"c, o., and g„„(r)
are all functions of the colloid volume &action P. Ec(P)
is, of course, well approximated by either the Carnahan-
Starling equation of state [16) in the fiuid state or the
parametric fit of Hall [17] in the solid state.

Equation (27) is the key result of this paper. To pro-
ceed further and calculate phase behavior using this re-
sult, we need to know something about the average &ee
volume fraction a and the void-void correlation function
„„(r).

The final step before we can use Eq. (27) to calculate
phase behavior is to formulate the semigrand potential
in terms of measurable polymer properties. To do so,
we first seek to put Eq. (27) in a more suggestive form
by noting that the usual second virial coefBcient of a
polymer is defined in terms of the Mayer function as

B, = -' d'r-f(r).
2

The form of the third term in Eq. (27) then suggests that
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we define a renormalized second virial coefBcient by The second virial coeKcient as a function of z is also
known to low order [20,21)

(33)
i, ——z —4.8z' + O(z ), (41)

so that Eq. (27) becomes

0 = Fc —apk~T(l —a~Bz)nV (34)

where we have ignored a slight difference in the scaling of
the radius of gyration and the root mean square end to
end separation in arriving at this approximate expression.
The data of Berry [21] show that the approximations in
Eqs. (40) and (41) are accurate to z = 0.1.

[The reason for including the 1/n in the definition of B2,
and therefore getting Eq. (34) into the form it takes, is
to facilitate comparison with Eq. (A5) in the Appendix. ]

We do not have detailed knowledge of the form of the
polymer-polymer pair potential UJ ~(r), except that we
expect it to have a range of the order b. YVe therefore
take a square well potential of height Up and range b for
this interaction:

U»(~) = Up ifr (b
otherwise. (35)

Using this form of the polymer-polymer interaction and
the model void-void correlation function given in Eq. (31)
we find

(3(1 Ua/ie~ T)—2

3

= 1 —(1 —o.) 1 —6( + 3e ~((+ 2( + 2( ), (37)B2

where ( = b/a is the size ratio previously defined. If we
expand the above expression for B2 at small ( we get

3
B2 ——B2 1 ——(1 —n)(+

4 (38)

All that remains now is to find out how B2 and the poly-
mer size (and therefore b and () increase away from the
0 temperature. Both processes are ultimately controlled
by monomer-monomer interactions, which can be mea-
sured by the "Fixman parameter" z [20]. At the theta
temperature Tg, z = 0 and a polymer coil is at its most
ideal. The rate at which z increases &om zero, which is a
measure of polymer nonideality, is governed both by the
molecular weight (M) of the polymer molecule and the
teinperature (T, in degrees Kelvin). For polystyrene in
a whole range of simple hydrocarbon solvents (including
cis-decalin), Berry [21] found that

z = 0.009 75v M
i

1 ——
i

.( T&i
(39)

To first order in z, the radius of gyration rg is given by
[20,21]

rg 134z+ O(z'), (40)

where rz is the radius of gyration at the 0 temperature.
We assume that our exclusion length parameter b scales
directly as rg.

III. EFFECT ON PHASE BEHAVIOR

Equation (34), together with the definition of the
renormalized second virial coefficient in Eq. (33) and the
information on the polymer given by Eqs. (38)—(41), can
now be used to calculate the phase behavior of our model
mixture. The procedure, for a polymer of a particu-
lar molecular weight and at a particular temperature,
is to calculate the Fixman parameter using Eq. (39).
The depletion layer thickness is then determined using
Eq. (40) and the second virial coefficient is calculated
using Eq. (41). These values are then substituted into
Eq. (38) to give the renormalized second virial coefficient
B2. Equation (34) can now be used to determine phase
behavior using standard methods (see, e.g. , [6]).

A comparison of our theory with experimental data
for colloidal PMMA plus random-coil polystyrene in cis-
decalin at two size ratios ( = 0.08 and ( = 0.24 is pre-
sented. Polystyrene in cis-decalin has a 0 temperature of
Tp = 285 K. The comparison with theory in each case is
limited to that range of temperatures in which the Fix-
man parameter z, Eq. (39), is less than 0.1, beyond which
higher-order terms in Eqs. (40) and (41) need to be taken
into account. For the smaller size ratio $ = 0.08 (poly-
mer molecular weight M = 0.39 x 10 ), we can compare
experiment with theory over the range 285 K( T + 290
K. For the larger size ratio $ = 0.24 (polymer molecu-
lar weight M = 2.85 x 10&), however, the requirement of
z 0.1 limits the range of temperature over which our
theory is valid to a very small interval 285 K& T 287
K.

First, consider the size ratio of ( = 0.08. This is
achieved experimentally using polystyrene of molecular
weight M = 0.39 x 10 and colloidal PMMA of radius
a = 218 nm. At high enough polymer concentrations in
this system, phase separation into colloidal crystal and
ffuid phases is observed; see [7] for details. The effect
of temperature on this system has also been. investigated
previously. The amount of polymer needed for phase
separation to occur at the Gxed colloid volume &action
of P = 0.2 is reproduced from [7] in Fig. 2, where the
prediction of our perturbation theory using b = 17.6 nm
(at T&) is also plotted. ( r& for this molecular weight,
according to Berry [21], should be 17.5 nm. ) The agree-
ment is seen to be very satisfactory.

At higher polymer concentrations in this system, equi-
librium phase separation into colloidal Quid and crystal
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FIG. 2. Comparison between theory and experiment for
the size ratio of g = 0.08. The colloid volume fraction is
P = 0.2. The vertical axis gives polymer concentration in
mg/cm . The lower horizontal axis gives the temperature,
starting from Tg = 285 K. The upper horizontal axis indicates
the corresponding values of the Fixman parameter z. Note
that our perturbation theory applies only up to z 0.1. Con-
tinuous lines are experimental phase boundaries taken from
[7]. Below the lower line, the single-phase Quid is stable. Be-
tween the two continuous lines, samples separate into coex-
isiting colloidal Quid and crystal phases. Above the upper
continuous line, crystallization is suppressed and nonequilib-
rium states are observed. The dashed (lower) and dotted
(upper) lines through the squares (CI) are predictions of our
theory for the Quid-crystal phase boundary with and without
taking into account coil swelling. The dashed (lower) and dot-
ted (upper) lines through the diamonds (0) are predictions of
our theory for the metastable gas-liquid boundary, again with
and without taking into account ceil swelling.

is suppressed. Instead, a variety of nonequilibrium be-
havior is observed, cumulating in a "transient gel" state
at the highest polymer concentrations [7,22,23]. It has
been suggested [1,23] that the abrupt onset of nonequilib-
rium behavior in this system is related to the metastable
liquid-gas phase boundary hidden within the Quid-crystal
two-phase region in the equilibrium phase diagram. (In-
voking such "metastable phase boundaries" within equi-
librium two-phase regions as an explanation of unex-
pected, nonequilibrium behavior is a well known and suc-
cessful practice in metallurgy. See De HofI's discussion
in [24).) The positions of the metastable liquid-gas phase
boundary at P = 0.2 at various temperatures predicted

temperature (K)

FIG. 3. Colloid concentrations of coexisting gas, liquid,
and solid phases predicted by our theory at the theoretical
crossover size ratio $ = 0.33 are plotted against temperature
and the Fixman parameter z as dashed curves: Q, = gas;
Q, liquid; and, solid. Note that our perturbation theory is
expected to apply only up to z 0.1. The experimental data
described in Table I are also plotted as continuous lines: Q,
gas; (&, liquid; and, solid. Within experimental errors (see
Table I), the observed volume fractions of the colloidal solid
and liquid phases remain constant. The observed increase in
volume fraction of the colloidal gas phase with temperature is,
however, larger than experimental errors and is a real e6ect.

by our model are also plotted in Fig. 2. It is seen that
the slope of this curve agrees well with that of the exper-
imental gel boundary, even though the absolute position
is too high by approximately 20%. This provides support
for the speculation in [1].

Note that it is crucial to take into account the tzoin
efFects of increasing monomer-monomer interactions: in-
creasing osmotic pressure and coil swelling. The predic-
tions of our perturbative treatment without taking into
account coil swelling are also shown in Fig. 2; the results
are not satisfactory in this case.

Experimentally, the phase diagram topology switches
at a size ratio of ( = 0.24, with polystyrene of molecular
weight M = 2.85 x 10 [10]. At this size ratio, a sta-
ble colloidal liquid phase becomes possible. Therefore,
three-phase coexistence between colloidal gas, liquid, and
solid phases can be observed. We have measured the
colloid concentrations of these coexisting phases as func-
tions of temperature (using methods detailed in [10])and
the results are given in Table I, and are plotted as func-

TABLE I. Dependence of three-phase coexistence compositions on temperature.

Temperature (K)
285
287
296

&gas
0.043 + 0.004
0.057 + 0.004
0.067 + 0.004

4|q
0.31 + 0.05
0.33 + 0.01

0.312 + 0.004

4soi'a
0.618 + 0.006
0.612 + 0.006
0.616 + 0.006
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tions of both the temperature and the Fixman parameter,
Eq. (39), in Fig. 3.

The theory of Lekkerkerker et al. [6] predicts that the
crossover in phase diagram topology occurs at ( = 0.33.
Here we show the calculated colloid concentrations for
coexisting gas, liquid, and solid phases with ( = 0.33 (at
Te) as functions of the temperature and the Fixman pa-
rameter in Fig. 3. Note that the approximations used
in our theory become increasingly invalid at z 0.1 or
above. With this proviso, however, the comparison be-
tween theory and experiment is again seen to be reason-
able. The initial eH'ect of the temperature rising above
Ts is predicted to be primarily a rise in (tjs „with P„„,t
and Ph~„;~ remaining more or less constant. This is con-
firmed by the data shown in Table I, although the rise in
Ps, is not as rapid as that predicted by theory.

IV. POTENTIAL OP MEAN PORCE

Finally, within the theoretical framework presented in
Sec. II, we can derive an expression for the interaction
potential between a pair of Hat plates immersed in a mix-
ture of colloids and polymers. It turns out that the effect
of polymer nonideality is to induce a repulsive barrier in
front of the attractive depletion well. Our final result
gives satisfactory agreement with a recent calculation of
Walz and Sharma [13],who treated the same phenomena
within a different theoretical framework.

We start with the exact expression for the semigrand
partition function to first order in the Mayer function:
Eq. (23), with Eq. (9) for n. This gives the polymer-
induced contribution to the f'ree energy or potential of
mean force

(45)

Clearly s is the free surface area of a test sphere of radius
r centered at rq, i.e., the surface area that does not lie
in the excluded volume, and s is the surface area that is
blocked off by the excluded volume (see Fig. 4). Given
these definitions, the function S(r) and a complementary
function S(r) = 4+rsVy —S(r) are calculable as integrals
of s and s, respectively. From Eqs. (44) and (45) we have

S(r) = f y(rI) I(r; rI) d rI = 4rrr Vy —5'(r),

S(r) = f (p(rI) d(r;rI) d I I

(46)

(47)

AF = —aJ kgT(1 —(igB2) Vy

1 2
OO

a&k~T — f(r) S(r) dr.
2 0

(48)

This is now suitable for use in calculations since S is a
well defined function.

Consider two plates (area A) a distance h apart. On
either side of each plate there is a layer of excluded vol-
uine (depletion layer) of thickness d (see Fig. 4). The free
volume is then given by

const + A.(2d —h),
const,

0(h&2d
2d&h. (49)

Inserting these into the expression for the potential of
mean force and using Bq ——

2 fo f (r) 4vrr2 dr gives finally

LF= —aPkBT y r d r

+ Op~B+ p r1 p r2 r1 —r2 d r1 ~ r2)

(42)

where y(r) is the void function appropriate for the ge-
ometry under consideration. %e introduce the identity

fo h(r —~ri —rq~) dr to separate out the Mayer
function and arrive at

Area

1 2
OO

AF = aJ k~TVy + ap—k~T f(r)—S(r) dr, (43)2 0

where Vy = f rp(r) dsr is the exact free volume and

S(rj = fW(rI)W(rr)b(r —~rI —II)) d'rI d rr (44)

is a function that, in a pure suspension, is related to the
void-void correlation function by 4xr2g~v (r) = S(r)/V.
In the finite geometry of a pair of plates, the use of a
void-void correlation function is inappropriate.

The key is to give a geometrical interpretation to S(r)
that is easily calculable. To do this we define s and s by

0
FIG. 4. Geometry used for calculating the potential of

mean force. The plates are represented by bold lines. The
dotted lines represent depletion layers of thickness d on either
side of each plate: these are regions of space inaccessible to
polymer molecules. A test sphere centered at position rz of
radius r is also shown. The portion of its surface area not con-
tained in the free volume s(r;rq) is picked out in bold. The
width of the free volume between the two plates is denoted
by 6 and the center of the test sphere is at a distance 2: from
the edge of a depletion layer.
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Now consider the blocked-ofF surface area of a test sphere
of radius r at a distance x &om the edge of the depletion
layer. It is (in three dimensions)

s(r; x) = 2vrr'(1 —x/r), 0&+ &r
r&x. (5o)

Thus, in the expression

S(r) = f r(r; r, ) (p(r, ) d r, ,

the contribution &om an outer surface of a plate is

(51)

f 2~)" (1 —x/r) A dx = ~r A.
0

(52)

This will also be the contribution &om an inner surface
provided the edges of the depletion layers are at least a
distance r apart (i.e. , h ) 2d + r) If th.is is not the
case, the test sphere of radius r cannot completely move
away &om the edge of the inner depletion layer before
its center enters the depletion layer associated with the
opposite plate. Denoting the distance between edges of
the depletion layers by b = h —2d for convenience, the
contribution to Eq. (51) in this case (0 ( b ( r) is

b

2vrr (1 —x/r) Adx = 2vrr A(b —b /2r).
0

Combining these we get

(53)

2~r',
S(r)/A = 2~~'+ 4~r'(b —b'/2r),

4m'r,

—2d&b&0
0&b&r

r&6.
(54)

Although the calculation could be continued in terms of
moments of the Mayer function, it is clearer to introduce
a model square potential for which f (r) = fp for r ( 2d
and f(r) = 0 for r ) 2d. The interpretation is that the
polymer coils act as spheres of radius d, with a constant
potential of interaction independent of the degree of mu-
tual overlap. This includes the hard-sphere case fp ——1.
The second virial coefficient is B2 ——16vrd fp/3. Prom
Eq. (48), the potential of mean force is

1 2
2d

AI" = —azkaT(1 —azB2) Vy ——a~kaT fp S(r) dr
2 0

(55)

Dropping the unimportant constant associated with Vf,
the integration can be performed to get a piecewise con-
tinuous potential

AE
aI kIBTAd

6 3
(1 a+B2) ———a+B2,

d 4
/'3 b 3b2 1 b

&
—

/

—+ ————+ ——
I
as B2

g4 d 8d2 64d4)
3——a~B2,
2

—2d & 6 & 0

0 & 6 & 2d

2d &b.

(56)

These results show that there is a potential barrier
in &ont of the depletion well of range 2d and height

4 a~k~TB2d.
The potential in Eq. (56) is identical to the result de-

rived by Walz and Sharma [13], Eq. (24) in their paper,
provided that polymer activity is expressed in terms of
polymer concentration at infinity (or equivalently poly-
mer reservoir concentration; see the Appendix), and the
constant &a&k~TB2d is added to the potential. We
note in passing that Clark and Lal observed a repul-
sive barrier in &ont of the attractive depletion well
in Monte Carlo simulations of nonad. sorbing, excluded-
volume chains confined between plane walls [27].

An exact calculation is also possible for the excluded. —

volume shells of a pair of spherical colloid particles, pro-
vided they do not overlap. This is because a test sphere
intersects the excluded-volume shells in at most two dis-
joint pieces. When the shells overlap, a complicated
three-body overlap problem is encountered.

The origin of the repulsive barrier is clear &om the
above derivation. In general terms there is a contribu-
tion to the &ee energy &om the surface area of the free
volume. For polymers in a good solvent this is a nega-
tive contribution because pairs of polymers adjacent to
the surface of the excluded-volume do not experience the

I

full set of possible mutual configurations that are avail-
able in the bulk. Specifically for our example, as the
plates are brought together there is a reduction &om four
surfaces to two surfaces when the inner excluded-volume
layers start to overlap. The negative contribution to the
&ee energy becomes less negative, producing a barrier in
the potential of mean force. The sharp reduction in sur-
face area is smoothed by the 6nite range of the polymer-
polymer interaction.

V. CONCLUSION

Starting &om the behavior of a colloid-polymer mix-
ture at the 8 temperature of the polymer [6], we have used
perturbation theory to take into the account polymer-
polymer interactions up to second virial level. Theoret-
ical pred. ictions of the eKects of polymer nonideality on
phase behavior are compared with data obtained in mix-
tures of PMMA colloids and random-coil polystyrene dis-
persed in cis-decalin. For the limited range of tempera-
tures in which our lowest-order perturbation calculations
should be valid, there is satisfactory agreement between
theory and experiment. Moreover, the predicted temper-
ature dependence of a metastable liquid-gas binodal in a
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mixture with small polymers points to its role in caus-
ing the experimentally observed onset of nonequilibrium
behavior in such a mixture. Within the same theoreti-
cal &amework, we have calculated the potential of mean
force between a pair of plates immersed in a nonideal
polymer solution. The result, showing a potential barrier
in &ont of an attraction depletion well, is in agreement
with a recent calculation by Walz and Sharma [13].

of pure species 2 in osmotic .equilibrium with the actual
mixture, and o.V is the &ee volume available to the center
of a single sphere of species 2 in a pure system of 1.
Equation (Al) is an approximation. In this appendix, we
discuss how good this approximation is in the light of the
perturbative treatment of the colloid-polymer problem
we have presented in the main body of the paper.

Consider the colloid-polymer semigrand potential in
the form given in Eq. (34). Using the relations
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(A3)

on Eq. (34) and setting Nc = 0, we can calculate the os-

motic pressure lip and number density np in a reser-(R) (R} .
voir of pure polymer. Remembering that o. = 1 and
B2 ——B2 when N~ ——0, the results are

APPENDIX: COMPARISON
WITH RECENT WORK

n„) = ap(l —2apB2),

IIp —ap

kgT�(1
—apB2) .(R)

(A4)

(A5)

In two recent papers [25,26], the phase behavior of an
asymmetric hard-sphere mixture (spheres of sizes az )
a2) has been treated using an approximate expression
for the semigrand canonical potential

0 = Fg(pg) —II2 (p2)nV, (Al)

where E~ is the Helmoltz &ee energy of a pure system
of species 1, II2 is the osmotic pressure of a reservoir

Note, before we go on, that on eliminating the polymer
activity ap between these two equations we get back the
usual relation

IIp ——np kaT(1+ n B ).(R) (R) (R) (A6)

Now, comparing Eq. (34) with Eq. (A5), we see that the

use of IIp Eq. (Al) is tantamount to making B2 B2, ——(R)

which, according to Eq. (38), is in error by order Lc = hrj'a.
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