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Temporal scaling of interfaces propagating in porous media
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To better understand the temporal behavior of a roughening meniscus driven by capillary forces
during the imbibition of a viscous Quid in porous media, we measure the height-height autocor-
relation function C(t) using a constant driving force. We find C(t) tS, with P = 0.56 + 0.03,
and provide experimental evidence for driving the force independent temporal scaling behavior of a
propagating wetting front in the presence of quenched noise. We interpret the value of P in terms of
the possibility that the dynamics may be governed by nonvanishing nonlinearity due to anisotropic
depznnj. ng.

PACS number(s): 47.55.Mh, 05.40.+j, 05.70.Ln, 68.35.Fx

The growth of rough surfaces and interfaces under far-
&om-equilibrium conditions is a common phenomenon
in nature [1]. Examples include such processes as vapor
deposition, crystallization, thin film growth by atomic
beams, settling of granular materials, and Quid How in
porous media. The Quctuations of the interface height
h(x, t) can be characterized either by their standard de-
viation o(l, t), or by the height-height correlation func-

tion C(l, t) = [([h(l + x, t + v.) —h(x, 7.)] ) ),where

h(x, r) = h(x, w) —(h(x, r)) . The common belief is
that o(l, t) and C(l, t) exhibit the same general statis-
tical properties.

Partidularly useful is the Family-Vicsek dynamic scal-
ing hypothesis [2],

Bh(x, t) 2 2

Ot
= vp + vV h+ A,g (Vh) + rl(x, t). (2)

C(t) = C(o, t) - L-X(t/L-»),

where L is the system size and X(y) y~ for y &( 1,
X(y) const for y )) 1. Extensive numerical simulations
of different computer models [1] predict universal values
for the exponents P and a. Theoretical work is based on
Langevin-type equations, such as

PQEW = 3/4i PQKPZ = 3/5. (3b)

The fact that scaling of surfaces during roughening in the
presence of quenched noise exhibits driving force inde-
pendent temporal scaling also underlines the importance
of the investigation of the exponent P, which is the main
goal of this paper.

Specifically, we investigate the growing interface during
imbibition of viscous liquids in filter paper. The experi-
mental setup (Fig. 1) contains two vertically positioned

rl(x, h(t)) in Eq. (2). We denote the linear and non-
linear equations as QEW and QKPZ, respectively. Nu-
merical solution of the QEW equation [5] produces self-
afBne interfaces with a roughness exponent 0; in the range
[0.5 —1.0], which is tunable with the driving force vp

[6—10,12—14]. Different computer models also exhibit
very scattered results for n [7]. However, theoretical con-
siderations suggest [8] that PQEw = (4 —d')/4. Numeri-
cal integration of the QKP Z equation close to the pinning
transition exhibits temporal scaling with P = 0.61+0.06,
in good agreement with the result of simple dimensional
analysis which predicts PQKpz = (4 —d')/(4 + d') [9].
Hence for d' = 1:

The linear (A,tr = 0) and the nonlinear (A,tr g 0) cases
are referred to as the Edwards-Wilkinson (EW) [3] and
Kardar-Parisi-Zhang (KPZ) [4] equations. Analytical so-
lution of Eq. (2) in d' = 1 (where d is the dimension
of x) reveals the same spatial exponent (n = 1/2), but
diferent temporal exponents

PEw = 1/4, PKpz —1/3.

If we know these exponents, then we can distinguish be-
tween linear and nonlinear dynamics based on P. There-
fore it is important to make accurate measurements of

If the randomness in the dynamics is due to the in-
homogeneity of the media where the moving phase is
propagating, then the resulting interface exhibits difer-
ent scaling behavior. This time-independent "quenched"
randomness can be described by replacing rl(x, t) by

FIG. 1. Schematic of the experimental setup. The average
height h of the meniscus in the wetted paper was kept at a
constant level. A video camera digitized the interface in real
time and the computer pulled down the paper if h became
larger than the prede6ned value H.
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40 x30 cm parallel plexiglass plates separated 6..om each
other by 3 cm and closed with side walls. The bottom
part of the plates extends into a liquid container from
which water starts to wet the filter paper. We designed
the size of this liquid container to be large enough to
keep the free surface of water at a constant level. All
height measurements are relative to this reference level.
The upper part of the cell is closed by polyethylene film
to prevent a large amount of evaporation. The dry pa-
per passes through two touching cylinders driven by a
stepping motor, and enters into the cell through a nar-
row gap on this film. We use other rollers and a proper
weight to keep the paper stretched. Stretching of wet
paper sometimes involves changes in the paper structure
mostly by elongating the paper strip. This was checked
by double measurements of the speed of the paper strip.
We measured the speed of the paper both at the driving
rollers at the stepping motor, and at the weight used for
stretching the paper. Any dilatation of the paper strip
would appear in a difference between the speeds at these
points. We have used enough small stretching weight to
avoid any such difFerence.

We monitor the wetting front h(z, t) with a high resolu-
tion (0.48 million pixels) CCD NTSC camera horizontally
centered in &ont of the front plate. We use a personal
computer to digitize the video image, and to calculate
the average height h = (h(x, t)) in real time. We set
our video system to digitize a 8.4-cm-wide segment of
the filter paper strip involving a 110 p,m (squared) pixel
size. We control the motion of the paper by a gear mech-
anism driven by a stepping motor connected to the same
computer. According to our calibration, one step of the
motor corresponds to a paper shift of by = 85 p,m.

The water &ont moves upward in the paper due to the
effective driving force s, which is mainly determined by
the balance between capillarity and gravity. We maintain
this driving force constant by holding 6 at a predefined
value H. If 6 exceeds H by by, then we pull the paper
down by 8y. This negative feedback, apart from fluc-
tuations, prescribes a constant average speed V for the
paper for a given H. Our measurements at 14 difFerent
values of H fit remarkably well the power law

(4)

where 0 = 1.594 + 0.007, and the quoted uncertainty
is the standard deviation from the fitted value. The re-
lation (4) holds in the entire investigated range of the
control parameter, H = [2 mm, 40 mm], which spans ap-
proximately 2.5 decades of the capillary number.

During the experiment, the computer saves the contour
lines of the digitized images for later analysis. Snapshots
of the evolving interface at diferent times are superposed
in Fig. 2 for three difFerent values of the velocity. We find
only a few and negligible [10] overhangs, and when they
occur we rexnove them in the usual way [11].

Using the contour lines we calculated C(t), which has
less uncertainty than the standard deviation of the inter-
face height, and is therefore more useful for calculating
the true exponents [12]. To check the scaling behavior of
C(t), we form the quantity

C'(t;, ) —C2(t,),p
( zj —

gpss 2pit,.+~
—t,.

(5)

where t;, t,+x are successive times. If C(t) oc t~, then
Y (t)

~ p —p xnust scale the same way, but provides a
more precise (self-consistent) method to determine P by
eliminating any existing additive "correction-to-scaling"
terms [13]. Figure 3 presents our results for the same
data sets as showxi iu Fig. 2. We find Y(t) oc t~ for early
times and this power-law behavior extends over slightly
more than three decades at the minimum driving force
(V = 1.4 x 10 cm/s). Within the experimental un-
certainty, P is independent of our control parameter H,
yielding an average value

P,„p ——0.56 + 0.03. (6)
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FIG. 2. Snapshots of the evolving interface for di8'erent
velocities V. (a) V = 4.03 x 10 cm/sec, (b) V = 1.32 x 10
cm/sec, (c) V = 1.40 x 10 cm/sec. The sampling rate is the
same constant for all pictures and the artificial shift A: between
the contour lines is proportional to this constant. Units of this
figure are in pixels. The pixel/mm ratio is indicated in the
text.
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FIG. 3. The difFerential autocorrelation function Y vs time
is shown by circles. The dashed lines present the saturation
regime of the autocorrelation function. The speeds for the
three curves are the same as in Fig. 2. Larger speed im-
plies larger intrinsic width (intercept), and smaller saturation
value. The base of the logarithm is 10.

This result can be compared to two-dimensional the-
oretical results and simulations because the small thick-
ness of the filter paper (which is in the order of microme-
ters) does not permit any coarse-grained roughening per-
pendicular to the paper strip. Comparing P,„p to (Ba),
we may exclude the dominance of annealed randomness,
which prescribes a much lower value for P. Moreover,
the value of PqEw is also inconsistent with our result.
Nevertheless quenched disorder with nonlinear dynam-
ics produces a remarkably close exponent, PqKpz = 0.6
[9], which suggests that quenched randomness and non-
linearity play important roles in the dynamics of vertical
imbibition.

Remarkably, we find no crossover for P in the scaling
regime, as might have been expected in the case of JEW
[8,14], where the temporal scaling is described by PqEw
for early times and by PEvv for late times (at an interme-
diate driving force). As the driving force increases, the
crossover point t* becomes smaller and the scaling re-
gion described by PEiv enlarges. From Fig. 3, we observe
crossover neither as a function of driving force, nor as
a function of time even at the maximum driving force
(V = 2.1 x 10 i cm/s). The absence of such a crossover
also indicates the importance of the nonlinearity in our
experimental system.

It has been observed [15] that numerical results fall
into two groups depending on the origin of the nonlinear
term A(Vh) . Kinematics produces a A which vanishes
at the threshold and the resulting interface belongs to the
same university class where the nonlinear term is absent,
A,& = 0. On the other side the QKPZ university class is
characterized by a nonvanishing nonlinear term leading
to (A,n g 0). What is the origin of such a nonlinearity
which leads to P,„~ PqKpz in our experiment'? Re-
cently Tang, Kardar, and Dhar demonstrated [16] that
anisotropic depinning yields a nonzero A ~ at the depin-
ning transition. To illustrate the existence of such an
anisotropy in our system, we consider the filter paper
as an interconnected network of different capillary tubes.
The inhomogeneity of this network can be considered as
a random field with amplitude L. This random field is

correlated isotropically in space within a distance a, but
the driving force (pressure drop) is different along hor-
izontal and vertical tubes, Fh = f and F„= f —pga,
respectively, because the driving force must compensate
the weight of the liquid in a vertical tube (p is the den-
sity of the liquid). Due to this anisotropy, a segment of
the interface can easier be pinned vertically than hori-
zontally. Therefore a slope-dependent effective driving
force F(Vh) = F(V?i) —F, is generated under coarse
graining, which explains the absence of large overhangs.
Tang et al. pointed out [16] that an expansion of F(V?i)
around its minimum yields to a term A,s(Vh) which
remains finite, independent of V, which is the hallmark
of the QKPZ universality class.

Figure 3 demonstrates two effects of increasing the
driving force, namely the intercepts increase and the
saturated values decrease. In order to incorporate this
behavior into the scaling formalism, we assume that
Eq. (1) is valid with the rescaled time and space vari-

ables t' = t~V ' and L' = L V . As a consequence
of this assumption, C(t)1, i scales as

This extended dynamic scaling (EDS) hypothesis is fully
compatible with Eq. (1) for a given V, but also describes .

the characteristic role of the driving force in the pres-
ence of quenched disorder. In the limit of small driving
force and early times (t~V '+ ~ (( L~) the EDS hypoth-
esis reduces to C t~ V '. For t )) t, where t is a
critical time defined by t = L ~~V ~ '+ &~~, the auto-
correlation function is independent of time and saturates
at a constant value C L V L. This asymptotic be-
havior is consistent with Fig. 3, as it is expected. In
order to perform a quantitative check of Eq. (7), we plot
Y'—:CL V L vs X'—:tL ~~V~ '+ L~~~ for different
values of Oq and OL, . The best data collapse is found with
Oq ——0.37 and OL, ——0.48. Using these exponents we form
the scaling plot for measurements at five different values
of H and times spanning three decades. From the data
collapse in Fig. 4, we conclude that our measurements
are fully consistent with our scaling ansatz.

In fact there is some theoretical base for the EDS
hypothesis: Kertesz and Wolf [17] pointed out that a
new diverging length ( ~e~ in the dynamics modi-
fies the scaling of the interface and ( must appear in the
scaling form io(e, L, t) ( 'R(t', L'), where L' = L/(,
t' = t/(, and z' = n'/P'. Far from the transi-

tion point 'R(t', L') L' j(t'/L' ~~), which involves

w(e g 0, L, t) ( L W(t/L g' ). This expres-
sion resembles Eq. (7), and the similarity is more than
merely formal. Movement of the meniscus consists of pin-
ning and depinning processes [18]. Computer simulations
demonstrate [7] that as the driving force e decreases, the
surface slows down according to V e and the linear
size of the pinned regimes ( diverges ( e ". These two
relations can be integrated, with ( V "?s. According
to this picture, we also expect a new diverging length in
our system. The relation 6 V / points in this direc-
tion, although it is clear that Eq. (4) must break down at
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FIG. 4. Scaling plot for Ave different data sets. In addi-
tion to the speeds of sets in Fig. 2, two additional sets are
also drawn for V = 2.50 x 10 cm/sec and V = 4.20 x 10
cm/sec; Y' and X' are defined in the text. The best result
is achieved with exponents P = 0.56, 0i ——0.37, 0L, = 0.48.
According to the scaling function T the different data sets col-
lapse on two straight lines, with slopes P = 0.56 and zero for
early and late times, respectively. The base of the logarithm
is 10.

the pinning transition, where V = 0. If we now replace
( by V /s in to(r g 0, L, t), and compare the result to
Eq. (7), we see that there is a mapping between the two
relations with n' = ci+001,/v and z' = z+0(0t+01, )/(Pv).
Kertesz and Wolf demon. strated [17] that cr' and z' are
the characteristic exponents at the transition point be-
tween two diferent morphological phases. It remains an
interesting open question whether these exponents have

the same significance at the pinning transition too, and
this question requires more experimental investigation.

To summarize, we have studied the temporal behav-
ior of roughening interfaces during vertical imbibition in
porous media. The height-height autocorrelation func-
tion C(t)1, v of the meniscus exhibits temporal scaling
without crossover. The corresponding exponent is inde-
pendent of driving force, P = 0.56 + 0.03. We conclude
that nonlinearity plays an important role in the dynamics
of our system. For a compact description of our measure-
ments, we suggest an extended dynamic scaling hypoth-
esis, which describes the characteristic role of the driving
force in the presence of quenched disorder, and is fully
compatible with the dynamic scaling developed for sys-
tems with annealed randomness. Prom the resulting data
collapse, we 6nd Oq ——0.37, 01. ——0.48. Finally, we note
that Rubio et al. [19] measured the interface width o (l, t)
versus l in a diferent experiment, and they reported a
velocity dependent scaling to(l) l v, a result con-
sistent with our value of 01,. Although our result suggests
that P is independent of the dynamics of the system, it
remains to be seen whether the moments of the quenched
noise play an important role in determining the univer-
sality of exponents.
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