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Short-time Brownian motion in colloidal suspensions: Experiment and simulation
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We used dynamic light scattering (DLS) and computer simulations based on the fluctuating lattice
Boltzmann equation (LBE) method to study the short-time Brownian dynamics of colloidal particles that
interact like hard spheres. The dynamics are characterized by a Q-vector-dependent diffusion coefficient
Ds(Q). Using DLS, we have mesaured Ds(Q) in the vicinity of the main (first) peak in the structure fac-
tor S(Q) for samples of poly-methylmethacrylate particles at volume fractions P ranging from dilute up
to the disorder-order transition (i.e., crystallization at /=0. 494). In addition we have determined the
short-time self-diffusion (Dz) and collective-difFusion Dz coefficients. We have extracted the same quan-
tities from simulations of equilibrium configurations of hard spheres using a fluctuating lattice
Boltzmann equation method for the fluid phase coupled to Newtonian mechanics for the colloidal parti-
cles. For all samples studied, close quantitative agreement is found between the results of the DLS ex-
periments and the LBE simulations.

PACS number(s): 05.40.+j, 47.15.Pn, 82.70.Dd, 82.70.Kj

I. INTRODUCTION

The dynamics of colloidal suspensions have been the
subject of continuing research over the past two decades
(see references in [1]). The motion of Brownian particles
suspended in a liquid is characterized by three distinct
time regimes. For long times ~&&~+, their motion is
diffusive, resulting from interactions with the surround-
ing fluid and random encounters with other particles.
This is the Brownian long time reg-ime. The time
rtt =R /Do, needed for a particle in a dilute suspension
to diffuse over a distance comparable to its radius, is an
estimate of the time scale on which direct interactions be-
tween the particles become important. Here R is the ra-
dius of a particle and Do is the diffusion coefBcient at
infinite dilution given by the Stokes-Einstein relation
Do=kttT/6n. goR; ktt is the Boltzmann constant, T the
temperature, and go the shear viscosity of the suspending
fluid. At shorter times ~~ &&~&&~+, the motion is also
diffusive, albeit at a faster rate, reflecting the fact that the
particles have not yet been slowed down by direct in-
teractions with neighboring particles. This is the Browni-
an short time regime an-d the only interparticle interac-
tions are the hydrodynamic interactions transmitted by
the fluid. The Brownian relaxation time ~~ characterizes
the time taken to decouple the dynamics of the colloidal
particles from the dynamics of the Quid and is given by
hatt =m /6rrrioR, where m is the mass of a suspended par-
ticle. There is a clear separation between the two time
scales rjt and rz [1],allowing for the definition of distinct
short- and long-time dynamics. Gn even shorter time
scales ~~~~, the motion of the particles evolves from
ballistic to diffusive as the velocities imparted to the par-
ticles by the collisions with fluid molecules are viscously
damped. This is the pre-Brownian time regime.

On the theoretical side, progress in the description of
the dynamics has been hindered by the complexity of the

hydrodynamic interactions between the suspended parti-
cles; these interactions are of many-body nature and long
range [1]. The work of Beenakker and Mazur [2] is the
most comprehensive study of the short-time dynamics to
date. Their work is based on a partial resummation of
the hydrodynamic interactions, evaluated via a renormal-
ized density Quctuation expansion. For the long-time re-
gime, theoretical investigations are scarce and we only
cite here the works of Medina-Noyola [3] and Tokuyama
and Oppenheim [4], which both have investigated the
self-motion of the particles. Reference [4] also contains
work on the short-time self-motion, although the physical
content of this theory remains to be elucidated fully. In
the pre-Brownian regime, the hydrodynamic interactions
are developing from local forces at the particle-fluid in-
terface, which then diffuse through the fiuid [1]. The hy-
drodynamic interactions of a single Brownian particle
with the surrounding fluid lead to the so-called long-time
tails in the decay of the velocity autocorrelation function
of the Brownian particle. Much theoretical work has
been done on this effect [5]; no theoretical predictions
are, however, available on the development of the in-
teractions between seueral particles.

On the experimental side, dynamic light scattering
(DLS) has been used for many years to study colloidal
suspensions by measuring the decay in time of the density
fiuctuations [1,6]. DLS has access to time scales r) rs
and is thus ideally suited to investigate the short- and
long-time Brownian dynamics. The decay of the density
fluctuations can be characterized by a time-dependent
and wave-vector-dependent diffusion coefficient D(Q, )r
and extensive data on the self- (Q~ao) and collective
(Q~O) motion on the short time scale exist (see refer-
ences in [1]). Some data at intermediate wave vectors
also exist [7], but are limited by experimental uncertain-
ties, principally due to multiple scattering effects. DLS
measurements of the long-time self-motion have been pre-
viously reported [8,9], but no measurements at intermedi-
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ate wave vectors in this time regime are available. Inves-
tigations of the pre-Brownian regime are very difBcult via
conventional DLS and have only become practical with
the advent of diffusive wave spectroscopy (DWS) [10,11].

On the computational side, results have, until recently,
been limited to the time scales ~& ~~. The reason for this
is that in the conventional computational methods for
simulating colloidal suspensions, such as Brownian dy-
namics [12] or the multipole method [13], the hydro-
dynamic interactions between particles are considered to
act instantaneously and their time-dependent develop-
ment is not simulated. Thus these methods are suited
only to time scales where these interactions are fully es-
tablished ~ & ~z. Another consequence of this time-scale
separation is that the interactions are global, depending
on the positions of all the particles simulated; thus the al-
gorithms scale mostly as the cube of the number of parti-
cles, making them computationally extremely expensive.
Results have been reported for the short-time self- and
collective-diffusion coefficients [13] from simulations that
take full account of the hydrodynamic interactions. At
intermediate wave vectors, only calculations using
Brownian dynamics coupled to an empirical two-particle
hydrodynamic interaction have been reported [14]. The
long-time regime is practically inaccessible for the con-
ventional algorithms due to the intense computations
necessary. Only for systems where the hydrodynamic in-
teractions can be neglected have the self-motion [15]
(hard spheres without hydrodynamic interactions) and
the wave-vector-dependent dynamics [16] (charged
spheres) been investigated; alternatively, the self-motion
of hard-sphere systems with hydrodynamics based on
empirical pairwise additive hydrodynamic forces [17]has
also been studied.

Recently, a numerical method for the simulation of
colloidal suspension has emerged. It is based on a Auc-
tuating lattice Boltzmann equation (LBE) method for the
Quid phase coupled to Newtonian mechanics for the
suspended hard-sphere particles [18—20]. This technique
has been shown to fully simulate the hydrodynamic in-
teractions in concentrated suspensions [19,20]; moreover,
it captures the time-dependent development of these in-
teractions from purely local forces and is thus suited for
the study of the dynamics on all time scales. The locality
of the interactions has as a consequence that the algo-
rithm scales linearly with the number of particles, al-
though, if a steady-state solution is to be reached, some
allowance must be made for the full establishment of the
time-dependent Aows. However, even taking this addi-
tional computational expense into account, the algorithm
represents a considerable improvement over conventional
methods. Over the past few years, this method has been
used, together with DWS experiments, to investigate the
pre-Brownian regime [18,21]. Very interesting scaling
behavior of D (Q, 7) has been observed and the combined
use of experiment and simulation has led to additional in-
sight into the time-dependent development of hydro-
dynamic interactions.

The aim of the work reported here is to extend this
combined experimental and computational study of the
dynamics of colloidal suspensions to time scales ~&~z,

using DLS (experiment) and LBE (computation)
methods. In the present paper, we concentrate on the
short-time dynamics ~~ (&~&&~&, while in a future pa-
per [22], we plan to discuss the data over all times ~) r~,
with a focus on the long-time Brownian regime ~ &&~z.

We present here measurements of the short-time
difFusion coefficient Ds ( Q), defined as the limit
lim, «,«D (Q, r), for particle volume fractions

ranging from dilute up to the disorder-order transition at
Pf =0.494 and for a range of wave vectors in the vicinity
of the main peak in the structure factor S(Q). We are
thus probing the dynamics on length scales comparable
to the interparticle separation, where the structural
effects are the strongest. Our results will be compared to
the theory of Beenakker and Mazur [2]. We will also
present results for short-time self diQusi-on

Dz =Dz(Q ~—~ ) and compare them to the theory of Ref.
[2] and a more recent theory of Tokuyama and Op-
penheim [4], as well as results for the short-time collec-
tive diff'usion Ds Ds(Q ~——0).

Our experimental results are obtained by dynamic light
scattering from suspensions of poly-methylrnethacrylate
(PMMA) particles. Circumstantial evidence suggests
that these particles interact like hard spheres [1] and we
will confirm this conjecture in the present work. We use
the two-color dynamic light scattering (TCDLS} method
[23], which eliminates the effects of multiple scattering in
turbid samples. We thus believe our data to be more ac-
curate than previous measurements of the Q-dependent
diffusion coefficients [7], which, especially at low Q vec-
tors where the effects of multiple scattering are strong,
had quite large experimental errors. Moreover, we de-
scribe accurate methods to determine both the particle
radii and the sample concentrations. Both of these quan-
tities, especially the particle volume fraction P, must be
accurately determined before any meaningful comparison
to theory and simulation can be made.

II. THEORY

The intermediate scattering function of a system of X
particles is given by [6,24]

F(Q, &) =—$ ( exp[i@.[r;(0)—r, (r}]]) .
1

t, J

Here the angular brackets ( ) denote an average over an
ensemble of equilibrium distributions, r; is the position of
the center of mass of particle i, where i,j = 1, . . . , N, and
r represents tiine. F ( Q, r) (which in isotropic samples de-
pends on the magnitude Q of the scattering vector Q
only) is the spatial Fourier transform of the particle num-
ber density autocor relation function. The zero-time
value of the scattering function gives the static structure
factor F(Q,0)=S(Q). The normalized scattering func-
tion f ( Q, r ) =F ( Q, r ) /S ( Q ) is the quantity most easily
measured by dynamic light scattering experiments. The
decay of the density fluctuations, characterizing the dy-
namics of the system, can be expressed by considering the
time derivative off (Q, r),
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(2)

Here we have introduced the time- and wave-vector-
dependent diffusion coefficient D (Q, r), which depends on
both structural and hydrodynamic effects. The particle
dynamics are diffusive if D (Q, r) is time independent and
the decay off (Q, r) is exponential. This is the case in the
Brownian short-time regime ~z &&~ &&~~ and the associ-
ated difFusion coefficient is Ds(Q):—lim, «,«D(Q, r)
[1]. On the long time scale r)&rz, the behavior is also
expected to be diffusive with diffusion coefficient
DL(Q)=lim», D(Q, r) [1]. Since on the long time

scale the movements of the particles are hindered by
direct interparticle interactions, DL (Q) (Ds(Q).

We now concentrate on times such that ~&&~+, when
the colloidal particles hardly move and their positions
can be considered fixed. Structural and hydrodynamic
effects can then be separated by introducing the time-
dependent hydrodynamic function H (Q, r) so that [1]

D(Q, r) H(Q, r)
Do S(Q)

(3)

(4)

where the time-dependent diffusion tensors D;J(r) are
defined as the dyadics

D,J(r)= I (v;(t')vj(0))dt' . (5)
0

The average ( ) in expression (5) is over the velocities v;
of the particles, their positions being assumed fixed. This
is also the reason for using the equal-time relative posi-
tions r;(0)—rl (0) in Eq. (4).

DLS measurements are sensitive to time scales such
that ~& ~~. In order to avoid measuring the dynamics on
time scales where the particles already interact directly,
the short-time diffusion coefficient Ds(Q) is obtained
from the initial decay off (Q, r), Eq. (2),

Ds(Q) = limD (Q, r) .
v~0

(6)

The limit ~—+0 is meant to be taken on the time scale
The time-independent hydrodynamic fac-

tor H (Q) is then defined as lim, OH(Q, r) so that, from
Eqs. (3) and (6),

Ds(Q) H(Q)
Do S(Q)

In the LBE simulations, fixed equilibrium
configurations of particles are considered, r;(r) =r;, as we

H(Q, r) represents purely hydrodynamic effects, the
structural effects being contained in the static structure
factor S(Q). In the absence of hydrodynamic interac-
tions H(Q, r) =1. Following from Eqs. (1)—(3), an explic-
itly expression for H ( Q, r ) is obtained [1]

H(Q, r)=(NDOQ )

X $ (Q DJ(r).QexpI iQ [r;(0)—rj(0)]]),

are interested in the short-time regime. This has an effect
that no direct interactions between the hard-sphere parti-
cles are possible and the Brownian long-time regime is
suppressed. Since the fully time-dependent hydrodynam-
ic interactions are simulated with this method and the
time-dependent hydrodynamic factor H(Q, r) is mea-
sured, H(Q) is obtained as the plateau value of H(Q, r)
when the hydrodynamics have fully developed,

H (Q) = lim H (Q, r) .
7~00

Then Eq. (7) can be used to determine the short-time
diffusion coefficient. The ensemble averages in the calcu-
lation of H(Q, r) are easily evaluated as averages over a
set of different equilibrium particle configurations.

III. EXPERIMENT

The suspensions used in most of these studies
comprised colloidal spheres of PMMA dispersed in cis-
decalin (samples SMU33 and SMU34). The particles
were stabilized sterically by thin, chemically grafted lay-
ers of poly-(12 hydroxystearic acid) (PHSA) and were
prepared by the method described previously [26]. The
radii of the particles were 178 nm (SMU33) and 301 nm
(SMU34) (see Sec. III B2 and Table I). The polydispersi-
ty of each preparation was approximately 0.05 (see Sec.
III B 3).

Cis-decalin was chosen as a solvent because it disperses
the particles well and is not measurably absorbed by
them. However the refractive indices of cis-decalin,
n =1.48, and PMMA, n =1.50, are sufficiently different
that concentrated suspensions are visibly turbid and the
TCDLS multiple scattering suppression technique is
necessary to perform the light scattering measurements.
The combination of samples that scatter light strongly
and the TCDLS technique allows the collection of data of
high accuracy. The strong scattering by the particles
dominates stray scattering by dust and the sample cell
walls and the TCDLS method suppresses the inevitable
multiple scattering.

For the self-diffusion studies described in Sec. VC,
where measurements were made at scattering vectors
near the minimum of the single-particle form factor, it
was necessary to use samples that gave rise to less multi-
ple scattering. This was achieved by dispersing the parti-
cles (SMU30, radius 240 nm) in a mixture of cis-decalin
and tetralin (n =1.54) with a ratio of approximately
0.58/1 by weight of tetralin to cis-decalin. This mixture
is designed to match closely the refractive index of the
PMMA particles, resulting in nearly transparent samples.
Tetralin was avoided for the other studies reported here
because we found that particles dispersed in it showed
some signs of swelling, the radius increasing by 1 —2%
over several days.

In Sec. III A we describe the TCDLS technique. Sec-
tion IIIB deals with the determination of the suspen-
sions' volume fractions by reference to the hard-sphere
"freezing" transition. In Sec. III C we describe the deter-
mination of the particles' radii by various light scattering
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methods and demonstrate consistency between the re-
sults.

A. TCDLS light scattering technique

g,"'(Q r) = I+PMsP'„POIf (Q r) I' (10)

Here Po is the usual DLS coherence factor, which de-
pends on the ratio of the area of the detector pinholes to
the coherence area for single scattering. The factor P,„
refIects the incomplete overlap of the two scattering
volumes. The effect of multiple scattering is given by the
factor PMs, which is equal to the square of the ratio of the
intensity of single-scattered light to that of the total (sin-
gle plus multiple) scattered light. If multiple scattering
completely dominates single scattering, pcs=0. Clearly,
for the TCDLS technique to work in practice, it is neces-
sary that the sample is not too turbid.

The measurements were performed with a two-color
dynamic light scattering apparatus manufactured by
ALV-Laser Vertriebsgesellschaft, Langen, Germany.
TCDLS is a relatively new technique that allows the
single-scattering function f ( Q, r ) to be measured for sam-
ples that also exhibit significant multiple scattering. A
complete description and demonstration of the technique
has been given elsewhere [23]. Here we summarize the
details relevant to the present work.

Illuminating blue (A,~ =488 nm) and green (A,G
= 514.5

nm) beams from argon ion lasers cross at a small angle in
the center of the sample, contained in a cylindrical cell.
Blue light and green light, scattered from the center of
the sample, are detected by separate photomultiplier
tubes in directions separated by the same angle. The
geometry of the incident and scattered beams is arranged
precisely so that the scattering vectors associated with
both blue and green scattering are identical, i.e.,
Q~ =Qo =Q. The outputs of the phototubes are then
cross correlated to give

g,"'(Q, ) = & I (Q, 0)I (Q, ) & /& I (Q) & & I (Q) &, (9)

where I is the intensity of scattered light.
With this optical arrangement, single-scattered light of

each color probes exactly the same spatial Fourier corn-
ponent of the sample's density fluctuations. Thus the
temporal fluctuations of each single-scattered signal are
correlated, i.e., they exhibit the same fluctuations. It is
not difficult to show [23] that for double and higher order-
multiple scattering this degeneracy is broken. The
multiple-scattered light of different colors probe different
spatial Fourier density components of the sample and ex-
hibit uncorrelated temporal fluctuations. Thus multiple-
scattered light of one color is not correlated with single-
scattered light of the same color or with single- or
multiple-scattered light of the other color. The net result
is that the time-dependent part of the intensity cross-
correlation function Eq. (9) of a turbid sample reflects
only the single scattering function f (Q, r). Multiple
scattering simply contributes to the time-independent
"base line" of g,' '(Q, r).

These results can be summarized by the expression [23]

We used quite small detector pinholes, giving Pc=0.95.
The overlap factor P„was typically 0.8. To minimize
multiple scattering we used sample cells of inner diameter
of 1 mm rather than the more standard 8-mm cells. The
fraction of the intensity of light transmitted through con-
centrated samples in these cells was typically 0.25 —0.5,
indicating significant but not dominant multiple scatter-
ing. The range of scattering vectors Q studied was re-
stricted to the region QR &4.0 (where R is the radius of
the particles). These values are significantly smaller than
that, QR =4.49, where the single-scattering form factor
P (Q) of homogeneous spheres has its first zero and there
is enough single scattering from the samples for the
TCDLS technique to work. For QR )4.0 we found
PMs&0. 1 and very long measurement times would have
been necessary to obtain data of the necessary statistical
accuracy. At scattering vectors corresponding to the
main peaks in the samples structure factors we found
PMs=0. 6, indicating a rather low proportion, approxi-
mately 20%%uo, of multiple scattering in the total detected
intensity. This was verified by measuring the intensity
autocorrelation functions from either of the detectors,
which showed significant distortions due to multiple
scattering. Complications due to multiple scattering also
prevented us from measuring accurately the static struc-
ture factors S(Q) of the samples. Thus we use the
theoretical Percus-Yevick expression, with the Verlet-
Weis correction [25], for the structure factor of an assem-
bly of hard spheres where necessary [for example, to use
Eq. (7) to convert the measured Dz(Q) to the hydro-
dynamic factor H (Q) ].

Figure 1 shows several typical correlation functions
f (Q, r) obtained from a concentrated PMMA suspen-
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normalized delay time DOQ r for a concentrated (/=0. 472)
suspension of PMMA particles in cis-decalin. The values of QR
are as indicated, with QR =3.47 corresponding to the main
peak of the structure factor S(Q). Short-time diffusion is evi-
denced by the initial exponential decay, marked by the dashed
lines. Dz(Q) is extracted from cumulaut fits to the data for the
initial decay. Inset: luf (Q, r) at longer times beyond the initial
decay.
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sion. Each function is an average of three experimental
runs typically of 10—20 minutes in duration. The main
part of the graph highlights the initial decay of f (Q, w}.
This is the region of short-time Brownian diffusion, evi-
denced by the initial exponential decay. The data are
plotted in such a way that the Q dependence of Ds(Q}
can be explicitly seen: the slope of a dashed line is

Ds—(Q)/Do and it can be seen that the difFusion
coefficients decrease near the main peak of the structure
factor QR =3.5.

The diffusion coefficients Ds(Q) are calculated from
the first cumulants off ( Q, ~) [27]. Care must be taken in
the cumulant fits because of the visible curvature of
lnf (Q, r) at intermediate times. The procedure used was
to perform a series of fits over varying ranges of time. In
this way, as the time range is decreased, the extracted
value of the first cumulant is found to converge to a con-
stant value in the region z~ (&~&~+ from which we
determine Ds(Q). The error bars given for the experi-
mental data presented in this paper represent the stan-
dard deviation of the average of typically three separate
experiments.

The inset of Fig. 1 shows the behavior of f (Q, ~) at
long times ~)~z. We remark here that we have found
that f (Q, w&~z ) can also be well described by an ex-
ponential decay in time. This leads to the definition of a
long-time diffusion coefficient DL (Q), an analysis of
which is planned to be given in a future paper [22].

B. Sample characterization

1. Volume fraction determination

We evaluate the volume fraction P of the colloidal sam-
ple by comparison with a fiuid of hard spheres (HS's) in
an equivalent thermodynamic state. This is done by ex-
ploiting the disorder-order transition (i.e., freezing or
crystallization) observed in both HS and PMMA systems
[1,28].

In our nearly monodisperse samples, homogeneous nu-
cleation of colloidal crystallites occurs over a range of
volume fractions b,/=0. 08, from the freezing transition
at Pf, to the glass transition at P . However, there is a
limited range b,/=0. 05 over which the colloidal crystal-
lites and the amorphous colloidal fluid coexist. Thus we
identify the limits of the range in volume fraction for
which fluid-crystal coexistence is seen with the freezing
and melting concentrations of HS fiuids, Pf =0.494 and

=0.545 [29].
We now describe the procedure by which we prepared

samples and determined volume fractions. First, a stock
solution of a moderately high (not necessarily known)
volume fraction is centrifuged down until it consists of a
dense amorphous sediment, assumed to be near random
close packing /=0. 64 and a clear supernatant devoid of
particles. The clear supernatant is removed and solvent
added so that the sample is somewhere in the fluid-crystal
coexistence region 0.494 & P,„&0.545. After vigorous
shaking to redisperse the sediment, the sample is left to
stand. Gradually, small crystallites form by homogene-
ous nucleation that, due to gravity, gently settle to the
bottom of the sample cell. After 1 or 2 days, two visibly

1+5 /MT [(p/ps —1)P,„+1]
(12)

Here MT is the total mass of the sample, pz is the density
of the solvent cis-decalin, and p is the effective density of
the PMMA core and the stabilizing polymer shell. At
T=20'C, ps=0. 896 g/cm and p=1. 18 g/cm . It is
also worth emphasizing that, unlike the weight to volume
fraction conversion techniques sometimes used in col-
loidal suspensions, at no point do we need knowledge of
the individual particle sizes or volumes. The above
method was also employed for the cis-decalin plus tetralin
samples (SMU30) used for the determination of the self-
diffusion coefficient Dz.

We now discuss the various sources of error 5P in the
determination of the volume fractions. For P,„, the only
source of error is in measuring the heights h~ and hT.
We estimate 5$,„&+0.003. For the fiuid samples, P in-
volves 5, MT, and pz, all of negligible uncertainty for
our purposes. The only source of error is in the remain-
ing variable, the average particle density p. Although the
core (PMMA) and shell (PHSA) densities are known, the
degree of solvation of the PHSA stabilizing hair as well
as its average extension are not completely determined.
However, because of the small contribution, approxi-
mately 20%, of the shell to the total particle volume as
we11 as the closeness of the PHSA and cis-decalin densi-
ties, even the extreme cases, i.e., completely solvated or
completely unsolvated shell, lead to small uncertainties in

of the order of 5$ &0.003 for /&0. 20 and
0.4&/ &0.494 and 5/&0. 006 for 0.20&/ &0.40.

2. Mean radius

One of the aims of comparing experimentally measured
particle dynamics of PMMA spheres with those of hard-
spherical colloidal particles measured by the computer
simulations is to determine to what extent the PMMA
particles mimic the behavior of true hard spheres. It is to

distinct regions appear, colloidal crystals on the bottom
and amorphous colloidal fluid on top. When no further
crystallites are visible in the fluid layer, the crystallization
process is considered complete and the sample has
reached its equilibrium thermodynamic state. At this
point the heights of the crystal region hz and of the total
sample hT are measured (see Ref. [30] for a careful
analysis of the slow time-dependent gravitational settling
and compression of the crystallites). Using the ideal HS
freezing and melting concentrations as described above,
the volume fraction of the sample in coexistence (f,„ is
calculated from

h~
p,„=pf+(p pf ) —=0.494+(0.051) . (11)

T T

For these DLS studies, we studied only colloidal fluid
samples. These are prepared by diluting down a fluid-
crystal sample prepared as above by adding some solvent
of mass 5 . A simple argument based on the addition of
volumes leads to the expression for the fluid sample
volume fraction P
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I(Q)~P(Q)S(Q) . (13)

Here P(Q) is the measured single-particle form factor

be remembered that these particles are not solid spheres
of PMMA; rather they are composed of a hard PMMA
core with a stabilizing PHSA layer approximately 8% of
the total particle diameter in thickness [26]. One critical
way of examining the nature of the particles vis-a-vis hard
spheres is to compare measurements of the mean particle
size via a range of light scattering techniques methods,
each probing a diferent property of the particles.

Method 1, DLS by dilute samples, measures the
viscous drag of an isolated sphere and yields the hydro-
dynamic radius. In very dilute samples, an analysis of
f (Q, r) using Eqs. (2) and (6) yields Q- and r-independent
diff'usion coefficients (see, however, Sec. IIIB3 below}
from which intensity weighted hydrodynamic radii R
are extracted using the Stokes-Einstein relation
Do=k+T/6mrioR„. The viscosity go of cis-decalin is
go=3. 381 cp at T =20'C, as measured in our laboratory
with an Ubbelhode viscometer. The number average ra-
dius R, of interest here and listed in Table I, is slightly
smaller than R„,R =R /(1+5cr )=0.988R, due to a
slight particle size polydispersity cr =0.05 [31].

Method 2 uses conventional light scattering by dilute
samples to determine the size by comparing the measured
single particle scattering form factor P(Q) with that ex-
pected for hard spheres [6]. In particular, a mean radius
can be obtained by comparing the position of the first ex-
perimental minimum in P(Q) at Q'"~' with the theoreti-
cal result (QR )'"„"=4.49.

The next two methods determine particle radii from a
comparison of measured and theoretical (hard sphere)
structure factors S(Q) in dense fiuids and colloidal crys-
tals. Previous work on similar suspensions has shown
that HS models can well describe the experimental results
for S(Q) in PMMA suspensions [1]. A further compar-
ison of the experimental and theoretical static structure
factors is not done here. Rather, our aim is simply to ex-
tract an effective hard-sphere radius, denoted here as the
hard-sphere interaction radius, by identifying the experi-
mental value of the position of the main peak Q'" ' with
the theoretical values (QR)'""'. The first of these two
methods, method 3, is to measure the intensity I(Q) of
light scattered by a Quid sample at the freezing transition
(()=0.494 and relate it to the structure factor S(Q} via
the relation

and this relation is valid for monodisperse spheres. From
S(Q), a mean particle radius R is extracted using the
theoretical Percus- Yevick (Verlet-Weis) result of
(QR)'"'"-3.47 for HS fluids [25]. Finally, in method 4,
the intensity I(Q) [and hence S(Q)] scattered by the sed-
imented colloidal crystal (P =0.545) in a coexisting
Quid-crystal sample is measured. It is known that col-
loidal crystallites form a random-stacked, close-packed
lattice structure with a strong Bragg scattering peak at
(QR)B„=3.475 [1] so that the mean radius can be
determined.

We now discuss the results listed in Table I. For each
of the three sets of particles, there is close agreement be-
tween the mean particle sizes measured using the four
different techniques. Most values agree to within the
quoted errors, all of which are less than 2%. Evidence
for the hard-sphere-like nature of particles is perhaps best
given by the close agreement of the radii determined by
the hydrodynamic method, 1, and the hard sphere i-nterac-
tion methods, 3 and 4. .The presence of either attractive
or repulsive forces between particles or of deformation of
the PHSA polymer layer under interparticle contact
could lead to significant differences between these two
measurements. Given that all four methods yield the
same radii within errors, we note that the last method, in-
volving the crystalline Bragg peak in a coexisting sample,
has many advantages over the others. The volume frac-
tion is known exactly, yielding (QR)n„gs=3. 475, and the
Bragg peak is sharply defined and easily measured. In
addition, the lattice spacing is relatively insensitive to po-
lydispersity and the solvent viscosity does not need to be
known.

3. Polydispersity

In Sec. V we will compare results from. experiments
and computer simulations for particle dynamics in con-
centrated suspensions. We point out that there is an im-
portant difference between the two systems involved in
this comparison: the PMMA spheres are slightly po-
lydisperse in size while the LBE particles are practically
monodisperse (to within 0.5%', see the discussion in Sec.
IV). Thus disagreements between the results of experi-
ment and theory could reflect the effects of polydispersi-
ty.

The polydispersity of the particles was measured by
TCDLS on dilute samples using the method of Pusey and
van Megen [31],in which the average diffusion coefficient

TABLE I. PMMA particle size determination.

Method Measured Name Relation SMU33 SMU30 SMU34
(nm) (nm) (nm)

Do
&(Q)
S(Q)
S(Q)

dilute DLS
dilute min.
conc. peak
crystal peak

R = [kg T/6m7)ODO]/(1+So )

( QR )theor/Qexpt

( QR )Brag g /Q Bragg

180+2
178+3
176+2
176+2

240+4
235+4
239+3
246+2

303+3
302+4
299+3
300+3

Average 178+2 240+4 301+2
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Ds(Q) describing the (nearly exponential) decay of the in-
termediate scattering function is measured as a function
of Q. Near the minimum in the particles' average form
factor, Ds(Q) shows a characteristic "swing" as first the
large particles and then the small ones scatter weakly.
For narrow, reasonably symmetrical size distributions,
the peak-to-peak amplitude of the swing is twice the par-
ticle polydispersity o.. Figure 2 shows the results for the
SMU33 particles. These measurements give 0.=0.05.

Since the theory is not well developed, we can only
speculate about the effects of particle polydispersity on
the dynamics of concentrated suspensions. Equation (7)
relates Ds(Q) to the hydrodynamic and static structure
factors H(Q) and S(Q). There are theories for the static
structure factor of suspensions of polydisperse hard
spheres, e.g. [32], that predict that, for o =0.05, the am-
plitudes of the main peak S (Q ) are reduced by 1%, 2%%uo,

and 5% for volume fractions /=0. 25, 0.35, and 0.45, re-
spectively, compared to the values for a monodisperse
system. The effect of polydispersity is thus small, but not
negligible. However, there appear to be no predictions
for the effect of polydispersity on H(Q). Here we simply
note that the good agreement found in Sec. V between
the experimental results for a slightly polydisperse system
and the simulations for an effectively monodisperse sys-
tem implies that polydispersity affects H (Q) and S (Q) in
much the same way, leading to cancellation in Eq. (7).

IV. FLUCTUATING LATTICE
BOLTZMANN SIMULATIONS

A. Simulation technique

for simulating colloidal suspensions, such as Brownian
dynamics with hydrodynamic interactions [12] or the
multipole method [13], is that it simulates the time
dependent hydrodynamic interactions. Therefore, while
conventional algorithms assume that the hydrodynamic
interactions are fully established and global, depending
on the positions and velocities of all the particles, the
LBE algorithm simulates the development of the interac-
tions from purely local forces at the solid-fluid interface
that then diffuse throughout the Quid. This fundamental
difference results in the LBE algorithm scaling linearly
with the number of particles and, although. some al-
lowance in computational time has to be made for the
time-evolution of the Aow if steady-state solutions are to
be reached, the LBE method represents a considerable
improvement over conventional algorithms, which scale
mostly as the cube of the number of particles.

The lattice Boltzmann equation method has emerged in
recent years as a powerful tool to simulate Quid Rows
[33,34]. It is based on the well established connection,
described by kinetic theory, between the dynamics of a
dilute gas and the Navier-Stokes equation [35]. In the
LBE method, space is spanned by a regular lattice and
the allowed velocities of the "gas" particles are restricted
to a set Ic;], i =1, . . . , n The c. ; link a lattice node r to
a set of neighboring lattice nodes. The fundamental
quantity is the particle distribution function f; (r, t),
describing the probability of ending a gas particle at lat-
tice site r, time t, and with velocity c;. The hydrodynam-
ic fields, the density p(r, t), and momentum density
p(r, t)u(r, r) are defined as velocity moments of the distri-
bution function

The numerical simulation method used in this paper is
based upon the combinations of Newtonian dynamics for
the solid particles with a Auctuating lattice Boltzmann
equation for the suspending fluid [18—20]. The principal
advantage of this method over conventional algorithms

p(r, t)= g p, f, (r, t),
i=1

p(r, t)u(r, t)= g p, f;(r, t)c, ,
i=1

(14)

(15)

1.10

1.05

1.00

0.95

a=005

where u(r, t) is the hydrodynamic velocity of the fiuid
and the p, are weights associated with velocity direction
c;. At each time step, the distribution functions are pro-
pagated along c, to the next lattice site where a collision
process takes place [33,34]. In the present implementa-
tion of the method, the collision process is chosen to be
the simplest possible: the distribution functions are re-
laxed to their local equilibrium f,'q(r, t) with a relaxation
parameter ~~6K. This is the so-called Bhatnagar-Gross-
Krook (BGK) method [36,37]. The time evolution of the
distribution function is thus described by the kinetic
equation

0.90
0

I

2

Q (10 cm )
FIG. 2. Determination of PMMA particle size polydispersity

o using TCDLS in a dilute sample P (0.01. Do is the (number
average) free-diffusion coefBcient. The minimum of the form
factor P(Q) is denoted by the line at QA -2.6X10 cm ' and
the solid line is a guide to the eye. The polydispersity o.=0.05
is obtained from the amplitude 2o. of the peak-to-peak variation
in Do /Dz(Q) (see the text).

(16)
+BGK

The choice of ~zzK determines the viscosity of the Quid
and is restricted to r&~K & —,'. It can be shown that, sub-

ject to an appropriate choice of the equilibrium distribu-
tion and the underlying lattice (including the weights p; ),
the hydrodynamic fields p and pu obey the incompressi-
ble Navier-Stokes equations in a small Mach number,
small Knudsen number approximation [33,34].

f, (r, t) f q(r,t)—
f;(r+c, , t+1)=f;(r,t)—
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Flows in colloidal suspensions occur at low Reynolds
number and can be described by the linearized Navier-
Stokes equation. The local equilibrium distribution
f (r, t) is thus chosen such that the nonlinear terms in
the Navier-Stokes equation vanish [33]

(17)

Here b, K, and c are lattice-dependent parameters.
To simulate the thermal fluctuations in the Quid driv-

ing the Brownian motion of the solid colloidal particles,
stochastic terms f are added to the distribution func-
tions f, of the I..BE fiuid in such a way that they do not
alter the density p or momentum density pu, but add a
Quctuating component to the stress tensor a. of the Quid

[18,19]. The stress tensor is defined as

o(r, t) = g p; f;(r, t)c;c; (18)

X[5 5ps+5 s5p
——', 5 P b] . (19)

The variance 3 can be linked via a Quctuation-dissipation
theorem to the effective temperature and the viscosity of
the fiuid [19].

An important part of the simulations of colloidal sus-
pensions is the mechanism of interaction between the
particles and the Quid via the so-called boundary rules.
In a recent paper [20], we have introduced a set of bound-
ary rules that, while identical in effect, are somewhat
simpler to implement than the rules pioneered by Ladd
[19]. We have also introduced some simplifications to the
LBE Quid plus colloidal particles algorithm and have
shown that this method reproduces the dissipative and
Quctuating hydrodynamic forces between the solid parti-
cles with good accuracy over the whole range of particle
volume fractions [20]. Indeed, computations of two-
particle hydrodynamic interactions have been shown to
agree with independent calculations [13] down to inter-
particle separations of less than one lattice spacing for
particle radii of only three lattice spacings [20]. Similar-
ly, computations via both dissipative and Quctuating
methods [19,20] of the self-difFusion coefficients, sensitive
to the many-body hydrodynamics interactions [2], agree
with independent calculations [13] for particle radii of
only about four lattice spacings at the highest particle
volume fractions.

In our method, a colloidal particle is mapped onto the
lattice by marking the lattice nodes lying the closest to its
surface as boundary nodes. Thus a discrete representa-
tion of the particles as sets of boundary nodes is obtained
and this representation becomes more and more precise
as the particle radius increases. We note that the posi-
tions of the centers of mass of the particles are continu-

and the random stress fiuctuations o'=g; p;f c;c; are 5-
correlated in space and time [38]

(o' p(r„t, )0'$(r2, t2) )
= A 5(r, —r2)5(t, t2 )—

ous and not restricted to lie on the lattice nodes. The lat-
tice nodes inside and outside of the particles are treated
in a similar fashion. However, due to the relatively small
particle volume, the interior Quid quickly relaxes to the
solid-body motion of the particles and only adds an addi-
tional inertia [19]. At each time step and each boundary
node rb, population density between opposite velocity
directions c; and c;= —c; is exchanged in such a way
that the local velocity u(rb ) of the fiuid is matched to the
solid-body velocity ub of the particle,

ub=U;+Q;X(rb —r;) . (20)

Here U, and Q, are the velocity and angular velocity of
particle i and r,. is the position of its center of mass. A
hydrodynamic stick boundary condition is thus imple-
mented at the particle surface [20]. The local fiuid densi-
ty is not affected by this boundary rule. The change of
Quid momentum at the boundary nodes r'esults in forces
and torques onto the particles, whose translational and
angular velocities are then updated according to
Newtonian mechanics.

The discretization of the particles on the lattice re-
quires the determination of an effective hydrodynamic ra-
dius that determines their size with respect to their in-
teractions with the Quid. This radius is obtained by cal-
culating the drag force on an array of spheres at low par-
ticle volume fraction and fitting the results to the theoret-
ical expression of the friction coefficient by Hasimoto
[39,19]. Since the particle position is continuous, several
different discrete representations for a given input radius
may occur, resulting in different hydrodynamic radii. We
use here an average radius, obtained by averaging the hy-
drodynamic radii over about 100 different particle posi-
tions; the standard deviation on the average radius is not
more than 0.5% [20]. The hydrodynamic radii are usual-
ly within 20% of the input radii used to map the particles
onto the discrete lattice.

B. Simulations

We concentrate in this paper on the short-time limit
~«~z, when the colloidal particles hardly move and
only interact via the hydrodynamic interactions. Systems
of fixed equilibrium configurations of N hard spheres
contained in a periodic box have thus been simulated.
The particles being fixed, the long-time Brownian regime
is suppressed and the short-time transport coefficients are
obtained once the hydrodynamic interactions between the
particles have been established. The configurations of
particles were generated with a standard hard-sphere
Monte Carlo program and our data have been obtained
by averaging the results over 32—64 different equilibrium
configurations per solid particle volume fraction.

We use a LBE model based on a simple cubic lattice
with n = 14 velocity directions, 6 along the (1 0 0) direc-
tions (with weight p;=8) and 8 along the (1 1 1) direc-
tions (with weight p;=1) [20]. For this lattice, the pa-
rameters are b =56, K =7, and c =3. A relaxation pa-
rameter ~BzK = 1 has been used that simplifies consider-
ably the algorithm [see Eqs. (16) and (17)]



5078 P. N. SEGRE, O. P. BEHREND, AND P. N. PUSEY

f;(r+c;,t+1)=- ' 1+ u(r, t) c;p(r, t) X
C

(21)

The input radii used for the simulations ranged from 2.5
lattice spacings for the most dilute suspensions to 4.0 lat-
tice spacings for the most concentrated suspensions.

The Q-dependent diffusion coefficients have been ob-
tained by integrating the velocity cross-correlation func-
tions from zero to a time where the integral has reached a
constant within statistical errors [see Eqs. (4), (5), (8), and
(7)]. We use the Verlet-Weis [25] correction to the
Percus-Yevick closure to calculate S(Q). In Fig. 3 the
time dependence of D (Q, r) as the hydrodynamic interac-
tions develop is shown. This time dependence has been
the subject of recent work and interesting scaling proper-
ties have been obtained [21]. We will, however, in the
present work concentrate on the steady hydrodynamics
and Ds(Q)/Do=lim, D(Q, r)/Do.

The self-diffusion coefficients Dz have been obtained ei-
ther by integrating the velocity autocorrelation functions
of the particles or by taking the high-Q limit of Ds(Q).
Since the simulations are done in a periodic system with a
cell size L XL XL, the Q vectors have to be commensu-
rate with this cell, i.e., Q=(2ir/L)(ni+mj+lk), where
i, j, and k are unit vectors on the lattice in the three di-
mensions and n, m, and l are integers such that
1 ~ n, m, l ~L. Since Ds(Q) depends only on the magni-
tude Q of the wave vector g, we have averaged it over
the different combinations of the indices n, I, and I, giv-
ing the same amplitude Q.

The diffusion coefficients have a strong system-size
dependence and the results reported here are extrapola-
tions to the thermodynamic limit (N —+ &n ) from simula-

Superposing the effects from neighboring particles, one
obtains an expression for D(N) at low particle volume
fractions [40]

D(N)/DO=D/Do 1 760—1(p./N)'i +p/N . (23)

Here D is the thermodynamic limit D =D(N~ac ). At
higher particle volume fractions, the effects from the
periodic images are partially screened by neighboring
particles. To take account of this effect, the viscosity 'go

of the pure Quid is replaced with the high-frequency sus-
pension viscosity il and thus [13]

D/Do =D (N)/Do+D„„(N)/Do,

D„,„(N)/Do = (il/iso) [1.7601(p/N) '~ p/N) . —(24)

To determine the suspension viscosity, we use an ex-
pression proposed by Bedeaux [41]

il lih —1
=/[ l+R (P)] .

g/iso+ 3/2
(25)

tions with N particles. The finite-size correction used to
obtain the thermodynamic limit was proposed by Ladd
[13];since the correction is Q-vector independent, we will
omit in the following development the reference to Q and
denote D (N) the short-time diffusion coefficient of a sys-
tem of X spheres in a periodic system. The correction to
D(N) is obtained by first considering the diffusion of an
isolated sphere in a periodic system. The friction
coefficient for such a system was calculated by Hasimoto
[39], who obtained the low-density expansion for the fric-
tion coefficient of a simple cubic lattice. The friction
coefficient can be linked to the diffusion coefficient via the
Einstein relation [1]and Hasimoto's result yields

D„/Do = 1 —l.7601$' +Q
—'

0.06—

I I
An empirical expression for the virial expansion of R (P)
to third order in P has been obtained by Ladd to fit both
his numerical results [13] and the experimental data of
van der Werffet al. [42]:

a 0 04

G'

~ 0.02—

0.0
10'

FICx. 3. LBE simulation results for the time-dependent
diffusion coefficient D(Q, r) normalized by the isolated-sphere
result Do. The development of the short-time Brownian motion
is clearly seen and the short-time diffusion coefficient Dz(Q) is
identified as the plateau value D {Q, ~~ oo ). re is the Brownian
relaxation time, the characteristic time scale for the decay of the
particle velocity correlation functions. Simulation of 32 parti-
cles at volume fraction / =0.491 for Q =Q, at the peak in the
structure factor.

R (P) =P+P —2.3$ (26)

We demonstrate in Fig. 4 the effectiveness of the
correction by showing the finite-size corrected inverse
short-time diffusion coefficient Do/Ds(Q) for three
different system sizes (N = 16, 32, and 108 particles) at
the same particle volume fraction ( P =0.443 ). The
corrected results can be seen to be almost identical for
the three system sizes. The corrections at this volume
fraction are D„„(16)/Do=0.095, D„„(32)/Do=0.077,
and D„„(108)/DO=0.053. These corrections are cer-
tainly not negligible, especially in the vicinity of the peak
in Ds(Q), where the smallest value of Dz(Q)/Do =0.175
is found.

We have used a system size of X =32 for all the results
presented in the following comparison with experiments.
The error estimates are standard deviations to the aver-
age of simulations of 32-64 different particle
configurations.
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FIG. 4. Demonstration of the finite-size correction in the
LBE simulations. The finite-size-corrected Q-dependent inverse
diffusion coefficients Do/Dz(Q), normalized by the isolated-
sphere result Do, are plotted versus QR for simulations of 16
(open squares), 32 (open circles), and 108 {open triangles) parti-
cles.
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V. RESULTS AND DISCUSSION
0

0 4 5

We now present the results of the TCDLS experiments
and the LBE simulations. Separate sections are devoted
to the general Q-dependent diffusion coefficient Ds(Q),
the peak diff'usion values Ds(Q ), where Q is the wave
vector for which the structure factor S(Q) is maximum,
the short-time self-diffusion Dz, and the short-time col-
lective diffusion D&.

A. Q-dependent difFusion

Figures 5(a) —5(d) show our results for the inverse nor-
malized diffusion coefficients Do/Ds(Q) versus QR from
both experiment and simulation. Here Do is the
isolated-sphere diffusion constant Do =ks T/6m. goR. The
radius R used for the PMMA suspensions is that listed as
the average radius in Table I.

All the plots have shapes reminiscent of the static
structure factor S ( Q) [see Fig. 5(d)], in agreement with
previous work [7]. The smallest difFusion coefficients,
corresponding to the slowest decay of the density fluctua-
tions, are observed at Q vectors close to where S ( Q) has
its main peak Q =Q . While in the vicinity of the peak
the diffusion is always slower than free diffusion, this is
not the case for Q «Q, where the diffusion actually
speeds up. This is due to collective motions of neighbor-
ing particles that allow for a fast decay of the long-
wavelength fluctuations.

For all volume fractions presented in Figs. 5(a)—5(d),
excellent quantitative agreement is found between the
TCDLS experiments on PMMA suspensions and the
LBE computer simulations of hard spheres. The solid
lines shown are the theoretical results of Beenakker and
Mazur [2]. Good agreement is found at /=0. 30, less so
at /=0. 382. For the higher volume fractions, while the
general shape of the data is well reproduced by the

5-
(c) 0.443

~ ~Qrq gI
~I, 0

0
0(

Oyi
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= 0.494
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FIG. 5. Normalized short-time inverse diffusion coefficients

Do/Ds(Q) versus QR for four different particle volume frac-
tions. The closed circles represent TCDLS experiments on par-
ticles of PMMA (SMU33), the open circles are LBE simula-
tions, and the dashed lines the theoretical predictions of
Beenakker and Mazur [2]. The solid line in (d) is the theoretical
static structure factor S(Q). The volume fractions listed apply
to experiment and theory; the corresponding volume fractions
for the simulations were (a) 0.311, (b) 0.382, (c) 0.443, and (d)
0.491.
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FICx. 6. Hydrodynamic factors H(Q) vs QR. The data points
are extracted directly from the points shown in Fig. 5 using the
relation M(Q)=S(Q)[Ds(Q)/Do]. The volume fractions are
0.311, 0.382, and 0.491 from top to bottom. The dashed lines
are the theoretical predictions of Ref. [2].

theory, it consistently overestimates the diffusion
coefficients. These observations agree with the estimated
range of validity of the theory; at low Q, Beenakker and
Mazur are reluctant to quote values for Dz(Q) for

P &0.30 [2], while for intermediate and large wave vec-
tors, the theory is expected to be valid up to
Q-0. 35-0.40.

We now turn to the effects of the solvent mediated hy-
drodynamic interactions, remembering that, while Ds(Q)
depends on both hydrodynamic and structural effects,
H (Q) is a purely hydrodynamic quantity [see Eq. (7)]. In
experimental systems where hydrodynamic interactions
are negligible, such as suspensions of charged colloidal
particles with sufficiently long-range repulsions [1] or
theoretical models and simulations that neglect these in-
teractions, the hydrodynamic factor H(Q)=1 and

Do/D s(Q)=S(Q). In Fig. 5(d) we have plotted along-
side our data for Ds(Q) the structure factor S(Q). It is

apparent from this figure that the neglect of the hydro-
dynamic interactions would lead to significantly different
results. It is evident that the overall effect of the hydro-
dynamic interactions is to slow down the diffusive
motions considerably. In Fig. 6 we plot the hydrodynam-
ic function H (Q) versus QR for several concentrated sus-
pensions. Note that, whereas the LBE simulations calcu-
late H(Q) directly (see Sec. IV B), the experimental data
for H(Q) were obtained from the measured diffusion
coefficients Ds(Q) and the Percus- Yevick expression
(modified by the Verlet-Weis correction) for the structure
factor S(Q) [see Eq. (7)]. It is apparent that H(Q) is
smallest at low Q. However, since the structure factor it-
self is small at low Q, a considerable cancellation in the
calculation of Ds(Q)/Do occurs and, as noted above, the
diffusion at low Q is actually faster than that around the
peak.

It is worth emphasizing here the importance of the ex-
perimental particle radius-determination. As mentioned
above, the values for H(Q) were obtained by dividing the
diffusion data of Fig. 5 by the theoretical S(Q), or rather

S(QR). Since the form of S(QR) contains in general
several sharp peaks, especially at high particle volume
fraction, the derived data for H(Q) can change
significantly upon even a few percent change in R. This
problem is negligible in the LBE simulations, where the
radius of the particles is known within about 0.5%. The
close agreement of the experimental and computational
results in Fig. 6 confirms the procedures used in deter-
mining the mean radius R as well as the coincidence of
the sample structure factors with the theoretical Percus-
Yevick (Verlet-Weis corrected) expression. We point out
that there is a slight difference between the volume frac-
tions of the experiments and the volume fractions of the
simulations, noted in the figure captions where appropri-
ate.

Overall, these results give strong evidence for the suc-
cess of the LBE technique to simulate the full hydro-
dynamic interactions in concentrated suspensions, as well
as for the hard-sphere-like nature of the PMMA parti-
cles. We also gain considerable confidence in our pro-
cedure for determining the colloid volume fraction P,
based on the identification of the colloidal freezing transi-
tion with that of HS Auids.

B. Diffusion at the peak

In this section, we consider the diffusion coefFicients for
Q =Q, the wave vector for which the structure factor is
maximum. For this wave vector, dynamics and struc-
tures on a length scale comparable to the nearest-
neighbor interparticle distance are probed. Our experi-
mental data confirm that for all three samples listed in
Table I, the smallest diffusion coefficients Ds(Q) occurred
at values of Q coincident (within errors of approximately
1%) with the structure peak at Q =Q

In Fig. 7 we present the experimental and numerical
results for these values. Excellent quantitative agreement
over a11 volume fractions up to the disorder-order transi-
tion is found. The experimental data on this graph have
been obtained for two different sized particles, R =178
and 301 nm. In addition, the graph contains points from
well over a dozen individually made samples. The agree-
ment of the results from separately prepared samples,
even at high volume fractions P where there is a strong
dependence of Dp/Dv(Q ) on P, is an excellent indica-
tion that the quite small random errors 5$ (0.01 estimat-
ed for the determination of the sample volume fractions
are in fact reasonable.

For future reference, it may be helpful to describe the
results for the diffusion coefficients at the peak by a poly-
nomial fit, accurate to within 4' for P & 0. 10,

Do/Ds(Q )=1.0—2.0$+Sgg —220$ +347/ . (27)

An interesting observation can be made by plotting our
data versus the inverse volume fraction 1/P. As illustrat-
ed in the inset of Fig. 7, we found that the data can then
be described by a linear function for volume fractions
g & 0.37. Moreover, the extrapolated volume fraction P
of zero diffusion coefficient Dz(Q )=0 was found to be

=0.64+0.01. The errors refiect one standard devia-
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FIG. 7. Normalized short-time inverse diffusion coefficients
at the main peak of the structure factor D p /Dg ( Q ) versus
volume fraction P. The symbols are the same as in Fig. 5, with
in addition the closed triangles being TCDLS experiments on
SMU34. The dashed line is the theory from Ref. [2]. The line
at P =0.494 represents the disorder-order transition. Inset: The
same data are plotted in the Batchinski-Hildebrand form [44],
Dg ( Q ) /Dp versus the reduced volume per particle
V/Vp=m/6t)), where Vp=(2R)'. The arrows F, GT, and RCP
stand for the reduced volumes at the freezing transition
( V/Vo =1.060), the glass transition ( V/Vo =0.91), and random
close packing ( V/Vo =0.821). The dashed line is a best fit to all
the data in the asymptotic region V/ Vp & 1.4 (P & 0.37).

tion of the separate fitting results for the two experirnen-
tal (SMU33 and SMU34) as well as the LBE numerical
results. While we acknowledge that other extrapolation
procedures might yield different results, it is interesting
to find P' to be in agreement with the amorphous ran-
dom close-packing (RCP) volume fraction QRcp=0. 638.
The physical significance of this result is not clear, but we
consider it interesting enough to report it here. We also
emphasize that we are considering very short-time and
-distance diffusion in this work. This is in contrast to the
long-time and -distance diffusion whose description for
P) 0.5 has been shown to be accounted for by mode-
coupling theories of the glass transition [43].

C. Self-diffusion

We now consider the short-time self-diffusivity Dz,
starting with Eq. (1) for the intermediate scattering func-
tion F(Q, w). At large values of QR, small variations in
the relative particle positions r;(0)—r (w) cause large
variations of the phase factors Q. [r;(0)—rj(~)]. Thus
the cross terms i' in Eq. (1) disappear in the ensemble
average and F(Q ~ pp, w) becomes the self intermediate
scattering function Fs( Q, r):(exp {iQ. [r;(0—) —r; ( w) ] J ) .
In this limit therefore DLS measures the average self-
motion of individual particles and Ds(Q~ pp ) becomes
Ds [45].

The particles used in this work are too small to allow

FIG. 8. Normalized short-time self-diffusion coefficients
D&/Do. The symbols are the same as in Fig. 5, with the TCDLS
experiments being done on PMMA particles (SMU30) in a mix-
ture of the solvents cis-decalin and tetralin. The experimental
data are from measurements of Dz( Q) /Dp at Q such that
S(Q)=1.0 near QR =4.0. The simulation data are from evalu-
ations of Dv =D(Q~ op ) or from integration of the velocity au-
tocorrelation function of the particles. Also shown are the
theoretical results of Refs. [2] (dashed line) and [4] (solid line).

access to large enough QR to ensure the measurement of
self-motions. Nevertheless we note that there are smaller
values of QR, on either side of the main peak of S(Q),
where S(Q) =F(Q,O)=1 due to cancellation of the cross
terms. While the absence of cross terms in the equal-time
function F(Q, O) does not guarantee their absence in
F ( Q, w), previous work [46] has shown that F ( Q, ~), mea-
sured where S(Q)=1, gives a reasonable description of
self motions.

For all volume fractions studied, the values of Ds(Q)
found for QR -4.0, S(QR)=1, just to the right of the
main peak, are equal, to within experimental uncertainty
(approximately S%%uo), to the computed LBE self-diffusion
values Ds found for QR & 18. Moreover, the LBE results
at QR -4.0, S(QR) =1, are also in close agreement with
the values computed in the high Q limit, supporting the
idea that the self-diffusion can be measured at points
where S(QR)=1. We have also found this property to
be true for the theory of Beenakker and Mazur [2]. In
fact, the LBE and Beenaker-Mazur results show that all
values of Ds(Q) measured beyond the main peak in S(Q)
can be identified with that of self-diffusion Dz to within
10%%uo for (t &0.35 and 20%%uo for P &0.494. This is not a
surprising result in that this range of QR corresponds to
probing length scales smaller than the average interparti-
cle separation, where single particle contributions to
f ( Q, r ) should dominate.

In Fig. 8 we plot the experimental and simulation re-
sults for self-diffusion. The experimental results have
been obtained, as discussed above, at QR —4.0,
S(QR)=1. Very good agreement is indeed seen between
the TCDLS data and the LBE simulation results over the
entire volume fraction range up to the freezing transition.
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Both data sets also are in a good agreement with previous
measurements [1] and with theoretical predictions of
Tokuyama and Oppenheim [4] over this same range. The
predictions of Ref. [2] work well for P (0.40, as expect-
ed.

D. Collective diffusion

Dc = 1+1.45)+
Do

(28)

As is apparent from Fig. 9, the computational data are in
excellent agreement with this prediction at low P, while
significant deviations are observed for the experimental
data. It is possible that these deviations result from the
lack of data at low enough Q to provide reliable extrapo-
lation to Q =0. Nevertheless, the data confirm the weak

P dependence of the collective diffusion coefficient of
hard spheres, which rejects a strong cancellation be-
tween H(0) and S(0) in Eq. (7) and has also been ob-
served in previous experiments [48,49].

VI. CONCLUSION

In this paper, experimental TCDLS data of the Q-
dependent short time diffusio-n coefficients Ds(Q) for sus-

pensions of slightly polydisperse PMMA particles have
been compared to computational results obtained via a
Quctuating LBE method. We have described an accurate
method to obtain the experimental sample volume frac-
tion P by comparing the thermodynamic properties of
our samples to those of a hard-sphere Quid. A precise

Finally, we present data for the collective diffusion
coefficient Ds =Ds(Q~0), which describes the decay of
long-wavelength density fiuctuations. While the Q =0
limit can never strictly be reached in the laboratory, Dz
is assumed to be found when Ds(Q) does not vary appre-
ciably with Q at low Q. In our light scattering measure-
ments, shown in Fig. 5, Ds(Q) was found to be still
dependent on Q at the lowest values studied. An extrapo-
lation procedure was therefore used to obtain estimates of
Ds. In an expansion of Ds(Q) in powers of Q, only even
powers remain for symmetry reasons. We have found
that plots of Ds(Q) against Q show reasonable linearity
at low Q and can therefore be extrapolated to Q =0 to
provide the estimates of Dz shown in Fig. 9.

The computational data presented in this figure have
not been obtained via the fluctuating LBE method
presented in the present paper but via a purely dissipatiUe
LBE method [20,19]. In this method, no thermal fiuctua-
tions are added to the Quid; however, by solving the
Stokes equations for the friction coefficients of equilibri-
um configurations of N = 16 spheres and using the Ein-
stein relation [1],the collective diffusion coefficient can be
obtained. While the non-finite-size corrected data have
already been presented elsewhere [20], here we apply the
size corrections described in Sec. IV B.

Also shown in Fig. 9 is the exact result obtained by
Batchelor [47], taking account of all the hydrodynamic
interactions in the low-P limit,
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FIG. 9. Normalized short-time collective diffusion
coefticients Dz /Do. The closed symbols are the TCDLS results,
the open symbols are the LBE results from purely dissipative
measurements, and the solid line is the low-P theory of
Batchelor [47].
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determination of P is necessary for an unambiguous com-
parison of the computational and experimental results.
Good agreement was found between the two data sets at
all particle volume fractions and for wave vectors Q rang-
ing from the low Q limit to values of Q just beyond the
first peak in the static structure factor S(Q). This is a
strong indication of both the validity of the sample
volume fraction determination and the ability of the LBE
method to simulate the complicated hydrodynamic in-
teractions between the suspended particles. Comparisons
of the short-time self-diffusion coefficient
Ds =Ds ( Q ~ ao ) have also been performed and good
agreement is again obtained between the experimental
and computational data. Moreover, for both the Q-
dependent coefficients and the self-diffusion, we have
compared our results to the theoretical predictions by
Beenakker and Mazur and have confirmed the limits of
validity of this theory. The small polydispersity of the
experimental samples seems to have little effect on the
measured dynamics.
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