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Classical model for energy transfer in microspherical droplets
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A classical electrodynamic model for energy transfer between donor and acceptor molecules in which

the molecules are modeled using Drude oscillators is presented for dye solutions in the form of
micrometer-sized droplets. The model incorporates multiparticle scattering effects by means of a binary

collision expansion. Enhanced energy transfer rates and nontrivial concentration effects appear due to
the Mie resonances of the droplet. Theory is discussed in light of the experiments of L. M. Folan, S. Ar-

nold, and S. D. Druger [Chem. Phys. Lett. 118, 322 (1985)].
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It is now well known that many physical properties of
a system change when its size becomes comparable to
length scales that are typical of wavelengths relevant to
the phenomena under study. In particular, many spec-
troscopic processes exhibit anomalous behavior when the
size of the system is such that the density of states of the
radiation field becomes sparse or develops strong reso-
nances in the spectral regions under examination. One
important example of this is the surface enhanced Raman
effect, which is caused by electromagnetic resonances as-
sociated with roughness on a metallic surface. Gersten
and Nitzan predicted that the same mechanism should
lead to enhanced Forster transfer (energy transfer via
dipole-dipole interactions) between donors and acceptors
surrounding a metallic particle due to the stimulation of
lightning-rod and surface-plasmon modes within the par-
ticle [1].

In dielectric systems, the resonance mechanism
changes slightly but nonetheless can affect the spectro-
scopic processes. For example, Benner et al. [2] have
shown that the Mie resonances of small droplets appear
in the fIuorescence spectrum of solute molecules. This
coupling, like that discussed by Gersten and Nitzan,
should also lead to enhanced energy transfer. This effect
was found in a study by Folan and co-workers [3] who
examined energy transfer, or sensitized luminescence,
occurring in solutions of dye molecules in suspended
micrometer-sized droplets. The solutions consisted of
two types of dye molecules, Coumarin-1 (Cl) and
Rhodamine-6G (R6Cx), dissolved in a glycerol and water
solution. The donor rnolecules, C1, have an emission
band that overlaps the absorption band of the acceptors,
R6Cs, hence, when the donors are excited at a frequency
outside the absorption band of the acceptors, light may
still be emitted in the emission band of the acceptors.
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In practice, the effective range of the Forster transfer
process in bulk solutions is of the order of 50—100 A,
since the transfer is mediated by near-field dipole interac-
tions. The experiments of Ref. [3] showed that the
transfer process in the micrometer-sized droplet is
enhanced over that in the bulk by factors of as much as
100 for the lowest concentrations studied. Folan and co-
workers attributed this to the effects of Mie resonances,
which enhance and trap the electromagnetic fields within
the droplet. The Mie resonances arise from coherent,
nearly total, internal reAection of the radiation at the
droplet surface. An example of this field enhancement is
shown in Fig. 1, where the orientationally averaged (i.e.,
with respect to dji)ole orientation) root-mean-square
(rms) electric field, V [cf. Eq. (2.8)], of a point unit dipole
located at a radius of 3.032 pm within a 7.598 pm diame-
ter, spherical, glycerol droplet is depicted for a resonance
with a wavelength near 397.2 nm. The figure shows that
the field strength within a large, shell-shaped region in-
cluding the source is comparable to that due to near-field
dipole interactions. [Note that the near-field region is the
spike in the figure at cos(8) = 1 in the figure. ]

The amount of transfer, as measured by the ratio of the
intensity of the luminescence in the emission band of the
acceptors to that from the emission band of the donors, is
found to depend very weakly upon concentration for
fixed mole fractions of dye in solution. In droplets of
roughly 10 pm diameter, a simple least-squares analysis
of the transfer data presented in Ref. [3] shows that the
amount of transfer scales as p

' *,where p denotes
the concentration, or number density [4]. In systems of
macroscopic dimensions, the observed transfer was found
to scale linearly with density. The anomalous concentra-
tion dependence in the droplet occurs because the optical
resonances in the droplet have the effect of strongly cou-
pling distantly separated pairs of molecules, by which we
mean rnolecules separated by distances much larger than
the range typical of near-field interactions, i.e., about 100
A, which makes the system optically dense. Our interest
lies in understanding this anomalous behavior from the
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FIG. j. Electromagnetic field amplitude of a unit dipole,~1,2T ~1,2
[Tr(V, 'z V, '2)], as a function of the observer distance from
the center of the sphere R and the cosine of the angle 0 between
the source and observer. V includes both bulk and sphere con-
tributions. The sphere radius is 3.799 pm and the source dis-
tance from the center is 3.032 pm. The resonance frequency in
reduced, dimensionless units mR, p&„,/c is 60.088 573 70478906.
The dielectric constant of the sphere and surroundings were
taken to be 2. 1609 and 1.0, respectively. (We have used a value
of 1.47 for the index of refraction of glycerol; the literature
value for the index of refraction is 1.4746 [18].)

point of view of a purely classical, multiple-scattering
picture.

The quantum mechanical theory of energy transfer in
bulk dye mixtures is due to Forster and has been extend-
ed to the droplet case by Druger et al. [5]. These theories
are both two-particle approaches in the sense that rnul-
tiparticle scattering effects are not included; instead, tran-
sition rates are determined according to Fermi's golden
rule and, after weighting by the molecular densities of
states, inserted into phenomenological rate equations [6].
In these theories, it is assumed that multiple-scattering
effects are negligible because only small numbers of parti-
cles are coupled by the near-field interaction in the bulk
although, as was recognized by Forster [5(a)], multiple-
scattering processes will greatly complicate matters. As
will be shown below, multiple-scattering processes will be
important when large spatial regions (and, as a conse-
quence, large numbers of molecules) are strongly coupled;
this is the case for small droplets in the Mie resonance
range even at low densities of donors or acceptors.

In this paper, we study multiple-scattering effects by
analyzing a classical electrodynamic model of energy
transfer between rnolecules, modeled as collections of
Drude oscillators, using a density expansion similar to
that employed by Haan and Zwanzig [7(a)] or by Fayer
and co-workers [7(b)]. In macroscopically large systems,
this leads to a theory in which most contributions come
from particles separated by short distances, but with
small long-range corrections arising from multiple-
scattering effects [8]. In the droplet case, in the Mie-
resonance frequency regime, there exists a long-range in-
teraction that strongly couples large regions in the sphere

hv hv

Donor Acceptor

FIG. 2. A simplified quantum mechanical picture of the en-

ergy transfer process. Initially, a donor molecule absorbs a pho-
ton of energy fico (hv) from the medium and is excited to its
highest excited state. Two processes may subsequently occur:
(1) the donor may reemit the photon (i.e., elastic scattering) or
(2) it may decay into a lower excited state from which it can
emit a redshifted photon of energy fico' (h v') back into the medi-
um (i.e., inelastic scattering). If we focus our attention on the
redshifted photon we see that at this stage three things may
happen: {1)the photon can leave the medium, (2) the photon can
be absorbed by an acceptor molecule, or (3) the photon may be
reabsorbed by a donor, which may or may not be the donor that
originally emitted it.

(cf. Fig. I) and, as we shall see, dominates the short-range
near-field dipole-dipole contributions that are responsible
for energy transfer in the bulk. The main consequence of
the multiple-scattering treatment is a more self-consistent
treatment of the dielectric properties of the medium. In
particular, the more time the radiation has to interact
with the donor and acceptor molecules before leaving the
droplet, the more lossy the medium becomes. As will be
shown below, this effect leads to a broadening of the Mie
resonances and a concomitant saturation of the transfer
yields.

A sirnplified quantum mechanical picture of the energy
transfer process involving a pair of rnolecules is depicted
in Fig. 2. A donor molecule absorbs a photon of a given
energy from the medium, nonradiatively dissipates some
of the energy, and then re-emits a Stokes-shifted photon
back into the medium where it may interact with other
molecules, both donors and acceptors, via a number of
elastic or inelastic scattering events. Depending upon the
relation of the emission bands of the donors to the ab-
sorption bands of the acceptors, an acceptor molecule
may absorb this shifted photon and shift it to still longer
wavelengths, or it may simply scatter it elastically. Ex-
perimentally, the amount of energy transfer is determined
by measuring the rate at which photons that are Stokes
shifted by the acceptors are observed, normalized to the
rate at which photons at the absorption frequency for the
acceptors are observed. Here we shall assume that the
unnormalized rate is proportional, with a proportionality
constant that is independent of any macroscopic proper-
ties of the medium, to the rate at which the initial accep-
tor state is damped. Hence, we need to calculate the non-
radiative decay rate out of the initial acceptor state(s).
The rate is normalized by the power radiated to infinity
at the absorption band of the acceptors.

In Sec. II, classical equations of motion are written for
a system of interacting point dipoles, modeled as collec-
tions of Drude oscillators. Random source functions are
added to the equations in order to model the excitation of
the donors by external sources. The properties of the
random sources are determined using reasonable assump-
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tions about how (and which) molecules in the system are
excited, which may depend upon how the experiment is
performed. In this paper, as in the experiments of Ref.
[3], we shall examine a CW or steady-state experiment.
Coupled equations of motion for the Drude oscillators
are solved for the average behavior, and the transfer rate
is expressed in terms of the radiation and dissipation
rates obtained from Poynting's theorem and the damping
of the acceptor states, respectively. In Sec. III, density
expansions for the rates are obtained by means of a
binary collision expansion [7,9,10]. and the leading order
contributions are expressed in terms of propagators that
describe the averaged interactions of varying numbers of
particles. Expressions for the required propagators, in
the form of algebraic expressions for some and a set of
coupled integral equations for the remainder, are present-
ed. The types of approximations and simplifications em-
ployed for computing the propagators for spherical mi-
crodroplets are discussed in Sec. IV.

Finally, our numerical results for micrometer-sized
droplets are presented in Sec. V. Good agreement with
the experiments of Ref. [3] is obtained for the lumines-
cence ratio and new saturation and broadening effects in
the observed spectra are predicted. As we will show,
most of the energy transfer takes place via the Mie reso-
nances and, since the medium becomes lossy when the
donor or acceptor densities are increased, these broaden,
thereby leading to a saturation in the amount of transfer.

II. CLASSICAL MODEL FOR ENERGY TRANSFER

The donor and acceptor states involved in the transfer
process may be viewed as collections of classical oscilla-
tors, having arbitrary polarizability functions, which in-
teract by means of their electromagnetic fields. In a
Fourier representation, we write the dipole moment of
each molecule as p;(co)=gP; „(co) with each oscillator
component p; „(co) obeying an equation of the form

p, ,(co) =a N„(co) [icoy; p;(co)+E,'(co)+Q; „(co)],

(2.1)

where a;, (co) is the part of the polarizability of the vth
oscillator in molecule i arising from nonradiative process-
es that may include nonradiative decay, E,'(co) is the
electric field experienced by the ith molecule due to the
presence of dielectric interfaces and other molecules in
the system, and Q; „(co) is the random source for the vth
oscillator. The random source function mimics the pro-
cesses by which the donor states are populated by the
external source and in part depends upon the kind of ex-
periment being performed. In pulsed experiments,
Q; „(co) may be interpreted physically as arising from
random initial conditions for each molecule, while in
steady-state experiments it is related to the rate at which
the upper states of the molecules are populated. Its sto-
chastic properties will not be used directly, as will be dis-
cussed below. Radiative damping effects are included via
the icky; p;(co) term [11].

An equation for the total dipole moment p;(co) is ob-
tained by summing Eq. (2.1) over the individual oscillator

components. Thus,

p, (co)=a, "(co) [icky, p, (~)+E ';(~)+Q;(~)]
=a, (m). [E,'. (~)+Q, (~)],

(2.2a)

(2.2b)

where P; (co) —=g,a;, (co) is the total nonradiative con-
tribution to the polarizability (i.e., the polarizability that
ideally remains when all radiative decay channels are
turned off), which we shall from now on simply call the
nonradiative polarizability,

Q ( ) [~~NR(~)] i, y~~NR(~), Q (~) (2.3)

is a sum of random sources weighted by the nonradiative
polarizabilities, and

[ [~NR( )]
—i ~

y R]
—i (2.4)

is the total polarizability for the molecule i. In practice
we expect that the difference between a;(co) and a; (co)
is small. We shall focus on the weighted sum of the
sources defined in Eq. (2.3) since, as will be shown below,
the quantities we wish to compute only depend upon it
and its correlations.

The dipole moments of donor molecules are created via
radiationless transitions from the higher excited states of
the donors. We shall assume that this process completely
randomizes the initial phases and orientations of the
donor dipoles. Hence, Q,.(co) has random phase and
orientation, so that it has zero mean. Since the acceptors
are not excited by an external source, we can assume that
Q; (co) correlation functions involving one or more ac-
ceptors vanish. Finally, the random phase and orienta-
tion assumptions imply that different Cartesian com-
ponents of the same donor are uncorrelated, as are the
sources for different donors. This discussion can be sum-
marized in the following expression for the correlation
functions of the random sources

++
5(co—co')5; JQ;(co) for i,j ED

co QJ co
0 otherwise, (2.5)

where 5, is a Kronecker delta and the label D (A)
denotes the donor (acceptor) species. The delta function
in frequency is specific to a steady-state experiment and
accounts for the fact that averages of Q, (t)Q (t') are.
stationary in time. Finally, we assume that the excitation
is uniform throughout the system; hence, A;(co) does not
depend upon the molecule's position and, consequently,
may be factored out of the configurational average. (The
last assumption requires that the external excitation of
the system not occur at frequencies that couple strongly
to the Mie resonances of the sphere, thereby creating a
nonuniform distribution of excitation. )

The nonradiative polarizability functions in this work
model the dipoles as damped isotropic Drude oscillators
(harmonically bound and damped charges), hence they
have Lorentzian line shapes
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COO; „CO 1 CO/;

iv,.r,

V,"(co) =
~) ~S,J

LKi

2
l, J

ap; 1

2 2 - NR (2.6)

E,'(co) = V' (co).p;(co)+ g V;, (co) p, (co) . .
jwi

(2.8)

The first term gives the field at molecule i due to the
reflection of its own fields from dielectric interfaces while
the second term gives the contributions from the other
molecules. For spherical droplets, the matrices V,"(co)
and V; J (co) are both easily obtained by solving
Maxwell's equations for a point dipole embedded in a
dielectric medium in terms of vector spherical harmonics
[12]; the details of this calculation are standard and are
summarized in the Appendix. Implicit in our description
using Eqs. (2.1) and (2.8) is the possibility of sequences of
interactions in which the excitation may be viewed as
hopping back and forth or scattering between pairs of
molecules.

Because the system is isotropic, the expression for
V' (co) I

= V "(r;;co)] has the simple form

++V' (co)=v"' (r;;co)(1 r; r; )+v"'!~(r;;co)r,.r, , —(2.9)

where the constants y; „,m;, coo; „and e; denote the
nonradiative damping constant, the effective mass, the
frequency, and the effective charge for the vth oscillator
component associated with the ith molecule, respectively.
We denote the ratio e; /m;, by ap;, . We also model
the total polarizability line shape by a Lorentzian,

exp i1
a;(co) = (2.7)

670 i CO l CO/0 i

While the nonradiative decay constants y; „describe
some of the relaxational effects that can occur in either
the donor or acceptor molecules, quantum mechanical
details having to do with vibrational relaxation of the ini-
tially excited states into a distributidn of states that can
have very different spectral overlaps with unexcited
donor or acceptor molecules, but that can nonetheless
still take part in the transfer process and ultimately con-
tribute to the redshifted fluorescence, are not included.
Although, a classical model can probably be patched up
to mimic some of these effects, this is quite artificial, and
will be deferred to a quantum mechanical version of the
theory. In any event, this effect is not expected to be
large in systems where the emission and absorption spec-
tra are similar.

The electric field seen by molecule i, E,', may be writ-
ten as a sum of two types of terms, i.e.,

++ lKi+(1 r; —r J) a+
~i,j

(2.10)

X Y z, t,w(QJ ) (2.11)

where the radial functions are spherical Bessel functions,
Q denotes the polar angles of r, and Y J I M(Q) are the
vector spherical harmonics as defined in Edmonds [12(b)]
and Yzr~(Q)=—[Yz&M(Q)], where the superscripts T
and e denote transposition and complex conjugation, re-
spectively. The expansion coefBcients gJ l l. are simply re-
lated to the Mie coe%cients for the system. Both the
gJ l l and the Mie coefficients are defined in Sec. 1 of the
Appendix. One should also note that, for the resonant
modes, the dominant contributions to the energy transfer
come from particles situated in a shell located near the
surface of the sphere, and here the Bessel functions are
well approximated by their small-argument forms
j&(x ) -x'/(2l + 1)!!.

We write the formal solution to the Fourier equations
of motion, Eqs. (2.2) and (2.8), in terms of a frequency-
domain propagator, i.e.,

p;(co) =gG;, (R;co).Q, (co) . (2.12)
J

The 3X3 matrix G, (R;co) is the i,j block of the
3NX3X propagator matrix G (R;co), which depends
upon the positions of all of the particles, denoted as R
as well as the frequency. Equation (2.2b) represents three
components of a 3N X 3X matrix equation, whose solu-
tion may be cast in the form of Eq. (2.12) by employing
Eq. (2.8). Note that once the total dipole moment on any
of the molecules is known, the individual oscillator am-
plitudes can be determined by using Eqs. (2.2b) and (2.12)
in (2.1) and, after some simple algebra, it follows that

p ( co ) P NR( co ) [cc NR( co ) ]
1 y G (R x co ) g ( co )

J

which represents the interaction in a macroscopic system
with the same dielectric constant (e;) as the sphere and a
term V' (co), corresponding to the interaction with the
sphere, i.e., via reflections from the sphere surface. In
the last expression, K;—:cd; Ic is the wave vector of the
radiation. The vector spherical harmonic expansion for
V'~(co) [

= V"(r;,r j;co)] can also be written in a simple
form [5(b)]:

J+1 J
V' (co).= g g g rij I Ij&(~;r;)J'I(a;r )Yz & M(Q;)

J=1 l, l'= J—1 M= —J

where the scalar functions, v" (r;co) and 'v"'~~(r;co), have
simple expansions in terms of spherical Bessel functions
(cf. Appendix). Furthermore, V; (co) may be decom-
posed into a sum of a term

+Q;,(co) —Q;(co)

(2.13)

For the acceptor molecules, the last two terms in the
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above expression may be omitted, since the acceptors are
not directly excited. In addition, only the total dipole
moment is used for computing the power radiated to
infinity. Hence, for our purposes, it suffices to only con-
sider the correlations of the weighted source functions.

The energy transfer rate is computed from the nonradi-
ative rate of dissipation occurring in the acceptors at the
absorption frequency of the acceptor. This requires a
model for the dissipation in the acceptors. In the point-
dipole Drude model, we have a collection of damped,
harmonically oscillating charges coupled to the local
electric field. By taking the energy of each oscillator as
that of the undamped oscillator and using Eq. (2.1) and
Poynting's theorem, it is straightforward to show that the
energy of the classical system breaks up into three kinds
of terms. One set is easily interpreted as the rate at
which work is done on the system by external sources
and another as the rate at which the energy is radiated
away (an integral of the Poynting fiux). The final set of
terms represent the rate at which energy is dissipated
internally and, for the acceptors, is given by ( WA(t) )
which takes the form

2

(W (t))= & y;,."(Ij;,.I ) (2.14a)
iEA, u

NAN~ f dcoco I ~ (co)Qo(co)
3& 0

X (Tr[G t, , (co).G, , (co)] )
(2.14b)
(2.14c)=po f dco Qo(co)D~(co),

0

where y;, =m, ,y, „ /e, „
I NR( ) yy N~R~aNR( )~&/~aNR( )~&

D~(co) = co I ~"(co)(Tr[G t, , (co).G, , (co)]),

and p&~~~=No~~~/V, is the number density of donors
(acceptors) in the system of volume V, containing Nz~o~
donor (acceptor) molecules. In obtaining Eq. (2.14b)
from Eq. (2.14a), we switched to a Fourier representation,
used Eq. (2.13) for the individual oscillators and then
averaged, noting that Q, ,(co)=0 for the acceptors, and
using Eq. (2.5) for the donors. Note, that a more compli-
cated expression would result if the acceptors were
directly excited by external sources. D~(co) is the contri-
bution per unit frequency of the frequency region cen-
tered on co to the dissipation rate ( W~(t) ). Finally, the
full-sided frequency integrations have been rewritten as
half-sided ones because the integrand is explicitly even in
co. In Eq. (2.14b) and henceforth, we use primes to distin-
guish molecular species; hence, we assign primed and
unprimed integer labels to each donor and acceptor mole-
cule, respectively.

The quantity I"~ (co) plays the role of an average
damping constant at frequency co. It is a molecular prop-
erty, and ultimately describes the rate at which redshifted
fiuorescence appears. We expect that I ~ (co) is smaller
(modulo factors of m/e ) than the overall width of the
fiuorescence bands that arise from a; (co), cf. Eqs. (2.2)

and (2.6), and in general depends on the details of the
molecular spectra. Nonetheless, as Eq. (2.14) shows,
I A (co) enters into the calculation in a trivial manner
and for what follows we will treat it as a constant when
numerically computing integrated rates. This is reason-
able given the typically large density of states found in
the spectral regions of interest.

The average rate at which energy is radiated to infinity,
(RA+o (t) ), is obtained from Poynting's theorem

(RA+o „(t))= f dcog(p;(co) W;';. ( co) p(c.o))

(2.15a}

=—f dco g QQk(co)
kEDi,j

X(Tr[G J „(co).W;; (co) G; „(co)])

pr f—dco Qn(co)R" (co),

(2.15b)

(2.15c)

where

R" (co)—: g(Tr[G~& (co) WJ; (co) G,. &
(co)]) .

1,J

III. DENSITY EXPANSION OF THE PROPAGATORS
AND RATES

The key results of the preceding section contain aver-
ages of quantities that are bilinear in the propagator and
these averages, even with the approximations discussed
above, cannot be calculated exactly. Here we shall con-
sider the density expansion of the expressions for the en-

ergy transfer and radiation rates. In order to simplify the
computation of the averages, we shall ignore equilibrium
correlations between molecular positions, so that the
configurational probability distribution function is simply
V . All of the rate expressions in the preceding section
contain quantities R, .(co) of the form

W",.'~(co) is obtained from the expressions for the fields
far outside the sphere by solving Maxwell's equations,
computing the radiative Aux at infinity, and carrying out
the appropriate angular integrations. The details of the

rivation of the expression for the matrix W' (co} ar
presented in Sec. 4 of the Appendix.

In this work, we analyze Eqs. (2.14) and (2.15) for the
case in which the total polarizabilities for donors and ac-
ceptors from Eq. (2.4) are modeled by Lorentzians and, as
was mentioned above, I ~ (co) is assumed to be constant
over the frequency regime of interest. Qo(co) is related to
the way in which the donor states are initially populated,
cf. Eq. (2.5), and given the high density of states, we can
use the same approximation as that used for I A (co), tak-
ing Qo(co} to be a constant over the frequency range of
interest. Note that the ratio of the rates, ( W~(t)) and

(R~+o (t)), will in this case be independent of the
magnitude of Qo(co).
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R; (co)—:(Tr[6,"& (co) R; (co).G . &.(co)]), (3.1)

where the 3X3 matrix R, (co) depends solely upon the
positions of the particles i and j and the frequency. In
what follows, we shall obtain a series expansion for G
and use it to obtain the density expansion for the R; ~(co).

The full propagator matrix given above, G(R;co), is
easily shown to be

6(R;co)= Vo(co) —gV (co) (3.2)

where Vo(co) is a 3NX3N matrix (where N:NA+—ND)
containing those parts of Eq. (2.12) that are diagonal in
particle indices (also note that the elements of each 3 X 3
diagonal block are a function of a single particle's posi-
tion and the frequency) and the V (co) are 3NX3N ma-
trices which are nonzero only in the blocks involving the
pair of particles a:(ij—) Ea. ch pair of particles appears
only once in the sum over pairs, a, above. Utilizing Eqs.
(2.2b), (2.8), and (2.12), we identify the nonzero 3X3
blocks in the 3N X 3N matrices V o(co) and V (co ) that ap-
pear in Eq. (3.2) as follows:

[ Vo(co) ]"—= V o'(co) = [a;(co)]
' —V", (co) (3.3a)

and

[V (~)]'~=—V'J(co)= V, f(co) for ij Ca . (3.3b)

As is well known [10], a naive density expansion for
the rate expressions may be obtained by employing the
binary collision expansion [9] for the 3N X 3N propagator
matrix 6(R;co); i.e.,

6 =Go Go'gT Go+Go'XT Go.TpGo
a a, P

aAP

(3.4)

Z
1, 1 P ) y1, 2 G2, 2 V2, 1 G 1, 1 q

—1 y1, 2 G2, 2 y2, 1

1,2 L 1,2 0 1,2 0 & 1,2 0 1,2

(3.7a)

Z
1,2 1' l y1, 2 G2, 2 y2, 1 G 1, 1 q

—1 y1,2
1,2 & 1,2 0 1,2 0 & 1,2 (3.7b)

where all the matrices are the appropriate 3 X 3 dimen-
sional blocks of the matrices appearing in Eq. (3.5). Ex-
pressions for T1'2 and T 1'2 can be obtained by changing
the indices.

(iii) In macroscopically large systems, in the limit
r ~~ the binary collision matrices behave as
T'J- —V'1-O(r; ') and T"-O(r; }, in the limit
r; —+0 the binary collision matrices vanish.

As a consequence of (i) and (ii), many of the terms in
the formal expansion, cf. Eq, (3.4), of any given 3X3
block of G(R;co) above vanish. These terms are easily
identified by representing the expansion diagrammatical-
ly. The details of the diagrammatic expansion of an arbi-
trary 3 X 3-dimensional submatrix G,. of G are discussed
in greater detail elsewhere [7]. Here we shall merely con-
tent ourselves with a brief description.

The basic elements of the mapping of the factors in any
one term of the expansion onto diagrams are presented in
Fig. 3. If we insert the binary collision expansion for
both factors of G into Eq. (3.1},we obtain sets of terms in
which there are zero or more particles in common be-
tween the terms arising from the expansions of G on ei-
ther side of R; .. By common particles, we do not mean
the particles i, j and the donor particle 1' in Eq. (3.1). As
the polarizability grows large, the terms that constitute
the leading order in density contributions to the rate ex-
pressions correspond to averages over disjoint sets of par-
ticles. Since we have ignored equilibrium spatial correla-

where the binary collision matrices are defined by
(a)

T = —V +V .GoT = —V +T GoV (35)

= —[1—V .Go] ' V = —V~[1—Go V ]

(3.6) (c}

and G 0= V 0 . The binary collision matrix T describes
the full interaction of pairs of particles a = (i,j ). Within
each term of the expansion, Eq. (3.4) above, each summa-

tion is over all pairs of particles in the system except for
the pair appearing in the summation immediately to its

left, if any.
We note the following properties of G 0 and T
(i) Go is diagonal in particle labels (moreover, each

block is a function of but a single particle position).
(ii) The only nonzero blocks of the matrices T are

those in which only the particles from the pair a—= (i,j)
are involved (i.e., only the 3 X 3 blocks T ", T 'J, T J',
and T J'J are nonzero. In terms of the nonzero 3 X 3

blocks, two of the four nonzero blocks in Eq. (3.5) are
easily shown to be

FIG. 3. Basic elements appearing in the diagrammatic expan-
sion of the propagator matrix. The crosses at the ends of the di-
agrams mark the beginning and ending blocks of a matrix, and
correspond to the superscripts used in our notation. Vertical
lines correspond to factors of —T and horizontal lines corre-
spond to factors of Go. Contributions of a diagram are deter-
mined by considering paths from one side of the diagram to the
other that either contact or traverse the vertical T lines. A di-
agonal element of the T matrix is obtained if the T line is only
contacted, i.e., the path remains on the initial particle, and an
off-diagonal element is obtained if the T line is traversed from
one particle to another. For example, graph (a) corresponds to
the expression G 0, graph (b) corresponds to the expression

G o TJ G 0 and graph (c) corresponds to the expression
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tions between the molecules, these leading-order averages
factorize and each side of Eq. (3.1) may be resummed into
averaged one- and two-particle 3 X 3 matrix propagators
which for simplicity we denote as G' (r; co ) and
6 &(r, r ', co), respectively. Note that in this approxima-
tion the configurational probability distribution is simplyV, and these factors can be used to convert the com-
binatoric factors associated with the diagrams into
powers of donor or acceptor number density [13].

Some low-order contributions to these propagators are
illustrated diagrammatically in Figs. 4 and 5. The next
set of terms involves one additional particle in common
between the propagators on the left and right hand sides
in Eq. (3.1), etc. The leading-order terms in the expan-
sion of the next set of terms are also expressible in terms
of the averaged one- and two-particle propagators, while
higher-order corrections for the rates may be written us-
ing a sum of terms involving connected M-body propaga-
tors, 6 1,. . . . , (r; . . r;; I p];co), in which the

configuration of the remaining X —M particles have been
averaged over [7]. (These may be expressed in terms of

I

and

G~(r;co) —=G,"(r,=r;ca),
GD(r;co)—:G I,' (r &=r;ca),

(3.8a)

(3.8b)

Gp D(r, r;co):—6 I'I (r I
=r, r $

=r;ca) (3.8c)

etc. The functions G' (r;ca) describe the evolution of the
excitation on a particle of species a located at position r
in the presence of interactions with the medium and oth-
er particles. The function G &(r, r ', co) represents the
effect of a particle of species P located at position r ' on a
particle of species a located at position r . This enables
us to write the expressions for the leading-order contribu-
tions to R; J (co) as

the connected propagators of lower order using standard
methods [14].)

For the two-component case under study we shall only
carry out a low order calculation; hence, only a few prop-
agators are needed, and we simplify our notation slightly
by defining

(3.9a)

fdrdr'Tr[G& D(r, r';co).R ~(r;ro). 6~ D(r, r';co)] for i =j=1, (3.9b)

J drdr'Tr[6~ D(r, r', co) R ~ D(r, r';co).GD(r', co)] for i =1 and j=1', (3.9c)

-"-()-
"

I"I
"

[)] ~ = ~ + ~ + () + +

/A..
[1] "(3 = ().. + ( J-- + I I +

YJ

[2] "C)-

[2]
(b)

(a)

/1L
I + IIri +,

(c) (d) (e)

I
I
I

'+
I
I

+ I +

" (I "
[4] + O(T ) + O(T')

(g)

FIG. 4. Series expansion of G;; or 6' for i Ha. Expression
[I] shows that the terms in the binary collision expansion may
be arranged according to the number of particles coupled to
particle i where each diagram has an expansion in connected di-
agrams containing the appropriate number of particles. The
line corresponding to particle i has its endpoints marked with
an X. The first few terms in the expansions of two-, three-, and
four-particle connected diagrams are shown in expressions [2],
[3], and [4]. Note that the leading term in the n-particle con-
nected series is the n-particle diagram consisting of n —1 parti-
cles connected by a single line to the particle i line, e.g. , graphs
(a), (b), (c), and (g). The boxed terms, (d), (e), and (f), are
representative of the one-loop terms.

I' l

[4] I I

VJ

I

+

(e)

I

+

+ O(T')
I

(k)

FIG. 5. Series expansion of G;, or G & for i Ea and jEP.
Expression [I] shows that the terms in the binary collision ex-
pansion may be arranged according to the number of particles
coupled to particles i and j. The terms labeled (a)—(k) may be
resummed to yield the integral equation. The boxed terms are
the first loop corrections.
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etc., where

R D(r;co)=R 11(r 1 =r;co) (3.10a)

and

R A D(r, r';co)—:R 1 1.(rl =r, rl =r';co) . (3.10b)

When the polarizabilities are large, the largest terms of a given order in density of donor or acceptors are those con-
taining no internal integrations; i.e., those not containing any loops, cf. Figs. 4 and 5. Hence a leading-order approxi-
mation for GD(r;co) and GAD(r, r ';co) may be obtained by dropping the loop diagrams from Figs. 4 and 5. This type
of approximation is common in the theory of wave propagation in random media [15] or in kinetic theory [10],and is
similar to the leading-order approximation of Haan and Zwanzig [7].

It is a straightforward task to resum the remaining series expansions for the zero-loop averages. After the
configurational averages have been carried out, each unlabeled line in a diagram contributes a factor of density, along
with an integration over the corresponding position variable. The series for the zero-loop self-propagator for the
donors, GD(r;co), is simply a geometric series and becomes

~g

GD(r 1' ~)= ' [G 0 (~)]1',1'+PD ~r2 Tl';2'(~)+PA (3.11)

A similar expression holds for the acceptor self-propagator.
The series for the zero-loop two-particle propagators, GA A(r, r';co), GA D(r, r';co), GD A(r, r';co), and GD D(r, r';co),

are slightly more complicated. Instead of an algebraic equation, one obtains a set of coupled integral equations:

G &(r, r ';co)= G'(—r;co) T '~&(r, r ', co) G&(r ', co) gp f d—r "G'(r;co).T 'rr(r', r"';co) G &(r ",r ', co), (3.12)
y

where cc, P, and y label the various species. Formally,
Eqs. (3.11) and (3.12) are similar to those that appear in
Ref. [7], however, the underlying T's and physics are
quite different. Before proceeding to the solution of these
equations, we need to make note of several approxima-
tions that greatly simplify the task.

IV. APPROXIMATIONS FOR SPHERICAL
MICRODROP LETS

where the
kept, i.e.,

V 1,2.G 2, 2. V2, 1
1,2 0 1,2

V2, 1
1,2

12
1,2

V2, 1.G 1, l. V 1,2 i (4'la)
12 0 12

full dependence of G o'(co) on V' (co) has been

G l, l
0 [(+~ )

—1 V sc]—1 (4.1b)

and where only the nonzero blocks of the 3XX3N-
dimensional Tl 2 matrix are shown in Eq. (4.1a). We
shall refer to this as the weak-coupling approximation.
This approximation has two benefits: (1) the vector spher-
ical harmonic expansion of the off-diagonal blocks is sim-

To compute the propagators, one needs the T matrices
which, in turn~are functions of the molecular polarizabil-
ities and the V matrices that relate the electric fields in
the system to their sources. While, T and V are trivially
related algebraically, the vector spherical harmonic ex-
pansion of T does not follow trivially from that of V.
Nonetheless, it is possible to greatly simplify matters with
a few physically reasonable approximations.

In the weak-coupling limit~i. e., when ~~Go V~~ ((1, the
various blocks of the matrix T, 2 [cf., Eq. (3.7)] become

I

ply that of V, and (2) the integrals of the diagonal blocks
that appear in Eq. (3.11) are trivial to obtain.

While we initially chose the weak-coupling approxima-
tion in order to have equations that were computationally
tractable, its use can be justified, even near the strongest
Mie resonances in the system. To this end, we have nu-
merically compared the weak-coupling expressions for T
with the exact T's at frequencies close to and far from the
Mie resonance frequencies of the spherical droplet. In
the resonant or very nearly resonant case, the V matrices
are large in magnitude, by which we mean that they are
of a magnitude comparable to or greater than the bulk
quasi-static interaction in the 10—100 A regime within a
large fraction of the sphere volume, where one might ex-
pect the two sets of functions to differ significantly.
However, we have found that both functions are very
much alike over much of the sphere volume when param-
eters typical of those encountered experimentally are
used. The functions differ greatly in magnitude only in
small regions of the space spanned by the position vari-
ables of the source and observer, the greatest differences
occur when the distance between the source and observer
positions is extremely small, such that the bulk, near-field
interaction dominates, or when the source and observer
are both located within a very thin shell near the sphere
surface (about 100 A for a sphere of radius 3.8 lcm). In
both of these regimes we overestimate T. This is because
T goes to zero for Vs of sufficient magnitude.

The differences can be also examined in terms of the
mode amplitudes obtained by decomposing T and V into
products of radial functions and vector spherical har-
monics for various particle radii. In the nonresonant re-
gion, T= V and the radial functions for the two functions
are virtually identical. In the resonant region, the ampli-
tudes of all the modes in T grow; however, the largest
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mode remains that associated with the resonance and its
amplitude is the same as in V. Hence, notable differences
between T and its weak-coupling limit will appear only in
the spatial nodes of the resonant mode contribution or
over a negligible fraction of the sphere volume. We will
therefore use Eq. (4.1} as an approximation for the ap-
propriate blocks of the T matrices.

In addition to the weak-coupling approximation, there
is another approximation that can be made that greatly
simplifies the solution of the integral equations, Eq.
(3.12). When comparing the magnitude of V'(co) with
that of V," (co} in the resonant frequency region, we find
that V' (co) is much larger than the infinite medium con-
tribution at intermolecular separations r 50 A, which is
a distance typical of ordinary Forster transfer in a bulk
fiuid. Moreover, the magnitude of V' (co) is comparable
to, or greater than, that of V;" at short intermolecular
distances (r;~ 550 A) in a large fraction of the sphere
volume near the sphere surface. Given the fraction of the
system volume in which V' (co) is very large, it is there-
fore reasonable to drop the infinite medium contribution
entirely. Of course, this approximation corresponds to
the neglect of the standard Forster transfer mechanism
and would not be valid in bulk systems.

The matrix for Go(r;co) involves the matrices V';. (co)
and Jdr T,"' (co). With the above expressions for the V
matrices, it is a simple rnatter to use the orthogonality
properties of the vector spherical harmonics to obtain an
expression for Go(r;co), i.e.,

Gf&(r;co)=go (r;co)(1 rr)+go~~~(r;co—)rr,
where the functions gr', (r;co) and go~~(r;co), defined in
the Appendix in Sec. 3, are functions of the polarizabili-
ties, densities, and Mie coefficients. The form of Eq. (4.2)
is expected from rotational symmetry. A similar expres-
sion may be written for G ~ ( r; co ).

With the aforementioned approximations, the integral
equations, Eqs. (3.12), are easy to solve; the solution may
be written as

J+1 J
G p(r, r ', a))= X X X Ga, pJ, t, i', M(r r' co}

J= ll, l'= J—1M= —J

J, l, M(+} J, /', M(

(4.3)

Using the orthogonality properties of the vector spherical
harmonics, the angular integrations are easily performed,
leading to sets of coupled integral equations for the radial
functions, G p j j r M(r, r', co).

Furthermore, as a consequence of having dropped the
infinite medium contribution to V, the resulting set of
coupled radial integral equations is now separable, and
after some tedious algebra is performed, the radial func-
tions turn out to have the form

J+1
G p.J i i M(r, r';co) = — X Ff, t i (r)P

I l =J—11' 5

XFgi, i (r'), (4.4)

where the radial functions are defined in the Appendix in
Sec. 3. The coefficients I J'l l are obtained by solving

simple matrix equations with dimension equal to three
times the number of components in the system for each
value of J, cf. Eqs. (A29) and (A30).

With the above expressions, the various energy transfer
rates can be computed after some straightforward alge-
bra. Since the matrix 8' in the radiation rates can be
written in a form similar to V, they are also easily corn-
puted. The details are sketched in the Appendix in Sec.
4.

V. RESULTS

Even with all the sirnplifications introduced above, the
solution of the coupled integral equations given in the
preceding section remains a nontrivial numerical task.
As we have mentioned previously, and cover in more de-
tail in Sec. 3 of the Appendix, the three-dimensional cou-
pled integral equations for the propagators have been re-
duced to a sequence of simpler one-dimensional coupled,
separable, integral equations for functions of the radial
distance r. Since the equations are separable, they may
then be solved by taking overlaps with the appropriate
radial functions, thereby obtaining a sequence of coupled
linear equations of low dimensionality.

Since the standard, i.e., recursive, methods for cornput-
ing the spherical Bessel functions required for computing
the Mie coefficients and overlap functions yield the Bessel
functions for many orders simultaneously, it was advan-
tageous to perform the required overlap integrals for the
full sequence of matrix equations in parallel using an
adaptive, vector, Gaussian integration scheme. The nu-
merical calculations we present below include contribu-
tions from modes with J in the range 1~J 89. In the
frequency range shown in the figures there are approxi-
mately 120 Mie resonances with Q*s in the range from 10
to 10' [16].

Some illustrative results for Dz(co} and R" (co) for
three donor (and acceptor) concentrations selected from a
range, spanning ten orders of magnitude, from
3.00 X 10 to 3.00 X 10 pM are presented in Figs. 6 and
7. The frequency range displayed corresponds to wave-
lengths from 322 to 442 nm. In this frequency region, the
Mie resonances are extremely narrow (they have
Q's-10 —10' ) and, hence, in order to present a spec-
trum which is more like that obtained experimentally, the
data represented in Figs. 6 and 7 have been convolved
with a Gaussian weighting function with a width compar-
able to the experimental instrument width. In com-
puting D~(co), we have taken for I ~ (co) the value,
I ~ (co)=) 0 ~lao &, where the parameters yo ~ and ao &

NR

come from the Lorentzian model for the total polarizabil-
ity, cf. Eq. (2.7). Hence, cf. Sec. II, an overall scaling fac-
tor of I ~ (co)ao ~/yo ~ should be included. Nonetheless,
while the overall scale of the plots in Fig. 6 is arbitrary,
one can still compare the magnitudes of the three panels.

Naively, DA(co) would be expected to be proportional
to the acceptor density, cf. Eq. (2.14). In fact, portions of
the spectrum do scale this way, namely, the frequency re-
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gions away from the Mie resonances. Similarly, for the
micromolar densities we are studying, R" (co) should be
a linear function of density. The leading contribution to
the total radiation comes from the radiation emitted by
the initially excited donors and explicitly O(1) in density,
cf. Eq. (2.15c). In addition, there are contributions aris-
ing from coherent scattering from the acceptors [O(pz)]
or from the other donors [O(pD)]. In the spectral regions
far from the Mie resonances, these last contributions are
small and, hence, R „d(co) is basically independent of den-
sity. Hence, were we only to sample points far from the
Mie resonances, only trivial behavior would be obtained.

Since the electromagnetic coupling is greatly enhanced
near the Mie resonances, the density dependence in this
region will be nontrivial. Near the resonance peaks, both

DA(co) and R" (co) shift and broaden considerably as the
density is increased, and for sufficiently high densities,
the resonances are found to disappear entirely. In gen-
eral, in this regime, when D~(co) increases, R„d(co) de-
creases, as expected. For our choice of parameters, this
effect sets in at roughly millimolar concentration levels.
This is slightly higher than the experimental range re-
ported by Folan, and co-workers [3] and the difference is
probably due to the details of the model used. In addi-
tion, the broadening of the Mie resonances may be exag-
gerated by our approximations for T.

Figure 8 examines the function D~(co) (not convolved
with any weighting functions) in the vicinity of one of the
strongest and narrowest of the Mie resonances. The
6gure shows the effects of varying the density over ten or-
ders of magnitude. The peak corresponding to the reso-
nance is observed to both shift and broaden as the density
is increased, until the peak has more or less disappeared.
The increase in the widths is proportional to the density.
One can simply interpret this as being due to the intro-
duction of a loss part into the average dielectric constant
of the medium as a consequence of the addition of the
dye molecules. This loss arises from both elastic and in-
elastic scattering of the radiation by the molecules. The
loss arising from the elastic scattering can be understood
in terms of dephasing (which will destroy the phase
coherence necessary to maintain the Mie resonance),
whereas the loss due to inelastic scattering is due to the
fact that the oscillators are all damped and absorb some

4x10

3x10

2x10

10

0 AA ii AJAR a a ~L ~MM. hAJA. MKPhaAL~A aA aAA J))AJAR

54 59 64 69
cd /c

sphere

74

FIG. 6. DA(co) versus co in reduced frequency units for the
case in which the parameters used for the acceptor and donor
polarizabilities are unequal. The spectrum has been convolved
with Gaussian weighting functions, with a width of 0.05 in re-
duced frequency units which is typical of the instrumental reso-
lution. The three panels (a)—(c) correspond to donor densities
(equal to the acceptor densities) spaced roughly three orders of
magnitude apart. The donor densities displayed are (a)
6.46X 10 pM; (b) 13.9 pM; and (c) 30000 pM. For densities
smaller than 6.46X10 ' pM, the spectra do not change aside
from the trivial scaling with density. The parameters character-
izing the polarizabilities of the molecules are the DC polariza-

0
bilities, ap D/cop D exp ~/cop A 6.0 A, the frequencies ex-
pressed as wavelengths A,p D

=3530 A and kp A
=3930 A, and the

dimensionless damping constants yp D/cop D =0.105 665 7224
and gpA/ct)pA=0. 09491094148. The dielectric constants in-
side and outside the droplet were taken to be 2.1609 and 1.0, re-
spectively. The sphere radius used was 3.79945 pm. Modes
with 1 ~J~ 89 were included in the calculation. Finally, the re-
duced frequency range displayed corresponds to the 322 ~".2
nm wavelength range.
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2x10'

3x10
(a)

2x10"
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54 59 64
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69 74

FIG. 7. R" (co) versus co for the case in which the parame-
ters used for the acceptor and donor polarizabilities are un-

equal. The parameters used are.identical to those used in Fig. 6.
As in Fig. 6, the spectrum has been convolved with Gaussian
weighting functions. For donor densities smaller than
6.46 X 10 ' pM, R" (co) does not change.
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rates revert to the naively expected density dependence;
however, a significant amount of saturation sets in at
higher concentrations (concomitant with the broadening
of the individual Mie resonances). Note that R„d(co)
does not include the redshifted fluorescence due to the ac-
ceptors. If the frequencies of this radiation significantly
lie in the spectral region shown in Fig. 9, its inclusion
could offset some of the falloff shown at higher densities,
since the intensity of redshifted fluorescence is expected
to increase as the density is increased. While the experi-
ments of Ref. [3] show that some overlap occurs, the ex-
perimental results were corrected for this and the ratio of
the intensities under the donor and acceptor bands was
reported.

Figure 11 shows the ratios of the quantities in Figs. 9
and 10, since what is typically reported is the ratio of the
quantity of the light emitted by the acceptors to the total
amount emitted. (This ratio plays the role of the quan-
tum yield in our model. ) In the concentration range re-
ported in the experiment cited in the Introduction, we
find that for the unequal polarizability case this ratio
scales as p

' ' (for the six highest densities in the
figure) and for the equal polarizability case, this ratio
scales as p

'"* (for the five highest densities in the
figure}, in excellent agreement with the experimental
values p

' * . For much lower densities the ratio
scales roughly as p', as expected. This crossover is also
observed experimentally at densities that are slightly
higher than those shown in Fig. 11. Part of the difference
can be ascribed to the difference between real and model
molecular polarizabilities; the rest probably arises from
our overestimating T in part of the system and, hence,
the strength of the interactions in our approximations, al-
though to some extent this last effect is offset by our
neglect of near-field interactions.

Finally, we relaxed the assumption of taking Qz(co)
constant by modeling it as a Gaussian, with a width of

2.0 in reduced units, centered at various points in the
spectral range shown in Figs. 6 and 7. When the frequen-
cy integrals that appear in Eqs. (2.14c} and (2.15c) were
recomputed, the absolute magnitude of results -differed
from those shown in Figs. 9 and 10, but these differences
largely cancel from the ratio shown in Fig. 11 and the
same qualitative trends and exponents were obtained.

The theory of Druger, Arnold, and Folan predicts
similar behavior [5(b)], i.e., for low density the ratio
scales linearly with density and as the density increases
the dependence becomes progressively weaker, eventually
saturating. However, except at the lowest densities, the
physical interpretation of the effect is completely different
in the two theories. In Ref. [5(b)], the saturation effect
arises entirely because of the ratio being computed. The
ratio in that theory has the form

pX
1+pX ' (5.1)

VI. CONCLUSIONS

where X is a ratio of two-body transition and radiation
rates (integrated over appropriate densities of states, etc).
The resonances do not broaden as the density is varied.
The resonances simply determine the magnitude of the
number X, which, in turn, determines a range of p over
which Eq. (5.1}saturates. In contrast, in our theory, the
behavior of the ratio is largely determined by the density
behavior of the acceptor dissipation rate, which varies be-
cause resonances are broadened as the density is in-
creased. Indeed, broadening is observed at the highest
concentrations reported in Ref. [3].

10'

10

10' 10' 10' 10' 10'

FIG. 11. The ratio of the quantities in Figs. 9 and 10, which
plays the role of a quantum yield, plotted as a function of the
donor density. For the unequal polarizability case, this ratio
scales as O(p +

) for the four lowest densities and switches
over to 0 (p ' '+

) for the six highest densities. For the
equal polarizability case, this ratio scales as 6(p + '

) for the
lowest four densities and switches over to O(p "+

) for the
five highest densities.

While our simple classical electrodynamic treatment of
the problem of energy transfer in micrometer-sized drop-
lets lacks many of the features of a fully quantum
mechanical or quantum field theoretical treatment,
nonetheless, it seems to be able to describe some of the
multiple-scattering, many-body aspects that result in
nontrivial density dependences in droplets, in the Mie-
resonant regions of the spectrum. By choosing a single or
multiple oscillator model for each dye molecule, we were
able to mimic some of the spectral features of these mole-
cules and we were able to extract the experimentally ob-
served concentration dependences. Specifically, we have
been able to show that the reported anomalous density
dependence of energy transfer in droplets can be traced
to the long-range coupling induced by the Mie resonances
and to the effective loss induced in the medium by mul-
tiparticle scattering. The competition between these two
effects leads to broadening of the Mie resonances and to
saturation of the energy transfer at su%ciently large den-
sities.
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1. The electric Seld

This section contains many standard results for the
properties of the electric field in a spherical cavity, cf.
Ref. [12]. The propagator relating the dipole moment of
a source located (at position r ') inside a sphere of radius
R to the electric field inside the sphere (at position r )

may be written as

V(r, r ', co)= V"(r, r ', co)+V"(r, r ', co), (Ala)

where

4' K.
V (r r', co)= g g VX .

i i=1m= —l .

h,"'(K,r), j,(K, r')
'

( )
Yllm(Q} ~ X '

h(1)( )
Yllm(Q }

Jl Kir l Ktr

z hl "(K;r )j 1 (K; r') r (r&R
+Ki

(K r )h(1)(K ri) I I m(Q}Y l l m(Q } r r & r' &R (A lb)

is the vector spherical harmonic expansion of Eq. (2.10) and

V"(r, r ';co)= g g (gl [VX [j l(K;r) Yl l (Q)]] I
V'X [j((K;r')Yl'1 (Q')]]

i l= lm = —I

+K; 'g ( Jl ( K; r )jl ( K; r ) Y 1 1 ( Q ) Y 1 1 ( Q '
) ) (A lc)

(A2a)

and

The quantities gJ and gJ are the Mie coefficients for the expansion of the fields inside the sphere corresponding to the
TE and TM modes, respectively, e;(,) is the dielectric constant inside (outside} the sphere, K, (,)

=—co@,'(,)/c, and jl(x ) and
hl "(x) are spherical Bessel functions. (A note on our notation: we take Y z l M(Q) to be a row vector when written as a
matrix, so that Yj l M(Q):—[ Yz 1 M(Q)] is the complex conjugate transpose and Eq. (Al), etc., are matrix equations. )
The Mie coeKcients appearing in Eq. (Alc) are given by

e;hq"(K;R )[K,Rhj"(K,R )]' e,hq"—(K,R )[K(RhJ"(K(R )]'

e jj(K,R)[K Rh&. '(K, R )]'—e, h& (K,R )[K;Rj&(K;R )]'

hq"(K;R )[K,Rhq"(K, R )]'—hq"( RK)[K,Rhq"(K;R )]'

jJ(K;R )[K,Rhq" (K,R ) ]' hJ "(K,R ) [K;R—jJ(K;R ) ]'
(A2b)

The primes on the bracketed expressions in the equations
above denote differentiation of the expression with
respect to the argument of the spherical Bessel function
contained within it. For the case r =r ', we abbreviate
V"(r, r;co} to just V"(r;co). If one rewrites Eq. (Alc) in
the form of Eq. (2.11), one obtains the following expres-
sions for the coefficients gJ l l. in terms of the Mie
coefficients of the expansion inside the sphere:

4' K;
9J,J,J QJ (A3d)

9J,J+1,J 9J,J,J+1 (A3e)

Using the same notation, we can express the functions
appearing in Eq. (2.9) as

9J,J+1,J+1
4+i K; J E

gJ (A3a)
J+1

4r(v" "(r;a))= Q g (2J+1)qJ l l Jl
J=1 l, l'= J—1

41TlKi J+ $
9J J—1,J—1 2J+ ) +J (A3b)

X(K,r)J, .(K, r) A~, AJ, (A4)

IJ,J+1,J—1 IJ,J—1,J+1
4(rl K; [J (J + 1 ) ]1~2

e, 2J+1
(A3c)

J+1
4~v"' (r;~)—=—g g (2J+1)rljl lj, (K;r)j, (K, r)

J=jl, l'= J—1

X(All. —AJ l AJ l ), (A5)
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—+
where the A J l are defined by the relation r YJ l M (Q )—:A J / YJ M (Q ), so that

' 1/2

for l =J+1
1/2

for l=J—1

0 otherwise.

Similarly, the propagator relating the dipole moment of a source located at position r inside a sphere of radius R to
the electric field outside the sphere at position r may be written as

V(r, r', co)—: (g, I V X [h/'"(K, r ) Y// ~(Q)]] I
V'X [j/(K, r') Y// ~ (Q')] I1=1 m= —I

+K'0/ h/ '(K;r )j l(K;r') Y / l (Q)Y / l (Q')) (A7)

and the corresponding Mie coefficients for the expansion of the fields outside the sphere due to sources inside are gE and
gJ and are given by the expressions

and

jJ(K;R )[K;R'hJ"'(K;R )]'—hJ"(K;R )[K;RjJ(K;R )]'
JJ(K;R )[KOR/iJ (/coR )] (E0!E;)/lJ (KOR')[K;RJJ(K;R )]

e, jJ(K,R )[K;RhJ/ "(K,R )]' hJ"(K,R )[K,.R—jJ(K;R )]'

jJ(K,R )[K,RhJ"(K,R )]' hJ"(K,R—
) [K;RjJ(K;R )]'

(A8a)

(Agb)

In writing the above expressions we have taken the mag-
netic permeabilities of the media to be unity.

2. The binary collision operators

The T's that appear in Eq. (3.12) can be written in the
form

J+1 J
T 'p(rr;co)= g X X t,p; J/'/(r r; co

J=1 I,I'=J—1 M= —J
XY J I M(Q)YJ l M

(A9a)

and

J+1 J
T 'p(r&r', co)= g g g t p J //. (r, r', co)

J=1 I, l'=J —1M= —J
IX Y J, l, M(Q )Y J, /', M(Q)

t 'ppJ/ / (r, r', co) =p'pp. J/ / J/(K; r)g/. (K, r'). (A 1 la)

over the P coordinates r ' and this is straightforward to
obtain.

The radial functions appearing in the binary collision
operators are not all independent. Rather they are relat-
ed according to

t 'I J l l (r, r';co)=( —1)'+'t 'p J l /(r, r';co) . (A10)

This follows trivially from the facts that

T 'P(r, r ', co)= TP'I(r, r ', co)

Y (Q) ( 1)/+ 1+J MY (Q)
7 7

(see Ref. [17]),and IJ, /, M I are integers. Simple approxi-
mations for the radial functions that meet these condi-
tions are given by

(A9b)

as a consequence of how the fields must transform under
rotations of the coordinate system. The functions T 'p
are more complicated, but may be obtained from the rela-

ya, p.G p,p. yp, a Or ya, a y.a,p.G p, p. yp, a
a,P= a,P 0 a,P a,P= a,P 0 a, P

once the other blocks are obtained. Fortunately, as we
shall see in the following section of this Appendix, we
only require T 'p(r, r ';co) in the context of its integral

p J, l, l'(r " ~) Ca, pJ, /, /'2/(K' V/'(K'r)

where the coefficients p pp. J l l are related by

Pa I+I' aPgaP J I I' ( ) guP J l' I

and in the weak-coupling limit

a, p
a, P;J, I,I'~ IJ, I, I' .

(A11b)

(A12)

(A13)
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Moreover, as was mentioned in Sec. IV, one finds that the
approximation in Eq. (A13) works very well for the

with the largest magnitude. In the solution of
the integral equation, we shall use Eq. (All) together
with Eq. (A13).

for p= A, D and where we have written Gop for the pp
block of Go. In the above expression, we have assumed
that the molecular polarizability is isotropic and have
written

a p(co) =ap(co)1 . (A15)
3. Solution of the integral equation

= {[ap(co)] ' v" (r;—co)] '(1 rr—) (A14b)

In order to compute the desired rates, we first obtain
the one-particle propagators from Eq. (3.11). Equation
(3.3) gives

Go(r;co)= I [a p(co)] ' —V "(r;co)]

Furthermore, we can write for the integrals of the diag-
onal blocks of the T matrices that go into Eq. (3.11)

r'T '& r, r';co = r'TI3' r', r;co

—= t~~ p(r;co)rr+t p(r;co)(1 rr ) . —

+ [[ap(co)] ' —v" ~~(r;co)] 'rr .

=gPO' (r;co)(1 rr )+g—PO'l (r;co)rr (A14c) Using the weak-coupling approximation, we have

and

oo J J+1
4~11 (r;co)= —g

J l, , li 12 12

X dr'(r') [A &, Az &
gPO'~~(r', co)

0 2

+(5,, ,
—A, , Az & )go (r';co)]j, , (~;r')ji (Ic;r')

1'2 r 1
'2 2

(A17)
oo J J+1

4~' p(r;co)= ——g g g 3, , '9
& I (&«Az, t A )ji (ice")J~ (Ic ")

]~J l, l', l, l =J—1

X f dr'(r') [A &, A I, goP'~~(r', co)

+(5I, I
—A, , A~, )go (r', co)]J'&, (x, r')J', (x, r') . (A18)

Therefore from Eqs (3 11) and (A17) and (A18},components of the one-particle propagators appearing in Eq. (4.2) be
come

gD (r;co)= [[aD(co)] ' v"' (r;co)+p—ptD~(r;co)+pDtDD(r;co)]

etc.
We determine the radial functions in the vector spherical harmonic expansion of various terms in the integral equa-

tions by first taking overlaps of the integral equation with vector spherical harmonics. For the left hand side of Eq.
(3.12), we have, after taking moments,

,p J, /, M;J , /', M'(r, r'', co)= &J,~,M G.,p(r—, r ', co)IJ', ~', M'&:f dQdQ YJ I M(Q)'G p(r r 'co) YJ I M(Q )

(A19a)

(A19b)

Inserting the weak-coupling expression for T '&~and taking overlaps of the other parts of the integral equation with
vector spherical harmonics, we have

(J, l, M~G'(r;co) T 'Pp(r, r ', co) Gp(r ', co)~J', 1',M')
J"+ 1 J"

ji (Iccr)ji (iccr )f dQ Y J ( ~(Q)'G (r 'co)'YJ I I (Q)

where

X fdQ'YJ $ M (Q) Gp(r pco) Yj / ~.(Q') (A20)

f dQ Y J, I,M(Q) G'(" co) Yr, i', M'(Q)=4J'4aM'[AJ, i AJ, i'g' (" co)+(&i, t' As, IAJr)g' (" co)]

By defining new radial functions by

(A21)
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Fz I l. (r;co)=[A+ IAJ l.g' (r;co)+(5I I. —Az I Az I )g' (r;co)]jl.(lc;r),

we can rewrite Eq. (A20) as

J+1
( J, l, MlG' (r;co).T 'p(r, r ';co) Gp(r ', co)l J', l', M') = —5z J5M M.

III II II J 1

The next term in the integral equation, Eq. (3.12) becomes

(J, /, Ml J dr "6' (r;co).T 'y(r, r ";co).G p(r ",r ';co)l J', l', M')

FJ, I,!"(r ~)9J,I",I'"+j,l'",I'(ra 13 I ~

(A22)

(A23)

where

J"+1 J"
f dr" (r') (J, l, MlG'(r;co) T 'y(r, r ";co)lJ",l",M")

Jll 0lft Jtl 1~II JR 0

X (J",l",M" lGyp(r ",r ';co)l J', l', M'), (A24)

J+1
(J, l, MIG'. (r;~) T.'y(r, r ";~)IJ",l",M") = 5J,J"5—M, M" g gJ I,I"Fgl, l (r)jI"(~tr

I) =J—1

Equations (A23) and (A25) show that 6 p J I M.J I M (r, r';co) can be written as

6 p.J I M Jl M (.r, r', co) =5J J 5M M G p.z I I. M(r, r', co)

(A25)

(A26)

where G p.J I I. M(r, r;co) obeys a separable integral equation. Taking overlaps with the radial functions jI(lc;r) trans-
forms the integral equation into a sequence of matrix equations, one for each value of J, whose dimensionality is deter-
mined solely by the number of species in the problem. For the two species case, we are thus required to solve a se-
quence of 6X 6 matrix inversion problems. By de6ning the overlap integral

R
BJ I I (co)= dr r jI(lc;r)Fg I I. (r;co) (A27)

we can perform some simple algebra and show that
J+1

p; J, l, l', M(" "' ) = X Fg I, I, (" co) J,'I, , l', ~gl', I, ("' co)
I I =J—11' 5

where

J+1 —1
p~P

I& l5 QJ I] 15 m m PS'9J, ll 12 5 l2'P I3 J 13 l4 9J,14, l5
scJ . 8&

y, 5 l2, , 13,I4 ——J—1

and

J+1J a+a, l;y, l' =5a, y5l, I' Py P eJ, !,I( 1J,I(, l' '
I =J—1

1

Note that the matrix inverse is de6ned by

(A28)

(A29)

(A30)

J
g gX lyl X'

y I'= —J l.pl = afkl I" (A31)

4. 8'" and the computation of rates

To obtain 8 ",we examine the total radiation rate,

(R~+D (t)(= l(m JdaR S(t)r ), (A32)
p~ oo

where S (t ) is the radiative energy tlux. By Poynting's theorem, when the magnetic permeabilities of the two media are
unity, we have

S(t)= E (t) XB (t),4~
(A33)

where E(co) and B(co) are easily obtained from our results in Sec. 1 of this appendix. After computing E(r;co) and

B(r;co) outside the sphere, we perform some tedious algebra and obtain
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