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Critical behavior of randomly branched polymers with quenched branchings
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Randomly branched polymers with quenched branchings, in which monomers interact with each oth-
er through the excluded volume interaction, are investigated by using an approach of conformation-
space renormalization group theory combined with the replica technique. The perturbation expansion
for the mean-square radius of gyration is found and the scaling variable is identified. The renormaliza-
tion group analysis shows that the critical exponents of the radius of gyration (v= 1/4+ e/40) and of the
total number of configurations (0=5/2 —3e/20) no longer obey the scaling law 0—1=(D —2)v, where
@=8—D and D is the space dimensionality, which is tenable for randomly branched polymers with an-

nealed branchings.

PACS number(s): 61.41.+e, 64.60.Ak, 61.25.Hq

I. INTRODUCTION 9—1=(D —2)v,

The theoretical description of the conformational
properties of randomly branched polymers (RBP's) is an
interesting subject due to its obvious applications in syn-
thetic physical chemistry and biology for investigating
problems of gels, proteins, and nucleic acids [1]. In a re-
cent paper, based on a Flory-type argument, Gutin,
Grosberg, and Shakhnovich [2] demonstrated that an-
nealed and quenched RBP's do not belong to the same
universality class due to the difference in the branching
structures. The principal difference between quenched
and annealed RBP's is that the introduction of the ex-
cluded volume does not change the branching structure
of quenched RBP's, while it does affect the branching
structure of annealed RBP's. The matter has been fur-
ther studied by Monte Carlo simulations [3].

For annealed RBP's, there have been intensive theoret-
ical [1] and computer-simulational [4] investigations for
several decades. Several approaches of statistical
mechanics have been suggested to deal with the problem
of the conformational properties [5—8]. It was shown
that the problem of annealed RBP's can be mapped to
other areas of statistical mechanics, such as lattice an-
imals [7] and Ising magnetic systems [8]. A recent
conformation-space field theory of annealed RBP's [9]
provided further understanding of the essential universal
characteristics of annealed RBP solutions when the ex-
cluded volume interaction is present. The mean-square
radius of gyration and the total number of configurations
of RBP's having contour length L grow as L and L b
for large L, respectively, where v and 0 are the universal
gyration and configuration exponents, and b is a
nonuniversal constant. It was also established that the
gyration exponent has the value v=0.5 for D=3, and the
gyration and configuration exponents obey the scaling re-
lation [8]

where D is the space dimensionality. The field-theory e
expansions for these exponents v =

—,
' +e/36 and

8= —,
' —e/12 agree with this relation [7,9]. Equation (1.1)

was obtained [8] for D-dimensional animals by relating to
the Lee-Yang edge singularity of the Ising model in an
imaginary magnetic field in (D —2) dimensions.

In contrast, much less is known about quenched RBP's
[10]. The Flory-type argument yielded, for example, a
gyration exponent v smaller than that of annealed RBP's
[2]. The off'-lattice Monte Carlo simulations of RBP's [3]
supported this argument and yielded the values v
(quenched) =0.45+0.01 and v (annealed) =0.49+0.01. In
this paper, we apply the approach of conformation-space
renormalization group theory [9] to study analytically a
model of quenched RBP's interacting through the exclud-
ed volume interaction. We focus, in particular, on the
scaling behaviors of the mean-square radius of gyration
and of the configuration number. We obtain the e expan-
sions for the gyration exponent v= ,'+e/40 and the-
configuration exponent 9= —,

' —3e/20, which are found no

longer to obey the scaling relation mentioned above for
annealed RBP's.

The replica approach [11] has been shown to be a
powerful tool for analyzing quenched random systems,
including random heteropolymers, random copolymers,
and random cross-linked macromolecules. Here we im-
plement the replica technique to deal with the quenched
branching structures in the calculation of the mean-
square radius of gyration to first order in the excluded
volume. The monomers interact with each other through
the excluded volume interaction characterized by the ex-
cluded volume parameter u p. The fact that the
monomer-monomer interaction itself is not random
makes the calculation of the replica theory possible: all
we need to do is to generalize our previous formalism [9]
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to a higher dimensional space. Gutin, Grosberg, and
Shakhnovich [12] also discussed the formalism of a RBP
model based on the replica approach, in which monomers
interact with each other through random interactions, a
situation more closely resembling the RNA secondary
structures [10]. Such a case is not discussed here.

The paper is organized as follows. In Sec. II the micro-
scopic model is described. In Sec. III, asymptotic expan-
sions in powers of the excluded volume for the partition
function, the mean-square radius of gyration, and the
second virial coefficient are calculated by using the
t'Hooft-Veltman dimensional regularization scheme [13].
The results are used to evaluate the exponents of the
mean-square radius of gyration and of the total number
of configurations based on the conformation-space renor-
malization group scheme. In Sec. IV a discussion is
given.

+2n
P~= (2.4)

length [15]. The restriction eliminates self interactions of
monomer units, which would otherwise appear as dimen-
sional singularities in the theory [16,9].

For quenched branched polymers, the topology of the
branching structure is fixed while all of the possible
configurations included in Eq. (2.2) are accessible to the
polymers. We assume that the method of preparing the
branching structures places the branching points at ran-
dom, so that all different branching structures may occur.
We further assume that the branching structures are
prepared by the chemical process with a fixed activity A,
and that the excluded volume interaction v [r] is not
present during the process. In this model, the probability
to find a given structure B with n tribranching points is
given by

II. MODEL

(2.1)

For convenience, here we use the rescaled variable r(t, ),
which is related to the position of the ath chain, x(t, ), as
a function of the contour variable t, by
r(t„)=(2D/l)' x(t ). The statistical distribution func-
tion can then be written

2n +1
Gz(D, [r])= Q g, (D, [r])exp( —v [r]), (2.2)

where the subscript B denotes the fact that the distribu-
tion function Gii (D, [r ] ) explicitly depends on the
branching structure of the molecule, and v [r] represents
the excluded volume interaction potential

2n+1 2n+1 L L,
v [r]=—,'uo g g f dt f dt„'. 6[r(t ) —r(t', )] .

=1 =1 0 0

(2.3)

The magnitude of the interaction is represented by u0,
the bare, i.e., unrenormalized, excluded volume parame-
ter. Note that it is implicitly assumed that the integral in
Eq. (2.3) is constrained so that the contour distance be-
tween the two considered contour points is greater than a
cutoff length, which has the magnitude of the Kuhn

The model system consists of branched polymers com-
posed of trifunctional units only, which may grow one
(end), two (linear connection), or three branches. Consid-
er a treelike branched polymer of total contour length L
and Kuhn length l, moving in a D-dimensional hyper-
space of volume V. The polymer is assumed to have
2n + 1 linear portions separated by two tribranching
points, or a tribranching point and an end. We use ~,
where ~=1,2, . . . , 2n +1, to label these linear portions.
Our main assumption is that the noninteracting statisti-
cal weight factor of the ~th linear portion, of length L,
obeys the D-dimensional Gaussian distribution [14]

dr(t, )
g„(D,[r])= exp ——f dt,

4 o
' dt„

where Qo is the partition function of noninteracting
RBP's,

Qo= f2)[r] g A "gti(D, [r]), (2.5)

where Qadi denotes the summation over all possible
branching structures. In Eq. (2.5), we also have

2n +1
ga(» I:r])= / g.(» I:r])

a.= 1

(2.6)

The explicit form of Qo can be found by using the ap-
proach developed by de Gennes [6,9],

I, (2AL)

AL
(2.7)

g=D, —D =8—D . (2.8)

We may show that the upper critical dimensionality D,
equals 8 by a similar discussion as in Appendix C of Ref.
[9], where the correlation function G (k) is now calculat-
ed by invoking the replica technique. The dimensional
singularities that show up as powers of 1/e when the
cutoff length is taken to be zero may be extracted by the
approach of the dimensional regularization scheme, and
treated by the minimum subtraction renormalization
method [13]. The calculation in this paper will follow
these procedures.

where I, (x) is the first-order modified Bessel function of
the first kind.

To understand the consequence of a similar model for
annealed RBP's at the mean-field level when v [r]=0, de
Gennes [6] considered an approach that simultaneously
samples the phase space of the branching structure and
the configuration freedom associated with Eq. (2.5). We
can show that at the mean-field level, the model described
above for quenched RBP's gives the same results.

Taking the dimension of the contour length L as the
fundamental dimension A. of the theory, [L]=A,, one
can [9] deduce [r]=A, '~, [uo]=A, ~, [A]=A,
[L/A] =A, , and [uoA ] =A, '~, where
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III. CALCULATIONS

A. Partition function

The overall number of configurations of quenched
RBP's is related to the partition function

2
' e/4

Q 2uoA=1+
Qo (4~) e

( I+0.105@)+0(u 20) .

(3.4)

Q = QPsQa (3.1)
B. Mean-square radius of gyration

where Qz is the partition function for a given branching
structure B: S = gP~(S )~,

B
(3.5)

The mean-square radius of gyration of quenched RBP's
is given by

Here and hereafter we use the notation

(f [r] &s = fX)[r]G~(L, [r])f[r],

(3.2)

(3.3)

where (S )~ is the mean-square radius of gyration for a
given branching structure B, which can be evaluated
through the coherent-scattering structure factor Sz(k)
[9]:

to denote the average value of a physical quantity f [r]
for a given branching structure. Combining Eqs. (3.1)
and (3.3), one finds that the partition function Q has ex-
actly the same form as that obtained for annealed RBP's.
At large L, we have [9] where S~(k) is defined as

k=o
(3.6)

LK LK
g~(k)= g f 'dt f "dt'

& ,'exp[—ik [r(t, ) r(t' —)]]&z .
0 0

7

k=o

Noting that Mz(k, L) ldk; ~k 0=0, from Eqs. (3.5) and (3.7) we rewrite Eq. (3.6) as

D g2S~= — g g f dt, f dt,'. g P~in& —,'exp[ik [r(t, ) —r(t,' )]]&L;, Qk;, 0 0

(3.7)

(3.8)

To evaluate the average over the branching probability Pz shown in Eq. (3.8), we use the replica technique [11]

y P~lnf, = lim y P,
B m

k=O, m =0

The use of Eq. (3.9) in Eq. (3.8) yields

D g2
S = — g S~(m, k)

mI. ;, Bk,

(3.9)

(3.10)

where Sz(m, k) can be regarded as the coherent-scattering factor of the m-replica system

K L„, m m m

+&(m, k)= ,' y f dt-, f dt' f g 2)[r ] pe g G~(D, [r ])exp i g k. [r (t ) —r (t„', )]
K, K a=1 B a=1 a=1

(3.11)

where the last integration is to be conducted over the coordinates of all m mutually noninteracting replicas, [r ]. In-
troducing the mD-dimensional coordinate R= jr', r, . . . , r J and momentum K= [k,k, . . . , kJ, one may rewrite Eq.
(3.11) as

K
I

Sz(m, k)= —,
' g f dt f dt' f2)[R] QP~g~(mD, [R])exp —g v[r ] exp(iK [R(tI, ) —R(t', )]) .

K K B a
(3.12)

Equation (3.12) has basically the same form as the one we encountered in calculating the mean-square radius of gyration
of annealed RBP s, except that here we need to consider the ID-dimensional instead of D-dimensional physical quanti-
ties.

We are interested in a series expansion in terms of powers of u0. It is straightforward to extend the formula for the
correlation functions given in Ref. [9] to the mD-dimensional description (see the Appendix). To first order in uo we
have
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Stt (m, k)=, Xt 'G~(0, 0;K, —K;p)
1

2!0! 0

XL ' f ( )
G4(0, 0;K, —K, Q, —Q;p) g Q 5(Qt') +O(u~~),

(2!) Qp (2~)'
(3.13)

(3.14)

where XL denotes the inverse Laplace transformation, and 5(q) is the Kronecker delta function. The functions G2
and 64 are the correlation functions of the m-replica system, with two and four internal monomer positions being
specified, whose expressions can be found in the Appendix. The calculation of S~(m, k) is tedious but straightforward.
We use the dimensional regularization scheme to extract the singularities appearing in S~ (m, k). Inserting the obtained
St, (m, k) into Eq. (3.10) yields the asymptotic behavior at large L:

l2uoA

2 A 3(4') e

This result difFers from S obtained for annealed RBP's [9].

C. Second virial coef5cient

We assume that the interaction v [r„rz] between the two considered branched polymers is given by

2n)+1 2n2+1 L
1 "2

v [r„r2]=uo g g dt, dt', 5[r,(t, )
—r2(t', )] .

I K2
—2

The second virial coefficient 32, averaged over all possible branching structures, can be expressed as

~2 g pB) g pB~( ~2)B)B~
Bl

'
B2

(3.15)

(3.16)

(3.17)

where (A2)ti ti is the structure-dependent second virial coefficient when polymer 1 has structure B, containing n,
1 2

branchings, and polymer 2 has structure Bz containing n 2 branchings [9]:

r, gB D, r, exp —v r, r2gB D, r2 exp —v r2 1 —exp —v r„r2
(~24,a, =

r& gB D, r& exp —u r& r2 gB D, r2 exp —v r2

To second order in uo, Eq. (3.17) gives

(Az)~ ~ =f2)[r, ]g~ (D, [r, ])f2)[r~]gtt (D, [r2])v [r„r2] 1+f2)[r, ]gti (D, [ri])v [r, ]+f2)[r2]gti (D, [r2])v [r2]

rigB D, ri 12gB D, r2 v ri, r2 v ri +v r2+ —v ri, I2 +0 uo (3.18)

Noting that

gB D, r1 2 gB D 2 =1 (3.19)

and

(3.20)

r, gB D, r& r2gB D, r2 v r„r2 =uoL

D. Renormalization group calculation

The singularities I/e in Eqs. (3.4), (3.14), and (3.21) can
be removed by introducing the renormalization constants
Z„, ZM, and Z, which connect the renormalized quanti-
ties u„, M„, and F„ to the bared ones u =uoA A.

' /(4'),
M =L/A, and F =Q/Qo through [9]

16~2L
A

one can easily verify that, to the second order in uo, A2
has the same form as the one obtained for annealed
RBP's. At large L, we have [9]

2 A
e/4

=uL 1— uo [I+O(e)] .
3(4') e

and

u„=z„'u,

M, =ZMM,

F, =Z 'F,

(3.22)

(3.23)

(3.24)

+O(uo) . (3.21)

However, the three-loop contribution to 2 2, which is not
considered in the present calculation, is different from its
counterpart of annealed RBP's.

where the normalization coefficients ZM, Z„, and Z are
assumed to be functions of u„.

To first order in u„, using Eqs. (3.4), (3.14), and (3.21),
we obtain
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10u,Z„=1+ +O(u„), (3.25)

4u„
ZM=1+ +O(u„), (3.26)

and

Z =1+ ur
+O(u„) . (3.27)

P(u„)=—,'eu„——', u, +O(u„) .

Letting P(u„*)=0 yields the fixed point

(3.28)

u„*= +O(e ) .
36'

10
(3.29)

Using Eqs. (3.22), (3.23) and (3.25), (3.26) in Eq. (3.14)
and then replacing u, by u„*, we find

The renormalization function P(u„)=luau„/Bink, used to
determine the fixed point u„* is then calculated to be

tion predicted by Parisi and Sourlas for any e [8]. Such a
scaling relation is no longer tenable for the present
quenched model. Furthermore, it is doubtful whether or
not the connections between the problem of RBP's and
the Lee-Yang edge singularity of the Ising magnetic mod-
el, as studied by Parisi and Sourlas [8], still exist in the
case of quenched RBP's.

While the exponents are different, the scaling behaviors
of the two types of polymers are similar. The perturba-
tion expressions for Q, S, and A2 [Eqs. (3.4), (3.14), and
(3.21)] show that a scaling parameter z defined by

e/4
u0+Z= (4.1)
(4~)'

is naturally produced. The same form of the scaling pa-
rameter has also been found earlier for the problem of an-
nealed RBP's [9]. Generalizing the perturbation result,
we propose a closed asymptotic formula for the mean-
square radius of gyration at large L,

e/20
6~ M,

S = (mM„)'i (1—0.060m), (3.30)
LS—2
A

1/2

Z
2(4v —]. ) /6 (4.2)

and

16~2M
36/20

(1+0.063m) .
X2

(3.31)

According to Eqs. (3.30) and (3.31), the critical ex-
ponents v and 8 defined by S -L ' and Q-L' b
where b is a nonuniversal constant, are thus given to first
order in e by

aI1d

1 Ev= —+ +O(e )
4 40

8=—— +O(~ ) .
5 3e 2

2 20

(3.32)

(3.33)

IV. DISCUSSION

The gyration exponent v of quenched RBP's in Eq.
(3.32) is smaller than that of the annealed RBP's v (an-
nealed) =

—,'+e/36 [7,9]. It is difficult to estimate the ac-
tual value of the exponent at D=3 based on the one-term
e expansion (3.32). Monte Carlo simulations indicate
that, at D = 3, we have v (quenched) =0.45 [3] and v (an-
nealed) =0.50 [4]. It is generally believed that the latter
agrees with the predicted value v (annealed)=0. 5 [8].
For a comparison, the Flory-type argument yields v
(quenched) =0.5 and v (annealed) =0.538 [2], which
shows a similar relative difference between the two ex-
ponents compared to the result obtained by the Monte
Carlo calculations [3].

The exponent 8 in Eq. (3.33) is also different from its
counterpart in annealed RBP's, 8 (annealed)= —,

' —e/12.
Up to order e, the renormalization group theories [7,9]
for annealed RBP's yield exponents v and 0, satisfying
the scaling relation in Eq. (1.1), which is a general equa-

This asymptotic behavior has been checked by using the
results of Monte Carlo simulations [3]. To make a proper
comparison with Eq. (4.2) we rescaled the off-lattice
Monte Carlo simulation data of S, in which the excluded
volume parameter u0 may vary, according to the z pa-
rameter defined in Eq. (4.1), and found that Eq. (4.2) is
indeed satisfied at large L. We further note that the
Flory-type argument is known to produce gyration ex-
ponents close to the actual values, despite the crudity of
the approximations made to estimate the contributions to
the free energy from the entropy and the interaction [17].
Even more surprising is the fact that it also naturally pro-
duces the appropriate form for the scaling parameter z
for both linear [17] and branched [18,19,2,3] polymers.

In this paper, the conformational properties of
quenched RBP's are obtained based on the model that de-
scribes the quenched branching structures produced by
the chemica1 process without the presence of the exclud-
ed volume interaction. We do not claim, however, that
other types of quenching distributions would also lead to
the same result. Depending on how the structures are
produced and quenched, the conformational properties
may show different behaviors.

In summary, by using the perturbation approach of
conformation-space field theory, we obtained first-order
corrections to the mean-field behaviors of the partition
function Q, the mean-square radius of gyration S', and
the second virial coefficient A2 of quenched RBP's, in
asymptotic expansions in powers of the excluded volume
u0. We have also deduced first-order terms in the e ex-
pansions for the critical exponents v and I9. Perturbation
theory provides a direct verification of the following
physical properties: (a) the mean-square radius of gyra-
tion follows the scaling behavior in Eq. (4.2) for large L;
(b) quenched RBP's are more condensed than annealed
RBP's; and (c) the scaling law [Eq. (1.1)] is not valid for
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quenched RBP s, while it is suitable for describing an-
nealed RBP's.
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where K= tk', k, . . . , k } is the mD-dimensional vec-
tor, and [6]

APPENDIX: CORRELATION FUNCTIONS
FOR THE m-REPLICA SYSTEM

Go(p) = 2

p+(p —4A )'
(A4)

For the m replicas of noninteracting RBP's the proba-
bility of finding any two external ends being specified by
the m-replica spatial coordinates R& =

I r I, r&, . . . , rP]
and R~=[r2,r„.. . , r, j is

Go(R„Rz', L)= g Pit f 2)[R]g~(mD, [R]) . (Al)
2

When the I internal points are specified by the mD-
dimensional vectors R&, R2, . . . , R&, and the two external
ends are specified by the mD-dimensional vectors R and
R', the correlation functions Gt(R, R';R&, R2, . . . , R&,L),
l = 1,2, . . . , for m-replicated RBP's can be introduced in
the same way as in Ref. [9]. In the following, we list G2
and G4 in the Fourier-Laplace space, which is used in the
text for the calculation of S:

Introducing the Fourier and Laplace transformations

Go(K;p)=f, exp[iK (R—R')]

X f dL exp( pL)Go(R—, R', L), (A2) and
0

62(0,0;K, —K;p) =2Go(p)Go(K;p) Y(0;p) Y (K;p)

(A5)

G4(0, 0;K, —K, Q, —Q;p)=2Go(p)Y(0;p)Y (K;p)Y (Q;p)

Xt2G (p)G (K;p)G (Q;p)Y(0;p)[Y(K;p)Z (K;p)+Y(Q;p)Z (Q;p)+2A G (p)Y(0;p)]

+Z(K;p)Z(Q;p)[Go(K;p)+Go(Q;p)][Go(K;p) Y(K;p)+Go(Q;p) Y(Q;p)]

X [Go(K+Q'p) Y(K+Q'p)+Go(K Qip) Y(K Qip)]+A Go(p)[Go(Kip)+G(Qip)

X[Go(K+Q;p)Y (K+Q;p)+Go(K —Q;p)Y (K—Q;p)]],
where

Y(K;p)=[1—A Go(p)Go(K;p)]

and

Z(K;p) =1+A'Go(p)Go(K;p) (A8)
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