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Finite-time vortex singularity and Kolmogorov spectrum
in a symmetric three-dimensional spiral model
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A recent analytical model of three-dimensional Euler fiows [Phys. Rev. Lett. 69, 2196 (1992)] which
exhibits a finite-time vortex singularity is developed further. The initial state is symmetric and contains
a velocity null (stagnation point) which is collinear with two vorticity nulls. Under some assumptions, it
is shown by asymptotic analysis of the Euler equation that the vorticity blows up at the stagnation point
as inverse time in a locally self-similar manner. The spatial structure of the inviscid flow in the vicinity
of the singularity involves disparate small scales. The effect of a small but finite viscosity is shown to
arrest the formation of the singularity. The presence of spiral structure in the initial conditions leads
naturally to the model developed by Lundgren [Phys. Fluids 25, 2193 (1982)] in which the gradual tight-
ening of spirals by differential rotation provides a mechanism for transfer of energy to small spatial
scales. It is shown by asymptotic analysis of the Navier-Stokes equation, that a time-average over the
lifetime of the spiral vortex in the present model yields the Kolmogorov spectrum.

PACS number(s): 47.27.Cn

I. INTRODUCTION

A fundamental problem in Quid dynamics is the deriva-
tion of the Kolmogorov spectrum for incompressible tur-
bulent fiows from the Navier-Stokes equation. The Kol-
mogorov scaling law [1],originally derived by dimension-
al analysis, has been validated by several experiments and
numerical simulations, but its theoretical derivation from
the underlying dynamical equations has remained a chal-
lenge for over 50 years.

It is widely believed that a first step in the development
of a dynamical theory of turbulence should be the
identification of a mechanism by which energy in the
large spatial scales can be transferred to the small scales.
This has motivated the search for finite-time vortex
singularities in three-dimensional Euler Aows, since in
two-dimensional Aows that tend to zero at infinity and
evolve from smooth initial conditions, the formation of a
finite-time vortex singularity is forbidden [2—4].

Theoretical models that may yield finite-time vortex
singularities in three-dimensional Euler Rows have been
the subject of many investigations, most of which are nu-
merical [5—9]. Until 1990, the results were inconclusive
despite the sophistication of the numerical methods em-
ployed. Recently, finite-time singularities have been re-
ported in axisymmetric flows with swirl [10,11], but
doubts have been raised that the growth of vorticity ob-
served in these studies may be exponential [12]. A relat-
ed problem has been investigated by Childress [13],who
has interpreted the occurrence of a finite-time singularity
in a nearly two-dimensional Row as a signature of the loss
of near-two-dimensionality. E and Shu [14] present a nu-
merical study of two-dimensional Boussinesq convection
(also studied earlier by Cxrabowski and Clark [15])and re-
port exponential growth of vorticity in those regions
where Pumir and Siggia [11]find a finite-time singularity.
Despite the depth of effort that has gone into these inves-

tigations, it cannot be said that the issue of vorticity
intensification in axisymmetric Aows with swirl has been
settled beyond doubt. E and Shu find that the growth of
vorticity is much more intense on the side of a rising bub-
ble than the cap where the growth of vorticity is found to
be exponential. Caflisch [16] has presented a different
viewpoint on this problem and has demonstrated the de-
velopment of finite-time vortex singularities in a model of
complex-valued axisymmetric Aows with swirl. However,
the singularities found by CaAisch do not occur where
they do in Refs. [10] and [ll], but at the centers of the
rolls. Though Caflisch's results are mathematically in-
teresting, there are questions regarding the relevance of
his findings to the real dynamics of the Euler equation.

In a way, the controversy surrounding the problem of
axisymmetric Rows with swirl encapsulates the difficulties
involved in the search for finite-time vortex singularities.
The question is not only how rapidly in time vorticity
grows, but also where the singular growth of vorticity
should occur. The first question involves dynamics,
whereas the second involves geometry. In attempting to
answer the second question, we adopt the point of view
that vortex singularities will tend to occur near separa-
trices. We arrive at this point of view, prompted by in-
sights on the analogous problem of current singularity
formation in magnetohydrodynamics (MHD). Though
there are profound differences between the dynamics of
magnetic fields in plasmas and velocity fields in Euler
Aows, there are some geometrical similarities. We discuss
below some of the similarities and differences.

Magnetic fields B are divergence-free, as are in-
compressible velocity fields v. The analogy between B
and v is most obvious when we consider steady solutions
of the Euler equation

v Xm=V'h, 9Xv=co,

where co is the vorticity and h =p/p+v /2 is the Ber-

1063-651X/95/52(5)/5110(14)/$06. 00 52 5110 1995 The American Physical Society



52 FINITE-TIME VORTEX SINGULARITY AND KOLMOGOROV. . . Sill

BB
Bt

—VX(vXB)=0, (3)

whereas the vorticity ro (and not the velocity) obeys the
(analogous) Euler equation

—VX(vXco)=0 .
Bt

(4)

In other words, for dynamical evolution, the appropriate
analogy is B~ro (to be contrasted with J~ro in steady
state). The ramifications of this dynamical analogy have
been partially explored in Refs. [19—22] and has prompt-
ed Greene [23] to suggest ".. . that an essential aspect of
turbulence is that it is a dynamo for vorticity
amplification. . . ." It is because of this analogy that
mathematical methods used in MHD have proved to be
valuable in obtaining new stability results in Euler flows
with stagnation points [24,25]. The analogy suggests that
since in MHD magnetic-field nulls are a possible source
of separatrices [26,27] where singular currents tend to
grow, the neighborhood of vorticity and velocity nulls are
possible sites for singularity formation in three-
dimensional Euler flows.

Recently, we have proposed an analytical model [28] of
three-dimensional Euler flows containing nulls. The ini-
tial state of this model (discussed in Sec. II) is symmetric
and has a stagnation point at the origin, flanked by two
vorticity nulls. The straight line joining the two vorticity
nulls intersects the stagnation point at the origin, which
is preserved for all times by the fiow. In Ref. [28] we
have attempted to show that this model yields a finite-
time singularity by means of a multiple-scale analysis un-
der some strong assumptions regarding the form of the
solutions. In Sec. III we give a modified version of this
analysis that makes the derivation of the singularity more
transparent. The modified analysis, which is carried out
to higher order, demonstrates that there are two

noulli function for a fluid of pressure p and density p.
Equation (1) is analogous to the magnetostatic condition
[17]

JxB=Vp, VxB=J,
where J is the electrical current density and p is the fluid
pressure. A comparison of (1) and (2) suggests the analo-
gy B~v, J~co, p~ho —h (where ho is a constant). It is
this analogy that has provided the basis for certain
deductions regarding the properties of steady three-
dimensional Euler fiows in Refs. [18—22]. In Ref. [22],
solutions of (1) that are topologically toroidal are con-
sidered and it is demonstrated that 5-function vortex
singularities can occur at the so-called rational surfaces
of a nearly integrable velocity field. These rational sur-
faces, on which the streamlines close on themselves, are
the source of separatrices in a torus. The vortex singular-
ities at the rational surfaces are exactly where current
singularities occur in the toroidal solutions of a nearly in-
tegrable magnetic field [21].

This analogy between B and v in steady state breaks
down when we consider dynamics. In an ideal plasma,
the magnetic field B obeys the induction equation

disparate spatial scales in the neighborhood of the stagna-
tion point. As in Ref. [28], we find that the vorticity
blows up as (r, t)—' at the stagnation point in a locally
self-similar manner within a collapsing inner region.
While the velocity remains bounded in the inner region,
it blows up as (t, —t) '~ in a surrounding region where
the flow violates the self-similar scaling of the inner re-
gion.

The results obtained in Sec. III by the perturbative
analysis motivate a more general treatment of stagnation
point fiows (Sec. IV) in which the pressure is calculated
self-consistently by a (nonlocal) integral relation involv-
ing the velocity. This generalized treatment enables us to
consider a wider class of initial conditions (of finite ener-

gy) than that considered in Sec. III. The results of Sec.
IV support the results obtained in Sec. III and further-
more suggest that there are broadly two types of vortex
singularities that can be realized with initial conditions of
high symmetry.

In Sec. V, we study the models discussed in Secs. III
and IV in the complex spatial domain, following the re-
cent treatment of Tanveer and Speziale [29]. In this ap-
proach, the Euler equation is continued into the complex
unphysical domain. Since a class of smooth and bounded
initial conditions in the real physical domain can be
singular when analytically continued into the complex
unphysical domain, the question of finite-time singulari-
ties in the real physical domain can be reduced to the
question of whether the singularities in the complex
domain reach the real domain finite time. The analytical
framework developed in Ref. [29] is based on a crucial set
of assumptions that have not been shown to hold in gen-
eral. Whether these assumptions hold for the symmetric
dynamics considered in this paper also remains unproved.
However, the approach of Tanveer and Speziale does
reproduce the two disparate small scales found by the
asymptotic analysis of Sec. III.

We discuss in Sec. VI that the analytical results of
Secs. III—V do not violate the rigorous constraints due
to Constantin and Fefferman [30,31]. However, we point
out that the relevant theorems in Refs. [30] and [31] are
proved under a specific assumption that appears to be
violated by self-similar flows and hence it is questionable
whether these theorems are directly applicable to our
model.

One of the interesting features of the smooth initial
state in Ref. [28] is the presence of spiral structures.
Though the spiral structure does not play a significant
role in the inviscid evolution of the flow, its occurrence is
reminiscent of the strained vortex model of Lundgren
[32—34]. In Lundgren's model, nonaxisymmetric
coherent vortices with spiral structures interact with
each other only through the mediation of an axisym-
metric, background straining How. By means of detailed
asymptotic analysis, Lundgren demonstrates that the
Kolmogorov spectrum then follows from the Navier-
Stokes equation.

Lundgren's discovery, and the natural presence of
spirals in our model, motivates us to investigate the efFect
of viscosity (Sec. VII). It is shown that the presence of
viscosity arrests the formation of the finite-time vortex
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singularity in our model. As the vorticity intensifies at
the velocity null, the tightening of the spirals in our ini-
tial state provides a mechanism for transfer of energy
from the large to the small spatial scales. An asymptotic
analysis based on the Navier-Stokes equation leads us
quite naturally to Lundgren's considerations and we too
obtain the Kolmogorov spectrum. Viewed in its totality,
the present model possesses some features that enhance
I.undgren's conception. In particular, the model de-
scribes the dynamics of a three-dimensional (but sym-
metric) fiow that evolves from smooth initial conditions
and tends to a finite-time singularity (which Lundgren s
model does not). Subsequently, viscosity thwarts the for-
mation of the singularity and yields the Kolmogorov
spectrum (as Lundgren's model does). Thus the present
model can claim to capture some features of decaying hy-
drodynamic turbulence.

II. INITIAL CONDITIONS

At t =0, we consider a symmetric How u of the form

co~ = —f'(x) =—up 2cx1—
2apap

exp
EX

2ap
(9b)

~, = —f'(y) =—up 2'1—
2

apQp

Eg
exp

ap
(9c)

At the origin, ~ =co =co, = —up/ap. It follows from
Eqs. (9) that the vorticity has two nulls at
x =y =z =+ao/&2e =—a+. The vorticity null
x =y =z =a+ is of type A„whereas the null
x =y =z =a is of type 8, . A null of type 8, is charac-
terized by one real, negative eigenvalue and two complex
eigenvalues. The eigenvector for the real, negative eigen-
value lies on the yz curve, which is a stable manifold.

S

The eigenvectors for the two complex eigenvalues lie on a
two-dimensional plane that coincides with the Xz sur-

S

face, which is an unstable manifold.
Expanding Eqs. (5), (6), and (9) in Taylor series, we ob-

tain

u„=f (y),
u~= f (z),

u, =f (x) .

For specificity, we choose

X EXf (x)=uo exp
ap ap

(5a)

(5b)

(5c)

(6)

Ey
u =soy 1 — +O(c, ) .

ap

u =soz 1 — +O(E ),Ez

ap

u, =sox 1 — +O(E ),EX

ap

whence

(10a)

(10b)

(10c)

0 1 0
(Vu)0= f'(0) 0 0 1

1 0 0

has the eigenvalues A,o=f '(0) and A, +
=f'(0) exp(+i2m /3). According to the standard nomen-
clature [35,36] since f'(0)=uo/ao) 0, this null is of type

Near the null, the eigenvectors for the complex ei-
genvalues A, + lie on the Xz surface, which is the stable

s

manifold, whereas the eigenvector for the real and posi-
tive eigenvalue kp lies on the y ~ line, which is the unsta-

S

ble manifold. The subscript s denotes the spiraling trajec-
tories of the streamlines into the null in the X~ surface.

S

From the relation m =V Xu, we obtain

co„= f '(z) =——up 2Ez1—
2apap

exp
E,Z

Q 0
(9a)

where up and ap are Positive constants and E. is a small
and positive parameter (i.e., E «1) that separates the lo-
cal scale ap from the larger scale of the globally extended
Gaussian envelope of width E.

' ap. The origin is a stag-
nation point or a null of the velocity field. Near the ori-
gin, we have

u=x (Vu)o,

where the tensor

3E,Z
co~ = sp 1

ap
+O(E ), (1 la)

3E,x
coy — sp 1 +O(E ), (1 lb)

coz = —sp 1—3'
ap

+O(s ), (1 lc)

—1/2
u ~ =so +3/2

v'3/2 0
—1/2 0 y' +O(e) .

0 1 z'
(12)

Defining x ' = r'cos(8'+ m/6), y' = r'sin(8' +sr/6), Eq.
(12) can be transformed to

uq —r/2
u= us =so —(&3/2)r +O(E), (13)

where so =u0/ao. The symmetry of the initial conditions
singles out the x =y =z line as a natural axis. We intro-
duce a new coordinate system (x',y', z'), where
z'=(1/&3)(1, 1, 1) and x', y' are two mutually orthogo-
nal unit vectors in the plane normal to z', with
x'=(1/&6)( —1, —1,2) and y'=(1/v'2)(1, —1,0). The
initial flow (10) can be written as
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where we have dropped the primes for notational con-
venience. As noted in Ref. [28], Eq. (13) is axisymmetric
to leading order. The departure from axisymmetry and
the spiral structure is manifest at higher order. The ini-
tial vorticity is given by the expansion

u„=u„"'+.u„"'+O ("),
u, =u',"+.u',"+O(e'),
u, =u,"'+eu,'"+O (e'),

(19a)

(19b)

(19c)

co — +3$0

0
0 +

a0

sin30

Z

~ =~"'+E~'"+o(E')

~,=~'eo +E~',"+o ("),
co co~0~+ Eco,'i'+ 0 (c,')

(20a)

(20b)

(20c)
c.r

&2a',
cos38 +O(E ) .
v'2

(14) Using the symmetry relation (16) and the assumption of
local self-similarity, the leading-order solution for the ve-
locity can be written in the form

In what follows, we shall investigate the time evolution of
the initial state described above according to the Euler
equation

(0)
r /2—

u' '= ue ' =s(t) —(V3/2)r (21)

Bco +u.Vcr=co.Vu .
at (15)

Here we have done away with the so-called background
Qow considered in Ref. [28], which is inessential for
singularity formation.

u(0)
Z

Then the z component of the leading-order Euler equa-
tion (15) for co,' '= —&3$(t) yields

(22)

III. PERTURBATIVE SOLUTIONS

The localized Aow u obeys the symmetry relations

u, (x,y, z)=u~(z, x,y)=u, (y, z, x) .

or

Bs —S2
at

Equation (23) has the exact solution
16

(23)

Since these symmetry relations are assumed to hold at
t =0, they hold for all times [37]. We consider solutions
of the form

s= (24)

u (x, t)=s2(x, t)y exp
3'

a&(x, t)
(17a)

Z
u (x, t)=s3(x, t)z exp

a3(x, t)
(17b)

X
u, (x, t)=s, (x, t)x exp

a, (x, t)
(17c)

The six functions on the right-hand side of (17) are con-
strained by the incompressibility condition and the (two)
symmetry relations (16). Exploiting the presence of the
small parameter E in the initial conditions, we seek solu-
tions of the form

which yields a finite-time singularity at t, =—1/s0 =a0/u0.
The singularity occurs in a locally self-similar manner in
the neighborhood of the velocity null. For all times prior
to the blowup of vorticity, there exists a small region sur-
rounding the velocity null where the solution is invariant
under the scaling x—+cx, u~u, tact, where c is a con-
stant. In this (shrinking) region, the solutions
u„=y/(t, t), u~ =z/(t, ——t)and , u, =x/(t, —t), which
yield co„=co =co, = —(t, t) ', satisfy the E—uler equa-
tion (15) exactly.

It is useful to calculate the pressure He ssian
m;J =3 p/Bx;Bx~. for the leading-order solution. We ob-
tain

0 s2 s2
a; =a (t)+Ea;(x, t),
s; =s (t)+ es;(x, t),

(18a)

(18b)

(0) 2 0 2
V

[s' s' 0
(25)

where a (0)=ao and s (0)=so. The form of Eq. (18) is
based on the assumption that the solutions are locally
self-similar. The solutions are not globally self-similar;
the space dependence of the higher-order terms in Eq.
(18) preclude such a possibility.

For the initial conditions discussed above, we develop
solutions of the Euler equation by a formal perturbation
expansion. We write

Whereas the diagonal elements, which represents the lo-
cal contributions to the pressure Hessian, are zero, the
off-diagonal elements, which represent the nonlocal con-
tributions, are nonzero (and eventually blow up). Hence
the present model cannot be described by the so-called
"restricted Euler system" of Leorat [38], Viellefosse
[39], and Cantwell [40], who assume that
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m.;J
= (a p/axkaxk )(B,J /3).

We now consider the first-order solutions. To this end,
we note that Eqs. (21) and (24) yield the leading-order La-
grangian equations

ponent of the) first-order Euler equation

a~'"' +(u V~ )")=(~Vu )"'.
Bt Z Z (28)

dr
dt " 2(t, t—)

(26a)
Motivated by Lundgren [32], we introduce the variable
transformations

dg Qg

dt r

dz (0)
dt t t

2 t t
(26b)

to("(r, 8,z, t) =S(t)Q(g, 8, v, T),

u,"'(r, 8,z, t) =S' (t)A((, 6', v, T),
where

(29a)

(29b)

which can be integrated to give
' 1/2

Cr =ro (27a)

S(t)= exp f dt' s(t')
0

(30)

is the total stretching in time t and the variable g, 8, v,
and T are defined, respectively, as

and

Z ZQ

f dt' s(t'),
0

(27b)

(27c) aIld

g
—S1/2r

8—=8+ f dt' s(t'),V'3

2 0

u=z/S,

(31a)

(31b)

(3 1c)

respectively.
Writing m=ro( )+Ego("+, we obtain the (z com-

I

T= f dt' S(t') .
0

We now calculate the various terms in (28):

(31d)

=st'" —&3sSZ

a- '" a-(') ao'" a~"'as„an an „, an
at at at

'
at

' ' '
aT 2 ag

(u Vto )'"=u"'Vto' '+u' 'Vto'"—=u' 'Vto'"= — +&3 +su
2 ag M au

au"'
(~ Vu )(I) ~(1).Vu (0)+ (0) V(1) s (1)

a~"'
Z

SV
Bv

(32a)

(32b)

(32c)

Using Eqs. (32), the first-order Euler equation (28) can be reduced to

an —, 1 aA
aT S'~2 av

As t ~t„ the term on the right-hand side of (33) can be neglected. Hence, in this limit

an
aT

'
which implies that

Q=Q($, 8,v)=Q (0g (0g, 8, u), 8 0((, 8, u), v (0(, 8, u)),
where

(33)

(34)

(35)

r +z
f),0=to(')(r, 8,z, O) =to(r, 8,z) =&3s0

ao

,8+ f dt' s(t'), z
V'3

0
co(')(r, 8,z;t)= S(t)t0 r—

C

is the initial condition for the higher-order solution. Using (29a), we can write
' 1/2

(36)

+3s,
exp f s(t')dt'

ao 0

~ r 2

r2 +z2
t —t

(37)
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If follows by inspection of Eq. (37) that the first-order
solution has a small radial scale, collapsing as (t, —t)'~,
while it stretches axially along z. The collapsing small ra-
dial scale of the first-order solution is thus different from
the small scale of the leading-order solution, collapsing as
(t, —t).

The structure of the small scale obtained above can be
understood simply by invoking the law of conservation of
vorticity strength [41]. We consider a "long-thin" cylin-
drical vortex tube of strength co, A =const, where
A =err . Since co, ~ (t, t) —', it follows that
r ~ (t, t)'~ —. While the velocity is bounded in the inner
region, which collapses as (t, —t), the Lagrangian equa-
tions (26) imply that the velocity must blow up on the
"larger" small scale, which collapses as (t, t)'~ . —

The analysis given above is perturbative and we have
not obtained closed-form solutions. The calculation has
been essentially carried through the first two orders,
which make it apparent that more than one small spatial
scale is involved in this inviscid problem. It is possible to
extend the calculation, in principle, to higher orders, but
the equations are complicated and do not seem amenable
to an analytical solution.

A pertinent question is whether the singularity ob-
tained in our model is unphysical since the initial Aows
have infinite total energy. As discussed in Ref. [42], this
is indeed a limitation of earlier investigations of two [42]
and three-dimensional [43] solutions of the stagnation-
point form. We emphasize an important difference be-
tween our system of Aows and those considered in Refs.
[42] and [43]: in our initial conditions, the velocity (and
vorticity fields) are bounded everywhere, including points
at infinity. This means that the energy density is initially
finite everywhere, including points at infinity. Infinite en-
ergy is obtained in our initial conditions merely because
our system size is infinite, but the finite-time vortex singu-
larity is not an artifact of the infinite system size.

It is well known that the Euler equation is an integro-
differential system. (For instance, the velocity must be
calculated self-consistently from the vorticity by carrying
out an integration over the whole space with suitable
boundary conditions). In Ref. [28] a lengthy analysis
(which will not be repeated here) is given to match "lo-
cal" fiows of the form (17) to a "global" symmetric fiow
of general functional form. We assume here that such
global solutions do exist (that is, they satisfy the integro-
differential system). To further strengthen this con-
clusion, we give a generalized analysis in the next section
that treats the integro-differential system explicitly.

order terms, i.e.,

u(x, y, z, t)= g a, „(t)x'y z",
l, m, n~0

(38b)

where a& „(t)=0 if l+m+n is even. [Specifically, it is
reasonable to assume that the Taylor series is convergent
for lxl &5(t), where 5 is finite and we allow
5(t ~t, )~0. ] The symmetry relations (38a) ensure that
we have a velocity stagnation point at the origin for all
time since the Euler equation preserves these relations, if
satisfied initially. We also assume that u ( l

x
l
~ oo,

t =0)~0 sufficiently rapidly that the initial fiow has
finite energy. Then Rows with bounded energy can be
constructed by treating the Euler equation as the
integro-differentia1 system

BQ +u Vu= —Vpat
1 V(U VU)px, t=

4n lx —x'l
x

(39a)

(39b)

u (x,y, z, t)=b(t)y +c(t)z+O(lxl3), (40)

which is consistent with the condition V.u=0. The vor-
ticity c0 =V Xu is then

co= —t0(1, 1, 1)+0(lxl ), (41)

where co=b —c. Also, the dissipation rate per unit mass
is given by

1E= V
2

Bu; Bu
+

Bx~ Bx.
=3vo +0(lxl ), (42)

where cr=b+c. In the cylindrical coordinates intro-
duced in Sec. III, Eqs. (40) and (41) can be written, re-
spectively, as

where p=1 and the condition V-u=0 is satisfied, once it
is so initially. It is easy to see that the pressure p is still
finite at large x even if u has a locally self-similar singu-
larity, because such a singularity occurs only in a volume
that also tends to zero. This ensures that the Aow will
remain vanishingly small for large x and thus the total
energy will remain finite for all time, since it is so initial-
ly.

We consider the general form of the first order expan-
sion of u,

IV. GENERALIZATIONS OF THE MODEL

or/2—
u= us = (&3/2)c0r +0 (

—lxl') (43)

The model discussed above can be generalized by keep-
ing its basic symmetric features, but allowing for a more
general form of the solution. We write

and

~= —v 3~z+0(lxl') . (44)

u(x, t)=[u (x,y, z, t), u(y, z, x, t), u (z,x,y, t)] (38a)

and assume that in the vicinity of the origin the Taylor
expansion of the Qow exists and that it only has odd-

Because of the symmetry of the Aow, the pressure term
can be expanded in the form

p = —d(x +y +z ) —e(xy+yz+zx)+0(lxl ) .
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Equation (45) implies that the pressure Hessian n;J
.has

diagonal as well as off-diagonal elements, all of which, in
general, can be important in supporting a finite-time
singularity. Whereas the diagonal elements, each propor-
tional to d, are determined self-consistently from local
properties of the velocity [i.e. , they directly enter the
differential form of Poisson's equation V p =
—V.(u.Vu) ], the off-diagonal elements, each proportion-
al to e, are determined by the global properties of the
Aow. If we transform to cylindrical coordinates, the pres-
sure tensor becomes diagonal but not isotropic. Substi-
tuting Eqs. (43) and (45) into Eq. (39a), we obtain the ex-
act equations

d =Ac

b+c =e,
c+b =e,

(46a)

(46b)

(46c)

where an overdot indicates the derivative with respect to
time. For self-consistency, e must be calculated using
Eqs. (39b) and (45):

Bp 8 G(x, t) d x
»&y „= »&y

(47)

where G =V (u Vu)/4nEquat. i.ons (46b) and (46c) can
be rewritten as

6)—COO (48a)

o =2e —(ro +o )/2 . (48b)

From the form of Eqs. (48a) and (48b), it is easy to see
that finite-time singularities in co and o. can occur due to
the presence of the nonlinear terms for many different
functional forms of e. We discuss some interesting exam-
ples below.

We consider. the case in which the How is assumed to
have the self-similar form

c, =l, b(0)=1/t„c(0)=0, (51)

then we get

b =co =o = 1/( t, —t ), (52)

which is the solution obtained in Sec. III.
We now consider slightly more general solutions. Let

us assume that the How is quasi-self-similar, i.e., u can be
approximated by Eq. (49) plus a slowly evolving back-
ground Bow so that

e =c&b +c2bc+c3c +c46 +c5c+c6 (53)

(ii) o = k
/
m/cr

/

~0 .

This can be seen by substituting b =k, /(t, t) and-
c =kz/(t, t) into E—q. (50) [or (53)], whereupon using

Eq. (46b) [or (46c)], we get

(k, —k~)(k, +k~ —1)=0 . (54)

Type (i) and (ii) singularities are realized, respectively,
when the second and first factors are set equal to zero.

Type (i) and (ii) singularities can also be obtained by
considering a self-similar solution to the Euler equation
of the form

u(x, t)= V(x/a), a (t) =p(t, —t)~ .a(t) (55)

where c; are slowly varying functions of time (much be-
fore the blowup time t, ). As the solutions evolve from
different smooth initial conditions to a self-similar asymp-
totic state, we find that there are two types of singular
solutions:

(i) o.=, r)WO
1

u(x, t) =b [(y,z,x)+a v&(x/a) ]

+c [(z,x,y)+av2(x/a)], (49)

where a is a function of time only and v& and v2 are two
dimensionless functions with no first-order terms in their
Taylor expansions. Then it can be shown by dimensional
analysis of Eq. (45) that

The curl of Eq. (39a) yields

VX [(1—p)V(X)+(pX+V) VV]=0,
where X=x/a. Let

V=[BY+CZ,BZ+CX,BX+CY]+O(lX );
we then have

(56)

(57)

e =c,b +c2bc+c3c (50) (B —C)(B +C —1)=0, (58)

where c„c2,c3 are constants that can be determined once
the functional forms of v& and v2 are known. There are
numerous choices one can make for c; and the initial
values of b and c that yield singular solutions for Eqs.
(46b) and (46c). For example, if we take

which is similar to Eq. (54).
In writing Eq. (55), we have assumed the global ex-

istence of a divergence-free function V(X). One way to
test this assumption is by rewriting Eq. (55) in the form of
an integral equation

1 V' X [ IpX'+ V(X') j V'V(X') ] X (X—X')
d

4'(1 —p) X—X'~'
(59)

which may be tractable numerically. This is a well-posed
problem, but we will not try to solve it here.

The model analyzed in Sec. III is a special case of (i)
with c =0 and leads to a finite-time vortex singularity at

I

the origin. At first glance, case (ii) may appear to violate
the Beale-Kato-Majda constraint [44] that the maximum
vorticity of a How with an algebraic finite-time singularity
has to blow up at least at fast as (t, —t) ' However, this.
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is not necessarily so. Since both b and c blow up at a rate
proportional to (t, —t), it is clear by inspection of (49)
that the maximum vorticity due to higher-order terms
must also blow up as (t, —t) ' if VX(vi+v2)%0, which
is generally the case. (A more precise statement is given
at the end of Sec. VII.)

Whereas the model considered in Ref. [28] (and Sec.
III) is a singular solution of type (i), the singularities ob-
tained in the high-symmetry numerical experiments of
Refs. [45] and [46] are examples of type (ii). Consider, for
example, the singularity obtained by Kerr in a numerical
study of two interacting, antiparallel vortex tubes [45].
Because of the symmetries of Kerr s initial condition, the
velocity and vorticity remain zero at the point x, where
the singularity eventually develops as the two tubes ap-
proach each other. The Taylor expansion of the Bow
about x, can be written as

6.0-

4.0-

2.0-

00-- I
CO

I

I
co

v= [a,x, a2y, —(a
&
+a2)z]+0 ( ~x~ ), (60)

where a „a2,a 3 are constants. We note that the
~
x

~

terms in Eq. (60) do not affect the analysis given above as
long as v(x=O) is fixed at zero. Then it follows that in
Kerr's geometry a self-similar singular solution should
occur with maximum vorticity blowing up as (t, —t)

We conclude with some numerical examples. With e
given by (50), we plot in Fig. 1 an example of a type (i)
singularity, with c& =0.9, c2 = —0.9, c3 = —0.99, and the
initial conditions b (0)= 1 and c (0)=0.5. In Fig. 2 we
plot an example of a type (ii) singularity, with c, =10.1,
c2 = —1.3, c3 = —l.45, and the initial conditions b (0)= 1

and c (0 ) = 1.Oe —06.

6.0

4.0-

2.0-

0.0-

I
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I
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I
CO

I
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C5

logIO(te
—t)

FIG. 1. Example of a singular solution of type (i) where both
co and o are proportional to 1/(t, —t) using constants c& =0.9,
c2= —0.9, and c3= —0.99 with initial values b(0)=1 and
c (0)=0.5. The constant t, is found to be 0.9495.

FIG. 2. Example of a singular solution of type (ii) where
o.=1/(t, —t) and co/a~0 using constants c& =10.1, c2= —1.3,
and c3= —1.45 with initial values b{0)=1 and c(0)=10
The constant t, is found to be 0.1153.

V. SINGULARITY DYNAMICS
IN THE COMPLEX SPATIAL DOMAIN

d (x, O) =0, (61)

where d(x, O) is a real and positive analytic function for
real x. Following Ref. [29], we take the initial conditions

As mentioned in Sec. I, Tanveer and Speziale [29] have
proposed a method for investigating the singularity dy-
namics of the Euler equation in the complex physical
domain. In this method, a class of smooth and bounded
initial conditions in the real physical domain is analyti-
cally continued into the complex unphysical domain
where there are complex singularities. Then the question
of finite-time singularities in the real physica1 domain can
be reduced to the question of whether the singularities in
the complex domain reach the real domain in finite time.

The method proposed by Tanveer and Speziale [29] is
based on some important assumptions that have not been
shown to be valid in general. The method has been used
successfully to obtain sufhcient conditions for stability for
a class of three-dimensional Euler Aows identical to those
found earlier by WKB methods [24,25]. In what follows,
we suggest that some of the assumptions in Ref. [29] can
be relaxed and that the method can be applied to our
symmetric initial condition to obtain useful insights.
There are open mathematical questions that we do not
settle here, but since we state our assumptions clearly, it
is our hope that the validity of the framework of Ref. [29]
in the context of our model can be determined by further
work.

For the purpose of this section, we consider x to be a
complex variable and consider initial conditions for
which the velocity and vorticity are real and analytic
everywhere for real x. However, the initial condition has
complex singularities at the surface
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for the velocity and the vorticity to be of the form

u(x, O) =v, (x,O)+f[d (x, O) ]q(x, O)

and

0
3 0

C

(72)

co(x, O) =co, (x,O)+f '[d (x, O) ]p(x, O), (63)

respectively, where f (d ) is a function to be specified.
Tanveer and Speziale assume that

Though motivated by our real analysis in Sec. III, the
choice (71) does not rely in any way on the validity of
that analysis. In order that u and co remain bounded ini-
tially for large ~x~, we assume that f(d(x)~ ~ )~1 and
furthermore that

f(d)=d, 0&a&1 . (64) q(x, O) =q, (x, O) —v, (x,O), (73)

u(x, t)=v, (x, t)+f [d(x, t)]q(x, t),
to(x, t) =t0, (x, t)+f'[d(x, t)]p(x, t)

may be constructed with

V v (x, t)=0,
V X v, (x, t) = to, (x, t),

a)s
+v, Vte, =m, .Vv»

Bt

(65)

(66)

(67)

(68)

(69)

In (62) and (63), v, (x,O), co, (x, O), q(x, O), and p(x, O) are
real and analytic functions of x that obey the equations
V v, (x, O)=O, VXv, (x, O)=co, (x, O), and VX[fq(x, O)]=f'p(x, O). It is claimed in Ref. [29] that for t )0, the
complex solutions

where q, (x,O) is smooth and decays to zero as ~x~ ~~.
%'e choose

f (d)=l —exp( —d ), 0&a(1 . (74)

Equation (74) gives f (0)=0, f'(0)~ ~, which enables us
to carry through with the approach of Ref. [29], assum-
ing that there exist well-behaved solutions p and q, satis-
fying Eqs. (21), (22), and (25) of Ref. [29], such that the
complex singularities in (66) will not be canceled. We are
not able to show definitely whether this assumption is
true, because it involves proofs of existence of solutions
to the cited partial difFerential equations of Ref. [29].
Further analytical and numerical work will be required to
settle this issue.

The relation d (x, t) =0 is satisfied by complex points
x(t), which obey the characteristic equation

with p and q satisfying Eqs. (21), (22), and (25) of Ref.
[29]. The singular surface d (x, t) =0 is evolved according
to the equation

dx(t) =v, (x(t), t ),
dt

(75)

Bd(x, t)
Bt

(70)
subject to the initial condition (61). A solution of this
equation is

Us =
—r/2&3/2r— (71)

Equation (70) implies that the singularities of t0(x, t) for
t )0 are determined by the relation d(x, t)=0. Thus
Tanveer and Speziale obtain the surprising result that the
location of the singularities in the complex domain can be
determined from the smooth velocity field v, (x, t) without
the need to solve for p(x, t) and q(x, t), assuming that
they exist. Tanveer and Speziale demonstrate that no
complex singularity can reach the real domain in Anite
time if the variables p, q, v„or co, are smooth and devel-
op no spontaneous singularities.

There has been some criticism [47] of Eq. (70) on the
ground that it does not capture the nonlocal effect of
pressure. We point out that whether that is so depends
on the choice of v, (x,O) and to, (x, O), which infiuence the
solutions of Eqs. (67) and (68) and hence the solution for
d (x, t). Furthermore, the nonlocal efFect of pressure also
enters into the equations for p and q that are assumed to
exist.

A key difference between the considerations of Ref.
[29] and what follows here is that we choose an exact but
singular solution of the Euler equation for v, and cu„ i.e.,

T

d(x, t)=
3

7" +z +b (0)

(76)

for t &t, . We see that at t =0, complex singularities in
vorticity occur on a cylindrical manifold, defined by

r +z +b (0)=0 . (77)

For t & 0, the coordinates of the movable singularities are
determined by setting the right-hand side of Eq. (76) to
zero. On the z =0 plane, we have

r(t)=ib(t)=ib(0)[(t, t)lt, ]'" . — (78)

Equation (78) suggests, remarkably, that not only do the
complex singularities on the z =0 plane reach the origin
(stagnation point) in finite time, but that they do so at a
rate proportional to (t, t)'~ [From —Eqs. (7. 0) and (76)
it might appear, upon first glance, that d (x=O, t) =const
for all time. However, this would not be a correct infer-
ence from Eq. (76), which holds only for t ( t, . At t =t„
the velocity v, (x=O, t) is no longer zero but becomes
singular. ] Here b(t) defines a small space scale in the
complex spatial domain that is distinct from the collaps-
ing small scale of the Bow v, . These results are consistent
with the results obtained in Sec. III.
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VI. REMARKS ON THE
CONSTANTIN-FEFFERMAN THEOREM

Constantin [30,31] and Fefferman [31] have recently
proved that "if the direction of vorticity is sufFiciently
well behaved in regions of high vorticity magnitude, then
the solution is smooth. " (The words "sufficiently well
behaved" have a technical meaning that we consider
carefully later. ) This result imposes strong constraints on
the possible singularities of the Euler equation. The crux
of the theorem is in the relation [30]

dt
=aclmf,

where

l~(x„t )I=
am

I A(x;)I, (84)

where I', = 1,2 and

Ising(x„x1, t )I

Ix, —x, l

We now show that a self-similar vorticity field of the
form (82) does not satisfy assumption (83). To see this,
we choose two dimensionless vectors Xi and Xz such that
X,WX2, A(X, ) II A(X2) I %0, and

I sin/I &0. We consider
two corresponding locations in real space, xi=a Xi and
x2=a X2, where a =p,(t, —t P. Then at t =t, we
have

1/p

tzc(x, t)= Pf D(y, co(x+y, t), co(y, t)), (80) 1

a Ix, —x,
I
A(x )' A(x ) I'

(85)

re =co/I co I
is the unit vorticity vector and D is

D(e„e2,e3)=(e, e3)[Det(e„e2,e3)] . (81)

Since D vanishes if any of the column vectors in the
determinant are para11el or antiparallel, spatial alignment
or antialignment depletes the growth of vorticity, elim-
inating the possibility of a singularity. This is what hap-
pens in two dimensions globally. In three dimensions, in
the neighborhood of a potential singularity, if D is too
small, then it is not possible to support the singularity.
This underscores the importance of infinite spatial gra-
dients or small scales.

In view of the relation (79), the qualitative conclusions
of the Constantin-Fefferman theorem are physically com-
pelling. The question then is how our model measures up
against this theorem. In Secs. III and V, we have estab-
lished the growth of small scales. In particular, Contan-
tin [30] shows that if the vorticity blows up self-similarly
as

From (85), we see that for every choice of Qc and pc, we
can find a small enough a such that co(x„t)l &Ac and

l~(x2 t)l &&c but l»nk(xi x2 t~) & lxi x1 /pc.
note that this holds even for the case A(X=O)=0, but
A(XWO)WO. Thus assumption (83) is violated. Since
the assumption of 1ocal self-similarity is inherent in our
treatment, it is questionable whether the Constantin-
Fefferman theorem is relevant to our model.

Before we conclude this section, we comment on case
(ii), discussed in Sec. III. The argument given in the
preceding paragraph enables us to see why the Beale-
Kato-Majda theorem [44] is not violated in those cases
where the velocity null coincides with a vorticity nu11, ex-
amples of which are discussed in Sec. III. From (82), it
follows that maxlto(x, t)l =(t, t) 'I A(X )I e—xists even
when A(X=O)=0, but A(XAO)%0. Since X is in-

dependent of t, it follows that maxlt0(x, t)l blows up as
(t, t) ', consis—tent with the Beale-Kato-Majda con-
straint.

co(x, t) = A1 A(x), (82)
VII. EFFECT OF VISCOSITY

Ising(xi, x1, t) I

~ Ixi —x2I/pc, (83)

where a =p(t, t)", then p & 2/5.—This condition is
satisfied by our locally self-similar solution. Further-
more, since the velocity blows up in the shrinking middle
region, it is clear that our model also does not contradict
a variant of the Constantin-Fefferman theorem, which
states that there can be no singularity if the velocity does
not blow up and the vorticity is locally absolutely integra-
ble [31].

While accord with the theorem is reassuring, we dis-
cuss a technical issue that has to do with the words
"sufficiently well behaved" in the first line of this section.
In order to control the size of a "dangerous term" [31],
the theorem needs the following assumption: There exist
two positive constants Qc and pz such that for every pair
of two locations lxil and lx2I, whenever Ico(xi, t)l &Ac
and

I co(x2, t) I
& Qc, we have

A. Connection with Lundgren's model

In Lundgren's model, a two-dimensional Aow with vor-
ticity co2(r, 0, t) is placed in an axisymmetry straining fiow
with velocity components u, =s (t)z and u„= —s (t)r /2,
where s(t) is the strain rate. This is shown to produce a
three-dimensional axially strained How with the vorticity

co, (r, O, t) =S(t)co2[(,8, T], (86)

where the variables S, g, and T are defined, respectively,
by Eqs. (30), (31a), and (31d). At t =0, the vorticity of
the three-dimensional Aow is equal to the vorticity of the
two-dimensional How.

A connection can be estabhshed between the present
model and Lundgren's by using Eqs. (27). If initially,

a 1 a a
aro ro ao, az,

where P(xi, x2, t) is the angle between to(x„t) and co(x2, t). then as t ~ t„we have
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aro a
ar ar aro C

1

~ ae

1/2
a

aro

C

1/2
a

ro a6'o

where

p(r, 8, t) =$2(g, 6, T),
a(r, 8, t) =S (t)a~(g, 8, T),
a,(g, a, T)= V',—q, ,

(98a)

(98b)

(98c)

a))
az azo

which justifies setting 8/Bz =0.
We seek solutions of the Navier-Stokes equation

aco 2+u.Va) =co.Vu+vV a)at

where v is the viscosity. Near the origin where the vortex
singularity occurs for inviscid Aows, the vorticity has a
dominant z component that is independent of z. We
write

1a 1 a'
(99)

For inviscid fiows, we have shown earlier that s(t) obeys
Eq. (23), which yields a finite-time singularity of the vor-
ticity. Then the stretch ratio S(t) becomes infinitely
large in finite time. (In contrast, the stretch ratio in
Lundgren's model grows exponentially with time. ) Due
to this tendency for explosive growth, the right-hand side
of Eq. (97) eventually becomes much smaller than the
left-hand side and the equation reduces to

co, = —&3s (t)+a(r, 8, t) . (89)

The self-consistent velocity associated with this vorticity
can be approximated as

Ba, 1 Bg, Ba,
aa ag

BQ2 Ba~

ag aa
—vV~, =0. (100)

u, =s (t)z +p, (r, 8, t),
u„= —s (t)r/2+p„(r, 8, t),
us = —(&3/2)s (t)r +Ps(r, 8, t) .

Since V-u=O, we get

(90)

(91)

(92)

The presence of even a small but finite viscosity
thwarts the formation of the vortex singularity. This can
be seen by introducing a viscous correction to Eq. (97).
Using Eq. (21) to calculate the term vV co, —=4&3sv/a2,
we can rewrite Eq. (23) as

a ap,
(rP„)+ =0,

ar
(93)

as 2 4sv—s +
t a2 (101)

which implies that p„and ps are derivable from a stream
function g(r, 8, t), i.e. ,

Thus, in the presence of viscosity, the strain saturates at a
value s„which can be obtained by setting Bs/Bt =0. We
then get the dissipation scale

1 Bg
r aO' (94)

From the z component of the equation co =V X u, we then
get

V
Qd 2

s
(102)

a= —V P. (9g) The dissipation rate per unit mass (for the local fiow) is

The dynamical equation for a follows from the z com-
ponent of the Navier-Stokes equation (88)

=1
V

2

aQ - a@~+ —=3vs
ax~ ax)

(103)

Ba + sr Ba
Bt 2 Br

pe v'3s aa
r 2 a0

=&3 +s( —&3s+a)+vV a .
—as 2

at
(96)

Combining Eqs. (102) and (103), we get

a —=2(3v /E)' =g=(v /E)'

where g is the Kolmogorov scale.

(104)

v'3 , as
s

l
at

(97)

As shown by Lundgren [32], by transforming to the vari-
ables defined by Eqs. (29)—(31), it is possible to construct
solutions to Eq. (96) from solutions of the two-
dimensional equation

Ba 1 8@ Ba B@z Ba2
aT+ g aa ag ag aa

B. The spiral structure

It is clear by inspection of the initial conditions (Sec.
II) that a spiral structure occurs naturally in the strained
vortex solution. This spiral structure is also manifest in
Eq. (28) as we go beyond the leading-order axisymmetric
solution. We now follow Lundgren's method and seek
two-dimensional vortex spiral solutions a2(r, 8, t) of the
equation
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T

Ba2 1 Bl//2 Ba2+-
Bt r B8 Br

Bg, Ba,
Br 88

we obtain the axially strained spiral solution, given by

a(r, 8, t) = Wo(r, t)+ g W+(r, t) expI+i3(8 —aT)I,

1 0 1
V 2+ +

2 ~ A2
Br r r BO

(105)

where

(114)

Once the two-dimensional solution (i.e., the solution for
which the axial strain s =0) to Eq. (105) is known, we can
write down the three-dimensional axially strained solu-
tion by using Eq. (98b). For the two-dimensional equa-
tion (105), we seek solutions of the form

WD =SAD(S'~ r) =(S/T) exp( Sr —l4vT)

W+=Sf+(S' r)exp[ —3Ia'(S' r)I vT ] .

(115)

(116)

a2(r, 8, t)= Ao(r, t)+ g A+(r, t) expI+i3(8 —at)I,

$2(r, 8, t) =%0(r)+ %,(r, 8, t), (107)

(106)

where a=13 /sr is a slowly varying function of time. We
write the stream function gz(r, 8, t) as

T+ =(3va' ) (117)

The rapidly oscillating factor exp( + i 3a T)
—:expI +-iR (r, t) ] can be used to define a local wave num-
ber

In Eqs. (115) and (116), the variables S and T will hereaf-
ter be evaluated using the strain rate s =s, . Using Eq.
(116), the fast decay time T+ is seen to be

where a-=—(1/r )(dqloldr) Hence .Eq. (105) gives
q =QQ/Qr =3S ~ &'T . (118)

+a =v +— + a2, (108)
Qg Qr~ r Qr r2 c)g

Using Eq. (117), q can be estimated to have the charac-
teristic value

where
q, -(s, /v)'"-g (119)

Ao= — (r a) .1 d
r dr

(109)

The zeroth harmonic of the vorticity satisfies the heat
equation

~A0 ()2 1 ()
, +— Ao (110)

and have the asymptotic behavior

A+-=f+(r) exp( —3va' t ), (112)

where a prime means the derivative with respect to the
argument and f+(r) represent arbitrary functions of r
Using Eq. (112), we can define a decay time for the har-
monics by the relation

(113)

Since the Reynolds number &a&a /v is large, we have
7 + (4 7 0 which means that the higher harmonics decay
much faster than the zeroth harmonic. Due to nonlinear
mode coupling, we expect that other harmonics will be
generated though they are not present in the initial condi-
tions. In what follows, we shall neglect the contribution
of these higher harmonics.

Using the two-dimensional spiral solution in Eq. (98b),

which has the solution Ao =(1/t)exp( r l4vt). H—ence
Ao, as well as a, has a slow decay time ~, defined by
&a&r=&a&a /v, where &a& is a characteristic magni-
tude of cz. As v~O, the harmonics A+ obey the equa-
tion [32]

aA,
Bt

—= —9vn' t A

where q is defined by Eq. (101). Thus the Kolmogorov
scale is an intrinsic feature of the spiral solution (includ-
ing the zeroth and higher harmonics).

As discussed by Lundgren, Eq. (118) indicates that
since S, as well as T, increases with time, the wave num-
ber q also increases with time while a remains approxi-
mately constant. This mechanism of transfer of energy to
small scales is associated with the tightening of the spiral
structure, brought about by differential rotation and axial
straining.

C. The Kolmogorov spectrum

As the vorticity intensifies to extremely large values,
viscosity intervenes, thwarts the formation of the (invis-
cid) finite-time singularities, and causes transition to tur-
bulence. It has been shown by Lundgren [32] that the en-

ergy spectrum of this system is given by
TE(k)=;f 'S'"(T)Z, (rC, T)dT, (120)

where K=kS '~ (T), T, is the lifetime of a vortex seg-
ment of initial length lo, and C is a constant defined as
C =2m loN, /L, where X, is the rate of creation of vor-
tices. (The parameter loX, /L represents the rate of
creation of vortex length per unit volume. ) The function
I 2 is the enstrophy spectrum, defined by the equation,

F (k,2t)=k f ~a2(k cos8k, k sin8k, t)~ d8k, (121)
0

where

az( kt)=( m2) f f dr d8ra2(r, 8, t) exp( —ik. r) .

(122)
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OO 2
x I dr rf+(r)J+3(kr)exp(+3iat)

0

(123)

For large k and t, using the asymptotic expression for the
Bessel function, we obtain a rapidly varying function in
the integrand of the form exp j i(k—r+3at)]. The in-
tegral in Eq. (123) can then be evaluated by the method of
stationary phase. The result is

2 r, ~f~(r, )~I dr rf+(r)J+(kr) exp(+3iat)
0 2ka" (r, )t

(124)

where r, =r, (k/t) is given by the stationary-phase condi-
tion k+3a'(r, )t =0. It is now apparent, by inspection of
Eqs. (123) and (124), that the enstrophy spectrum F2 ( k, t)
has the self-similar form t G (k/t) in the inertial range
I. ' «k «q '. This similarity form for the enstrophy,
which is preserved when dissipation can be neglected, is
responsible for the Kolmogorov spectrum [32,34]. In-
serting Eqs. (123) and (124) in Eq. (120), we obtain the
contribution of the spirals to the energy spectrum

E (k)=C s/k '/ e p( ——' k ) (125)

with the coefficient

( 2 )2/3
3 Cg

P( 2
) 2/3 i/3 2/3 (126)

Using the definitions

—g 1/2 cx 2dT= Tdp- —
a~t/ 3 S (127)

and writing s, =S/T, we obtain

I'( —', ) „g',
~f ( g', )

~

4~C
22/3 0 ~- (g ) ~4/3

(128)

At first sight, Cz may appear to be model dependent,
since Eq. (128) suggests so. However, since
E+(k) ))Eo(k) and s+ =E, we note that Eq. (126)
reduces to

Here k is defined on the two-dimensional (r, 8) plane and
Ok is the angle between the unit vectors k and x.

The enstrophy spectrum (121) can be calculated by us-
ing the solutions of Eqs. (111) and (112). It has been
shown [32—34] that the zeroth harmonic gives
Eo(k)-k . Since we anticipate that this will be sub-
dominant to the contribution of the spirals to the energy
spectrum for large k, we consider only the contribution
of the spirals, described by the asymptotic solutions (112).
Following the steps described in Ref. [32], we get

F2(k, t) = g k exp( —6va' t 3)

(
2 )2/3
3 E

ir P(2)

' 1/3

(129)

If we recall that c, —=3vs„we obtain a constant Cz =O. 8.

VIII. SUMMARY AND DISCUSSION

In this paper, we have built upon a recent model of
three-dimensional Euler flows that yields a finite-time
vortex singularity [28]. In Ref. [28] as well as here, we
have emphasized that geometrical features of an inviscid
flow have a strong role in determining where unbounded
local vorticity growth occurs in finite time. Our initial
state, which contains two vorticity nulls with a velocity
null in between, is of geometrical interest because nulls
are a source of separatrices and singularities tend to
occur near separatrices.

The finite-time vortex singularity in our model occurs
at the stagnation point of the flow. The singularity devel-
ops at a point and is locally self-similar. The inviscid
low in the vicinity of the singular point has a complex
spatial structure involving two disparate small scales.

There is a spiral structure in the initial conditions that
is not essential to the formation of the vortex singularity.
The presence of even a small but finite viscosity thwarts
the formation of the vortex singularity and the spirals
then provide a mechanism for energy cascade from the
large to the small spatial scales, as originally envisioned
by Lundgren [32]. Once the connection with Lundgren's
model is established, the Kolmogorov spectrum follows
after time averaging over the life of a vortex tube. As ex-
plained by Gilbert [34], the k / spectrum is a robust
consequence of time averaging that causes some remark-
able cancellations in Lundgren's model.

An important question is how the results of this model
can be connected to numerical (as well as real) experi-
ments. There is an extensive database on vortex simula-
tions that has grown out of careful numerical work over
the past decade [5—9], including studies of vortex recon-
nection with antiparallel and orthogonal vortex tubes
[48—54] in which no conclusive identification of vortex
singularities have yet been made. There are, however,
three recent numerical studies [45,46,55] in which finite-
time vortex singularities growing as inverse time have
been reported. We have made a qualitative connection
with the singularities reported in one of them (Ref. [45]).

The model we have developed is quite simple and its
assumptions need to be checked by further analytical and
numerical studies. Yet the model seems to contain some
essential attributes of turbulence. The qualitative picture
that emerges from this paper begins with the (tendency
of) unbounded local growth of vorticity in finite time at
separatrices, defined by a network of nulls that act as at-
tractors for the flow. This process leads to the growth of
inviscid small scales. The vorticity intensification is even-
tually halted in the presence of even a small but finite
viscosity. Spiral structures then provide a mechanism by
which the Kolmogorov spectrum may be realized.
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