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Control of self-replicating patterns in a model reaction-diffusion system
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Spatiotemporal patterns, e.g. , spots, which replicate, grow, and die as solutions of nonlinear reaction-
diffusion models are interesting because of their striking resemblance to the self-replicating phenomena
observed in many important physical, chemical, and biological processes, e.g. , micelles, living cells, and
DNA. With this viewpoint we considered the characterization of a model self-replicating system from
limited and inaccurate system information. We also addressed control goals that are relevant to many
natural processes exhibiting this phenomenon, such as altering and arresting the growth of replication.

PACS number(s): 82.20.Wt, 05.40.+j, 87.15.He

Pattern formation in reaction-diffusion systems has
been extensively studied both theoretically and experi-
mentally [1]. These systems exhibit a variety of spa-
tiotemporal patterns such as target, striped, or hexagonal
patterns and traveling waves [2]. Recent experiments
with thin two-dimensional gel laboratory reactors have
confirmed that these patterns can arise for nonlinear
reaction-diffusion systems uncontaminated by convection
effects [3]. Interestingly, a new class of patterns, e.g. ,
spots, which replicate, grow, and die as solutions of
mathematical reaction-difFusion models [4,5] has been ob-
served. It is important to note that for a ferrocyanide-
iodate-sulphite reaction in the gel reactor [6) similar re-
plicating patterns have now also been observed experi-
mentally. In general, these results seem to further sub-
stantiate Turing's belief in the commonality of some of
the operating mechanisms in many physical, chemical,
and biological systems [7].

The phenomenon of self-replication is observed in
many chemical and biological systems, e.g., micelles and
reverse micelles [8], morphogenesis of living cells [7], and
DNA and RNA oligomers [9]. The underlying mecha-
nism of replication in these systems does seem to indicate
the presence of autocatalytic feedback steps, unequal
diffusion rates for the interacting species, and a spatial
domain defined by boundaries. It is notable that the phe-
nom enological description of the simple nonlinear
reaction-diffusion models does include the above charac-
teristic features [4]. These models may therefore be used
as prototypes towards building up a sound theoretical
basis for understanding the phenomenon of replication in
more complex and realistic systems. With this viewpoint,
we first attempted to characterize the mathematical mod-
el under the constraints of inaccurate knowledge of the
system parameters and available dynamical data. We
further studied the possibility of controlling the model re-
plicating system with objectives which are general and
important for systems exhibiting this phenomenon, viz. ,
arresting the growth of replication; accelerating their
rates; altering the system to an earlier stage in its repli-
cating behavior from a comparatively more evolved
dynamical state; and activating a dormant system to re-
plicate in a controlled way.

A simple reaction-difFusion model in one spatial dimen-
sion, exhibiting the phenomenon of replication is (in di-
mensionless units) [4]

Bu(x, t)ldt =D„r) u(x, t)IBx —u(x, t)v (x, t)

+ A'[1 —u(x, t)],
Bv(x, t)!dt =D, B v(x, t)Idx +u(x, t)v (x, t)

—(A'+B)v(x, t) . (2)

FIG. 1. Self-replicating reaction-diffusion pattern in v(x, t)
(A'=0. 03,B=0.059,D„=1.0,D, =0.01). (v axis scale: —0. 19,
1.59.)

The underlying reaction mechanism is autocatalytic with
two steps, viz. , U+2V —+3V and V~P with P an inert
product [10]. Here, u (x, t) and v (x, t), respectively,
represent the concentrations of the two reactant species
with D„and D, the corresponding diffusion coefficients
(with D„)D„), A ' is a feed parameter, and B a rate con-
stant for the second step in the reaction mechanism. Fig-
ure 1 depicts the typical spatial and temporal distribution
of the slowly diffusing species, v (x, t), obtained on Euler
integration of the above one-dimensional (1D) model for
the ratio of the diffusion coefficients 5( =D„ID„)=0.01
[4]. The simulation was carried out on a 1D lattice of
256 sites, with spatial mesh size dx =0.2 and time step
dt =0.01. The entire system was initially placed in a
homogeneous stationary state u (x,0)= 1, v (x,0)=0 with
a finite perturbation u (x,O)=0.5, v (x,O) =0.25 given to
the system in the central region of the lattice
(20.8~x ~30.6). The dynamic effects of the perturba-
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Bu(x, t)/Bt=D„d u(x, t)Idx u(x, t)u (x, t—)
+ A [1—u(x, t)],

Bv (x, t) IBt =D„B u(x, t) IBx +u (x, t)v (x, t)
—( A +B )v(x, t),

(3)

(4)

where (u(x, t), u(x, t)) now denote the respective
mathematical model variables. Also note that the feed
flow parameter A' in Eqs. (1) and (2) has now been re-
placed by A in the above model [Eqs. (3) and (4)]. This
change in notation allows the specification of an inaccu-
rate parameter value in the mathematical model (i.e.,
when A%A'). Effectively, the mathematical model dy-
namics is then described by solving a coupled set of 2N
discrete equations in the spatial domain obtained on
Euler discretization of Eqs. (3) and (4). Here, N is the to-
tal number of lattice sites employed for discretization at
equally spaced intervals dx. Further, it is assumed that
time-series signals from the process are available only
from some specified nz («N) lattice sites in the spatial
domain. In practice, the monitored process data at these
lattices sites may be corrupted with measurement noise.
In simulation studies, therefore, this feature may be in-
corporated by introducing measurement noise rt(j, t) of
strength y and following a Gaussian distribution, viz. ,

tion are shown in Fig. 1 where the peaks that initially de-
velop replicate structurally in time (see Fig. 1) until the
entire domain is finally filled with a periodic distribution
of similar peaks. For the 1D system, this distribution
corresponds to the nonhomogeneous stationary solution
of the system equations [4]. A similar behavior was also
observed in the dynamics of the other species, u(x, t)
with the difference that regions of high u (x, t) correspond
to regions of low u (x, t). For a corresponding 2D system
it has been shown that the patterns can become exceed-
ingly complex, especially when the nonhomogeneous sta-
tionary solution is unstable [4]. For investigating the
behavior of a process exhibiting the phenomenon of repli-
cation, we may choose to regard the simulated dynamics
illustrated in Fig. 1 as that arising from an experimental
system and shall henceforth use the terminology replicat-
ing process whenever referring to it.

Our first aim was to study the possible dynamical
synchronization of the spatially extended replicating pro-
cess (shown in Fig. 1) with that of a mathematical model
for differing initial conditions. In real situations, howev-
er, it may not always be possible to monitor the depen-
dent variable signals (u (x, t), v (x, t) ) over the entire spa-
tial domain. Hence in the synchronization studies de-
scribed below restrictions in the availability of time-series
data have been assumed. For the sake of clarity in pre-
sentation let us first distinguish the mathematical model
from that used for simulating the replicating process. We
do so by rewriting the process Eqs. (1) and (2) as

where u'(j, t) and u'(j, t) are the measured process sig-
nals. The model equations pertaining to these specified
nodes are then governed by

u(j, t)=u'(j, t),
v (j, t) =u'(j, t) .

(5)

d b, A (j, t )Id t =e [ [u (j, t ) —u '(j, t ) ]

+ [u(j, t) —v'(j, t)]],

In other words, the time-series signals u'(j, t) and v'(j, t)
from the process at the specified n& nodes are dynamical-
ly passed on to the mathematical model [11]. On assum-
ing the availability of time-series signals from, say, every
10th lattice site (nz =25) and using the driving condition
given by Eqs. (5) and (6), complete synchronization be-
tween the process and model dynamics was observed over
the entire spatial domain for arbitrarily chosen initial
conditions in the mathematical model [i.e.,
u(i, O)Au'(i, O) and v(i, O)&u'(i, O)] (results not present-
ed). Synchronization in the dynamics was also possible
on a significant reduction in the number of available driv-
ing signals, n& corresponding only to every maxima posi-
tion in (u', v') (see Fig. 1) in the nonhomogeneous regions
of the dynamically evolving replicating pattern. It is im-
portant to note that these studies tacitly assumed that pa-
rameter specifications in the model correspond to those
of the replicating process (i.e., A = A ').

A study for synchronizing the process and model dy-
namics was undertaken for a realistic situation when the
exact value of the process feed fiow rate (A' in Fig. 1) is
not known a priori. This was done by assigning a wrong
value to the feed Aow parameter A in the mathematical
model, i.e., for A%A'. Unlike the studies discussed in
the preceding paragraph, the desired synchronization in
the process and the model dynamics could not be
achieved for the inaccuracy introduced in the model pa-
rameter A. This suggests that the driving conditions
[Eqs. (5) and (6)] are not robust enough to bring about
synchronization in the present situation and a corrective
algorithm for 2 needs to be introduced.

Mechanisms for parametric self-adaptation have been
studied in the context of simpler homogeneous systems
[12—15]. In the present case, to formulate a self-
adaptation mechanism for an extended system, we begin
by introducing a spatial dependence in the feed parame-
ter with A„t=A(i, O). We then calculate the dynamic
adaptation b, A(i, t) to be made to the reference value
A ef such that the true process value of A '(i, t),
i =1, . . . , N, is realized in the mathematical model, i.e.,
[ A„t+KA (i, t)) = A'(i, t). For those lattice sites where
dynamical process data ( u '(j, t), u '(j, t) ) are available, cal-
culation of the b A(j, t) may be carried out by solving
Eqs. (3) and (4) dynamically with a set of n& adapter
equations, viz. ,

and

u '(j, t )= [u (j, t ) +y ri(j, t ) ]

u'(j, t) =[u(j, t)+yri(j, t)),

where e is a stiffness coefficient for adaptation. Note that
for the remaining N —n,z lattice sites not covered by the
adapter equations an average adaptation EA,„ in the
form g bA(j, t)In& may be implemen. ted. A successful
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FICx. 2. The synchronization capability of the model [which was initially set in the homogeneous state (u = 1,v =0)] and its char-
acterization for inaccurate parameter settings using limited and noisy process data (y=0.0001). (a) hA„, converging to 0.01 for a
wrongly set model parameter, A„f=0.02, when the actual process operating value is A'(i, t) =0.03. (b) Progressive decrease in the
error function e (i, t) = [v (i, t) —v(i, t)] showing the synchronization between process and model dynamics (e axis scale: —1.63, 0.58.}

result for accurate model characterization and its possi-
ble synchronization with the process dynamics when
JA A ' is shown in Fig. 2. Note that the above function-
al form for adaptation is linear and only representative.
Other functional forms of adaptation, e.g., cubic,
history-linear, sign, etc., are known in the context of con-
trolling simpler systems [14]. Relative assessments in the
specific choice of the adapter functional forms and the
choice of parameter(s) for adaptation can be made [14].
Further, the choice of e may be rationalized by studying
the stability characteristics of the combined model and
adapter dynamics. As long as the combined system has
negative eigenvalues in a linearized region of model
phase-space variables, synchronization should be possi-
ble. A range of e values can satisfy this requirement and
moreover, within this range, the magnitude of e may indi-
cate the rapidity with which the synchronization occurs
[14]. The convergence of b, A,„ to a value 0.01 in Fig.
2(a} (the initial difference in A' and A) with dynamic

corrections for noise reduction indicates the accurate es-
timation of the model parameter. This is also implicit
from the diminishing nature of the error function in
v(x, t) [in Fig. 2(b)]. Furthermore, at t =0, when the
adapter signals were implemented, the response model
had initial conditions corresponding to a dormant state,
i.e., u(i, O)=1 and v(i, O)=0, while the process initial
condition at this time was assumed to be in the first repli-
cating stage. This indicates the possibility of activating a
dormant replicating system and synchronizing its
behavior with that of a naturally replicating process even
for constraints in the availability of data.

We next turn our attention towards the possible con-
trol of the. replicating dynamics, in a fashion similar to
the above exercise where a model parameter was ascer-
tained by dynamic correction. It may be noted that A',
being a feed Qow parameter, is accessible for external ma-
nipulations by an experimenter and can be chosen as a
convenient controller variable. We now aim at control-

OO

OO

FIG. 3. Control and ar-
rest of replicating growth.
{a) Attaining the desired
four-peak set-point state
(u„,(i, 800),v„,(i, 800)) in Fig. 1,
by adaptive control [Eq. (4) with
e= —1.0] and y =0.0001. (v

axis scale: —0. 17, 1.45.) (b)
Progressive decrease in the
error function e (i, t) = [v (i, t}
—v„,(i, t')] while attaining the
desired state (e axis scale:
—1.45, 0.27). (c) Space-time
adaptation signals implemented
(A A' axis scale: —1.16, 1.18).
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FIG. 4. Bringing a replicating process back in time to a less developed state and arresting the growth in this state. (a) Altering the
dynamics from a four-peak replicating stage to a two-peak set-point state, namely, (u„,(i, 50),v„,(i, 50)) in Fig. 1 and future control
of the process in this state. Note: The adapter controls were initiated at t =200. (v axis scale: —0. 16 1.43.) (b) Space-time adapta-
tion signals implemented (6A ' axis scale: —0.04, 0.29).

ling the replicating dynamics presented in Fig. 1 with
varied and important objectives such as attaining a
desired dynamical state, arresting the growth of the pat-
tern in time, negating the effects of noise in the dynamics,
etc. For controlling the process we shall now choose to
implement on the replicating process itself calculated
values of A'(i, t), viz. , A'(i, t)= A„t+hA'(i, t), where
A „t= A '(i, 0), and b, A '(i, t ) may be calculated directly
by an appropriate adapter formalism. In this case
b A'(i, t) provides the necessary corrections to the feed
Aow parameter that need to be implemented such that
eventually the desired objectives are realized. We shall
exemplify the results for an adapter formalism of the type

Bb, A '(i, t) /at =@[u '(i, t) —u,«(i, t ') ],
(8)

which incorporates data signals in only one system vari-
able, namely, u'(i, t), but from every positional site in the
spatial domain. We first consider the problem of
arresting the replicating process in a desired
dynamical state, say the four-peak state specified by
(u„,(i, 800),v„,(i, 800)) in Fig. 1. It was assumed that
the measurement of u'(i, t) from the process incorporates
noise ri(i, t) following a Gaussian distribution (as before).
The results presented in Figs. 3(a) and 3(b) suggest that
the controlled system effectively attains the desired set-
point state [Fig. 3(c)]. Note that the time required to at-
tain the four-peak state is considerably reduced when
compared to its natural evolution (i.e., Fig. 1). It may
particularly be noted that after realizing the desired set-
point state the replicating process dynamics does not
propagate further, because, for any deviations of the pro-
cess dynamics from the set point, corrections via the
adapter continuously control the system in the set-point
state (u,«(i, 800),v„,(i, 800)). Allowing the controller
mechanism [via Eq. (8)] to be always active in time, i.e.,
even after the set-point state is attained, ensures that lo-
cal variations due to noise are continuously negated.

Note that if the controls are switched off, i.e.,
b. A '(i, t) =0.0, the replicating process will begin to prop-
agate from the set-point state following its natural evolu-
tion.

It would be interesting to consider the possibility of al-
tering the dynamical state of the system at time, say, t to
that encountered at an earlier time t' (( t) because induc-
ing an overgrown process to occupy a less developed level
is indeed suggestive of system maneuverability by con-
trol. A study where an initial four-peak state is seen to
rapidly synchronize with the chosen two-peak state and is
subsequently pinned for the control mechanism [Eq. (8)]
still functioning is shown in Fig. 4(a). Figure 4(b) depicts
the corresponding adapter signals to be implemented on
the process. Thus the above results (Figs. 3 and 4) sug-
gest that adaptation of an externally manipulable control
variable A '(i, t) allows profitable tuning of the replicating
behavior.

The phenomenon of self-replication especially in bio-
logical systems [1,7] involves transportation of species
and their interactions in a complex and possibly autoca-
talytic way [16]. The present work analyzes a generic
self-replicating model and shows that control may be pos-
sible even with limited and inaccurate system informa-
tion. It may be interesting to note that recent lattice gas
cellular automaton simulations of a similar self-
replicating mathematical model estimate the order of
magnitude of the length and the time scales over which
this phenomenon can occur to be considerably within the
confines of a eukaryotic cell [5]. Development of experi-
mental techniques to monitor time-series data and imple-
ment system controls at these scales is indeed a difticult
task. However, it is hoped that with the rapid advances
that are taking place in this direction it may become pos-
sible to control replicating systems for the aims studied
here.
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