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Interfacial structure in the isotropic phase of a liquid-crystalline material near a wall is studied
by a mean-6eld density-functional theory. With increasing strength of the wall anchoring potential,
the theory predicts a first-order transition from incomplete to complete wetting by the smectic-A
phase at bulk isotropic-smectic coexistence, with an associated prewetting transition occurring away
from bulk coexistence. The incomplete wetting case is accompanied by a small number (between 0
and 2) of discrete layer transitions, while an infinite number of such transitions occurs at complete
wetting. An analysis of the underlying physical mechanisms for layer transitions reveals that these
transitions tend to disappear as the system is moved both suKciently close to and sufBciently far
from the bulk isotropic —nematic —smectic-A triple point by varying the model coupling parameters.
These results reconcile findings from previous theories and experiments.

PACS number(s): 61.30.Cz, 64.70.Md, 68.45.Gd

I. INTRODUCTION

Phase transitions at interfaces of liquid crystals is a
subject of ongoing interest. One reason for this is the fact
that these transitions involve the interplay of several phe-
nomena, such as wetting, roughening, and orientational
ordering [1,2]. Interfaces of smectic liquid-crystalline
phases add further complexity, associated with positional
ordering, which can give rise to a variety of layering phe-
nomena. Several x-ray reflectivity experiments [3—5] have
studied the development of smectic-A (denoted A) order-
ing at interfaces of liquids which are isotropic (I) in bulk,
on approaching the bulk first-order I-A transition tem-
perature T~~ &om higher temperatures. These works
have examined either the "&ee," i.e. , liquid-vapor inter-
face [3,4], or the interface between the liquid and a solid
substrate [5]. A recent generalization of the latter study
has been applied to interfaces within finite-sized pores
[6]. These experiments have revealed the occurrence of
discrete layering transitions, i.e., discontinuous increases
in the number of spontaneously formed smectic layers, as
the systems are cooled toward Tp~. This can be inter-
preted as layer-by-layer wetting of the interface by the A
phase. Layer transitions have also been observed during
compression of insoluble films of liquid crystals spread
on a water-air interface [7,8]. Related phenomena, layer-
thinning transitions, have recently been seen in tempera-
ture scanning studies of free-standing liquid-crystal films

The above-cited studies of smectic ordering at semi-
infinite interfaces [3—5] have indicated that discrete-layer
growth terminates after a finite number of smectic lay-
ers, less than or equal to six, which implies that wetting
by the A phase is incomplete. All of these studies have

examined compounds of the homologous cyanobiphenyl
series nCB, where n denotes the length of the alkane
tail of the molecules. The smectic film growth has been
shown to become progressively more continuous in na-
ture, i.e. , with fewer discrete transitions, as n decreases
&om 12 to 10. Below a value of n between 9 and 10,
the bulk isotropic phase undergoes a direct transition to
the nematic (N) rather than the A phase. Earlier stud-
ies [10,11] of the compounds 5CB and SCB have shown
that in these cases the N phase completely wets the &ee
surface.

Previous studies of smectic layering at interfaces us-

ing mean-field theory have predicted results at variance
with each other and with the experimental results de-
scribed above [12—14]. Both Ref. [12] and Ref. [13] mod-
eled the &ee interface by an external anchoring potential
of adjustable strength. The work in Ref. [13],based on a
generalization of McMillaii's [15] theory for bulk transi-
tions to the A phase, predicted incomplete smectic wet-
ting &om the bulk isotropic phase, accompanied by up to
two discontinuous layer transitions. These qualitative re-
sults were found to be independent of the strength of the
anchoring potential. In contrast, using a lattice model,
Ref. [12] predicted that a first-order transition from in-
complete to complete smectic wetting occurred with in-
creasing strength of the anchoring potential. No smectic
layering at all was found in the nonwetting case, while
the complete-wetting case was accompanied by an infi-
nite number of layer transitions. The use of an external
potential more closely models the physics at the interface
between a liquid and an inert solid substrate rather than
at a &ee interface. A density-functional theory more ap-
propriate to the &ee interface, representing this by the
true disuse interface between coexisting liquid and vapor
phases, was considered by two of the present authors in

1063-651X/95/52(5)/5017(11)/$06. 00 5017 1995 The American Physical Society



5018 A. M. SOMOZA, L. MEDEROS, AND D. E. SULLIVAN 52

Ref. [14]. A weak degree of smectic-A ordering at the
interface was found, consistent with incomplete wetting,
but no discrete transitions in the number of smectic lay-
ers were detected.

In this paper we describe results obtained &om a gen-
eralization of the density-functional theory in Ref. [14],
which partially reconciles the previous theoretical find-
ings. (A preliminary report of this study appeared earlier
[16].) Here we have extended the theory to the case of
an interface between a bulk isotropic liquid and a rigid
substrate or wall, representing the latter by an exter-
nal potential similar to that used in Refs. [12,13]. As
in Ref. [12], we find that there is a first-order wetting
transition with increasing strength of the wall potential,
where the adsorbed smectic Glm in the complete-wetting
case grows via an infinite sequence of discrete-layer tran-
sitions. However, we also find that there are a small,
variable number (between 0 and 2) of layer transitions in
the case of incomplete smectic wetting, which occurs for
suKciently weak strength of the wall potential. This is
similar to the results described in Ref. [13],although the
latter found no evidence of a wetting transition. Due to
the first-order nature of the wetting transition reported
here, it is accompanied by a prewetting transition [17]
which extends away from bulk I-A coexistence, at which
the adsorbed smectic film can increase in thickness by an
arbitrary number of layers. The occurrence of a prewet-
ting transition was apparently overlooked in Ref. [12],
perhaps because it is confined to a very narrow domain
near bulk coexistence.

After briefly reviewing the theory and describing its
current extension in Sec. II, Sec. III presents the full de-
tails of our analysis and results. The results are first sum-
marized by means of surface phase diagrams. These are
deduced by examining the changes in interfacial struc-
ture during layer transitions, illustrated by profiles of
the number density and orientational order parameter
near the wall. Determining the phase boundaries of the
layer transitions and prewetting transition requires a pre-
cise analysis of the interfacial tension p, in particular its
behavior as a function of the thickness of the adsorbed
smectic film. Finding this variation is facilitated by the
existence of many metastable interfacial structures corre-
sponding to films with difFerent numbers of smectic lay-
ers. In Sec. IV we present qualitative arguments based
on two complementary physical mechanisms, which ac-
count for many of the features exhibited by our results.
Of most significance, we show that layer transitions oc-
cur only within a narrow range of values of the coupling
constants of the model, which in turn indicates that the
transitions tend to disappear both very near and far from
the bulk I-N-A triple point. The feature that layer tran-
sitions disappear on approaching the I-N-A triple point
agrees, of course, with the experimental observations de-
scribed earlier, while the more general finding is shown
to be consistent with theoretical results obtained in Refs.
[12,13]. The paper concludes with a discussion in Sec. V.

II. THEORY

The present theory [14,18] is based on a classical
density-functional approximation to the grand canonical

potential 0 of an inhomogeneous molecular fluid. The
molecules are assumed to interact pairwise via a hard-
spheroid. repulsive core potential, with major and mi-
nor diameters oI~ and o~, respectively, and a long-range
anisotropic attractive potential denoted V~(12). Here
i (i=1,2) stands for the position r; and Euler angles
u; specifying the orientation of molecule i. Explicitly,
V~(12) is given by

V~(12) = elV1(r12) + E2V2(rl?)P2(cos Oi2)

+esVs(ri2) [P2(cos Hi) + Pg(cos 02)],

where ri2 = ]ri2~ is the intermolecular separation, gi2
is the angle between the symmetry axes of molecules 1
and 2, 0,'(i = 1,2) is the angle between the intermolec-
ular vector ri2 and the symmetry axis of molecule i,
and P2 denotes the second Legendre polynomial. The
dimensionless functions V„(r) are given by Lennard-
Jones potentials truncated inside the molecular core [see
Eq. (3) in Ref. [14], where the V (r) include the coupling
strengths e„shown explicitly in Eq. (1) above]. The term
ei Vi (r) describes isotropic attractive interactions respon-
sible for liquid-vapor phase separation. The second term
e2V2(r)P2(cos 8) is a Maier-Saupe-type [19] interaction
which promotes nematic ordering, while the third term,
with coupling strength e3, provides symmetry breaking
between diBerent parallel orientations of molecular pairs
and thus promotes smectic ordering.

The contribution of the long-range interaction V~(12)
to the grand potential is treated by a standard mean-Geld
approximation. The hard-core contribution to 0 is evalu-
ated by a "weighted-density" technique [18,20]. Here the
anisotropic core shape is taken into account by means
of a scaling argument which assumes that the molecular
symmetry axes are all perfectly aligned in the z direction,
normal to the interface, although elsewhere in 0 (i.e. , in
the ideal-gas and mean-field contributions) an arbitrary
degree of orientational ordering is allowed. Further dis-
cussion of this scheme, including its obvious limitations,
is given in Refs. [14,18].

The presence of the wall is accounted for by two modi-
fications of the grand potential 0 given in Ref. [14]. First,
the wall confines the fluid to the half space z & 0. This
simply amounts to setting p(z, o) = 0 for z ( 0, where
p(z, g) is the single-particle probability density, a func-
tion of normal distance z and the angle 0 between the
molecular axis and the z axis. The wall also interacts
with molecules at z & 0 through a long-range anchoring
potential,

E~ P2 (cos 0)
(1+z/~)s

Here 0 = (o ~~o&) ~ is a mean hard-core diameter. Apart
from its range, this is the same angular coupling used in
Refs. [12,13]. This contributes an additional term to the
grand potential per unit area A beyond that considered
in Ref. [14], namely,
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'" = 2 dz sin &d8p(z, 8)V,„(z,8)
A

d, p(z)~(z)
o (1+z/~)"

where p(z) is the number density and

(3)

il(z) = 2ir sin 8d8 2~cos
p z
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III. RESULTS

A. Surface phase diagram
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d' the values of the interaction pa-
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FIG. 1. (a) Theoretical surface phase
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see Table I). (b) Same as (a) for case (B).
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A: (o-1)...„
A' (1 2)coex

(2 oo)coex
A: (o-1).„,
A: (1-2).,;,
A: (2-3).„,
A: (3-4)„;,
A: (3-4-5)

0.40
0.45
0.48
0.68
0.63
1.25
3.42
0.51

0.000
0.000
0.000
0.277
0.043
0.050
0.053
4.5 x 10

(O oo)coex
B: (0-1-2)
B: (o-1).,;,
B: (1-2).,;,
B: (2-3).„,
B: (2-3-4)

0.38
0.39
0.94
0.63
1.42
0.40

0.000
2.9 x 10
0.510
0.052
0.055
7.6 x 10

TABLE I. (s, Ass) values of some key points in the sur-
face phase diagrams shown in Fig. 1. A and 8 correspond
to Figs. 1(a) and 1(b), respectively. The number of smectic
layers of the difFerent coexisting structures is indicated be-
tween parentheses. The subindex "coex" corresponds to bulk
I-A coexistence while "crit" corresponds to a surface critical
point. The other entries labeled by three layer numbers refer
to surface triple points.

infinite thickness of the resulting wetting layer at bulk co-
existence, the occurrence of an infinite slope as Le3 —+ 0
can be proven by an analytical argument analogous to
that described in Ref. [22], based on the behavior of 0 in
this limit.

For case (B), the range of stability of the zero-layer
surface phase has increased relative to the one- and two-
layer films. However, the wetting transition is reached at
a smaller value of e . As a consequence, at the prewet-
ting transition near bulk coexistence, a thin film without
smectic structure coexists with a thick film, which is sim-
ilar to the behavior found in Ref. [12]. A new feature,
compared with case (A), is the appearance of a 0-1-2
layer triple point, while the end of the prewetting line
now corresponds to the 2-3-4 layer triple point. The rest
of the phase diagram is qualitatively similar to the pre-
vious case. Explanation of the differences between cases
(A) and (B) will be given in Sec. III C.

Figure 2 shows, for case (A), the same surface phase
diagram of Fig. 1(a) plotted in the rj;„t vs Des plane. Here
g;„q is the net orientational order parameter integrated
over the liquid half space z & 0, i.e.,

il;„, = dzrI(z),
0

points given in Table I, with the exception of the 0-1
critical point, all these layer transitions occur very close
to the bulk I-A phase boundary. An infinite number of
layer transitions branches off from the high-e side of
the prewetting line. Due to the close proximity of the
higher-layer transition lines to the vertical e axis and to
limitations imposed by the finite values of z „allowed
in our calculations, the precise locations of these transi-
tions and their critical points have not been determined.
Nonetheless, the evidence supporting an infinite number
of layer transitions and hence complete wetting by the
A phase is quite strong, as will be described. in detail
below in Sec. IIIC. The prewetting line is thus the lo-
cus of coexistence between films of two or three layers in
thickness and films of thickness greater than four layers.
On a finer scale of resolution than is used in Fig. 1, one
would see that the prewetting line is really composed of
an infinite set of smooth curves between successive sur-
face triple points, at which small discontinuities in the
slope de /des occur.

A feature of the present results is that the prewet-
ting line does not terminate away &om bulk coexistence
at a (prewetting) critical point, as is normally the case
[21]. Instead, in case (A), it terminates at the surface
triple point forming the junction of the 3-4 and 4-5 layer
transition lines, which eventually terminate at their own
critical points. Note by comparison with Table I that
the extent of the prewetting line in the e direction is
greatly exaggerated in Fig. 1. At its opposite limit, the
prewetting line approaches the e axis with an infinite
value of the slope de /des. While we cannot extend our
numerical calculations all the way to this limit, due to the

which we can consider as a measure of the thickness of the
adsorbed smectic film. The various shaded areas are the
coexistence regions associated with the layer transitions.
This figure is plotted quantitatively but, on this scale,
we cannot see the prewetting coexistence curve, which
would include an infinite sequence of triple (and perhaps
higher-order multiphase) points. The start of this curve
is indicated by the square symbol on the vertical axis.
The other side of the prewetting curve would diverge on
approaching this axis, due to complete wetting at bulk
coexistence.

2 }

1

0 I I I I I I I I I ] I I I I

0.0 0.1 0.2 0.3

FIG. 2. Same surface phase diagram as Fig. 1(a) in the
(@jot, , Ass) plane. The prewetting line is not seen on these
scales. The shaded areas are the layer-transition coexistence
regions.
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Figure 2 also shows the layer transition which occurs
infinitely far away Rom the wall (note the cut in the ver-
tical axis). Two particular features to note about this
transition are that it terminates away &om bulk coexis-
tence and that the termination point is a bulk tricritical
rather than a surface critical point, yielding the cusp at
the apex of the coexistence region. These features can
be derived on assuming that, for 'g;„q —+ oo and Le3 ) 0,
the position zo of the interface between the smectic 6lm
and bulk isotropic liquid diverges in such a way that the
wall potential V,„= (e —/zo )P2(cos0) approaches a
nonzero constant value. Since the gradient of this poten-
tial with respect to z at zo vanishes faster than V„ itself
as zo ~ oo, one can consider the Quid in this region to be
in a uniform external field. The layer transition can then
be described as the addition of a single layer to the bulk
smectic phase which coexists with an "isotropic" liquid
in the presence of this Geld, a process which merely shifts
the position of the interface without affecting either its
shape or the value of the interfacial tension. It should
be noted that the bulk "isotropic" phase in this case
has nonvanishing orientational order due to the external
Geld, and thus is more properly termed a paranematic
phase [23,24]. The jump in il;„t is then given simply by
Erj;„t = A(rI, —g„), where A is the bulk smectic period
and g, , g„are the order parameters in the coexisting
smectic and paranematic phases, respectively. Thus it
is only necessary to obtain solutions of the theory for
two-phase coexistence in a bulk Quid in the presence of
a uniform external potential V,„(8) at a given value of

This calculation yields the data for Lg;„t at the
infinite-layer transition plotted in Fig. 2. In the particu-
lar case of Ae3 ——0, g„= 0 and the values of g, and A

are just those at bulk I-A coexistence in the absence of
an external Geld.

B. Interfacial structure and free energy

The results in Figs. 1 and 2 are based on the behavior
of the interfacial structure and thermodynamics. Gen-
erally, under parameter conditions which favor layering,
one finds several different simultaneous solutions of the
theory, which represent interfacial structures exhibiting
different numbers of smectic layers. As usual, the ther-
modynamically stable structure corresponds to that so-
lution having the smallest value of the surface excess
grand potential, i.e., interfacial tension 7. (See [14] for
the evaluation of p in the present theory. ) Layer transi-
tions are located where two solutions have equal values
of p. Examples of such simultaneous solutions for the
first two layer transitions at bulk I Acoexistence (i.e-. ,
for Des ——0) in case (A) are given in Fig. 3. Figure 3(a)
shows the number density and order-parameter pro6les of
the two coexisting surface structures, having equal values
of p, at the 0-1 transition. It is seen that the density of
the zero-layer phase increases over a short distance &om
its contact value at z = 0, and thereafter is mostly fea-
tureless. This is characteristic of a partial-drying state.
In contrast, the one-layer pro6le exhibits a large den-
sity peak near z = 0, as well as progressively weaker

(b)

FIG. 3. (a) Density (continuous lines) and order-parameter
(dotted lines) profiles of coexisting surface structures at the
transition between zero and one smectic layer in case (A)
at bulk coexistence. (b) Same as (a) but for the 1-2 layer
transition.

peaks representing partial filling of the second and third
layers. The spacing between successive peaks is approx-
imately o~~. Related features are seen in the behavior
of the order parameter. Figure 3(b) shows the corre-
sponding structural changes at the 1-2 transition, which
takes place at a slightly larger value of e . In this case,
the largest changes in both p(z) and rI(z) occur at their
respective second peaks away Rom the origin, but in-
creases in both functions also occur at the Grst and third
peaks. The relative change in il(z) near the first peak is
rather small, indicating that the orientational ordering
in the Grst layer is nearly saturated, which suggests re-
garding rI(z) as the more appropriate order parameter for
indicating layer transitions. We have found that a good
"thumb rule" for deciding whether a layer transition has
occurred is based on comparing the maximum value g
of q(z) in a layer with the value rk,„=0.42 predicted
by the Maier-Saupe [19] model for nematic-isotropic co-
existence. If g „&g, „, then the layer is smectic, and
otherwise it corresponds to a structured liquid.

In general, the structural changes at the layer transi-
tions in case (B) are similar to those described above.

The determination of the layer transition points, by
comparing the values of p for the separate zero-, one- and
two-layer structures as functions of e, are illustrated
in Fig. 4. Figure 4(a) applies to case (A) at bulk co-
existence. [The profiles shown in Fig. 3 correspond to
the coexisting structures at the two crossing points in
Fig. 4(a).] Figure 4(b) shows analogous plots for case
(B) near bulk coexistence (b,es ——1.4 x 10 ). In the lat-
ter case, one notes that the one-layer structure is always
metastable with respect to the other pro61es, which has
been indicated by a dashed line. Figure 5 displays the
corresponding variations of the integrated order param-
eter g;„t vs e . The vertical solid lines indicate the layer
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Ass in case (A). (b) Same as (a) for case (B).

&om the numerical minimization of 0, obtained by ini-
tializing the calculation with trial profiles containing the
same numbers of layers, 20 and 22, respectively, indicat-
ing that both sets of pro61es represent relative minima
of the interfacial tension p. In this example, the wall
coupling strength is e = 0, well below the values for
the 6rst two layer transitions and the wetting transition
(see Table I). The surface tensions of these structures are
&2p = 0.876 08 and p22

——0.876 10, to be compared with
that of the zero-layer structure, po

——0.228 75 (all in units
of k~T/o2). T.he fact that the numerical algorithm does
not "How" toward the absolute interfacial tension mini-
mum at zero layers clearly suggests the presence of signif-
icant metastability barriers between structures differing
in the number of smectic layers. E&'mthermore, these re-
sults suggest that such metastability barriers persist in
6lms of arbitrarily large thickness, for sufBciently small
Le3, which supports the conclusion that such 61ms grow
via an infinite sequence of layer transitions. This is con-
sistent with the mean-6eld nature of the theory, which
precludes thermal roughening efFects that could eliminate
high-n layer transitions [21,25].

By superimposing the profiles in Figs. 6(a) and 6(b),
one sees that their shapes near both the wall at z = 0 and
the outer film-bulk interface are virtually identical. This
supports our earlier method of analyzing the infinite-
layer transition.

Strong evidence for the occurrence of a prewetting
(and, by implication, a wetting) transition can be ob-
tained by examining somewhat thinner 61ms. This is
illustrated in Fig. 7, which plots p vs wetting-layer thick-
ness (as measured by g;„t) for both cases (A) and (B),
for some pairs of values of (e, Des) which approximately
lie along the prewetting curves. The discrete points on
each curve show the 6nal converged values of p for struc-
tures containing &om zero to 14 layers. All of these are

local minima of the interfacial tension, with the majority
corresponding to metastable states. The smooth lines
connecting the points are only a guide to the eye, but
are similar to curves of interfacial tension vs wetting-
layer thickness generated in previous models where the
wetting-layer thickness is a continuous order parame-
ter [17]. Here these lines are presumed to be envelopes
through the local minima of more detailed interfacial ten-
sion curves exhibiting alternating minima and maxima,
the latter representing the metastability barriers [26].

Figure 7(a) pertains to case (A). For the range of the
parameters (e, Des) considered, the values of p for the
metastable zero-layer structure lie outside the scale, while
the one-layer state is not a local &ee-energy minimum un-
der these conditions. Prom top to bottom, the curves in
Fig. 7(a) correspond to increasing values of both e and
Le3 and thus characterize points along the prewetting
curve in Fig. 1(a) and Fig. 2 at increasing distance from
the wetting transition at bulk coexistence. Each curve
exhibits two global minima with approximately equal val-
ues of p, describing coexistence of "thin" and "thick"
smectic films. In the top two curves, the thin film con-
tains two smectic layers, while the thick 61m varies &om
nine to seven layers. In the bottom curve, the coexisting
6lms contain three and six layers. Beyond the thick-film
minima, p increases approximately linearly with increas-
ing thickness, as expected away &om bulk I-A coexis-
tence [17]. The behavior of the points near the global
minima clearly demonstrates the possibility of producing
surface triple points where three structures coexist, two
of which dier by one smectic layer. A special case would
be the triple point at the coexistence of three-, four-, and
five-layer films, which terminates the prewetting curve, as
discussed earlier.

Several different features are shown in Fig. 7(b), which
corresponds to case (B).In contrast to case (A), it is now
seen that, on approaching bulk I-A coexistence, the thick
film coexists with a zero-layer film (upper curve), while
away &om bulk coexistence the zero-layer 61m undergoes
a transition directly to a two-layer film (lower curve).
This behavior underlies the phase diagram schematically
illustrated in Fig. 1(b). In this case, the low value of the
zero-layer interfacial tension compared with case (A) can
be linked to greater stability of its partial-drying state.
This in turn can be related to the well-known contact
theorem [27] which connects the density at the wall to the
bulk pressure, and to the fact that, in going from case (A)
to (B), the pressure has been significantly reduced due to
closer proximity to bulk liquid-vapor coexistence. On the
other hand, an explanation for the reduced value of e

at the wetting transition is due to the larger magnitude
of es in this case, compared with case (A). This follows
from the fact that part of the "effective" driving forces
for orientational ordering at the interface is derived from
the e3 term in the pair potential, as will be discussed
further in the next section.

IV. LAYERING MECHANISMS

As was mentioned above in Sec. III C, a mean-field the-
ory always predicts a discontinuous translation of the I-A
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interface. In other words, a mean-field theory is unable
to describe the roughening transition. An intuitive rea-
son for this failure of an approximate density-functional
model is as follows. Using such a theory, it is possible
to calculate the density profile of the I-A interface and
the location of the Gibbs dividing surface. This profile
corresponds to a local minimum of the appropriate ther-
modynamic potential which fixes the Gibbs surface at a
particular position. However, due to the symmetry of
both the smectic and the isotropic phases, a completely
equivalent minimum (with the same surface tension) is
obtained by simply translating the profile one smectic
period. Thus the Gibbs surface will generally move dis-
continuously &om one minimum to another. The only
way to allow for continuous movement of the interface is
for the latter to be so wide that it is unafFected by the
periodicity of the smectic phase. Since the density profile
along any direction normal to the interface is always more
or less abrupt (i.e. , the penetration length is always on
the order of the smectic period), a large width of the in-
terface can only be produced by large-scale fluctuations
in the position of the interface. While an approximate
density-functional theory can properly capture the de-
tails of the local density profile, such a theory neglects
many-body correlations which are needed to account for
these large-scale interface fluctuations.

This argument explains the behavior of layer transi-
tions found in this work at sufIiciently large distance
&om the wall, where the gradient of the wall potential
V,„(z,8) is small, and forms the basis of our analysis of
the infinite-layer transition in Fig. 2. Supporting this
view is the fact that we find discrete layering to occur in
sufBciently thick smectic films (greater than or equal to
4 layers) adsorbed at the vapor- (V) isotropic interface
under state conditions near the bulk V-I-A triple point,
in the absence of any wall or external poteiitial [28]. The
occurrence of locally stable profiles at this type of inter-
face, difFering by a discrete number of layers, was not
noticed in Ref. [14], and indeed such profiles turn out to
be metastable relative to those calculated in [14]. Their
presence, nonetheless, indicates that the "bulk" mecha-
nism for layer growth at the I-A interface is inherent in
a mean-field theory such as is used here. In a more exact
calculation, we expect this mechanism to be modified by
interfacial roughening fluctuations, as described above.
On the other hand, for very thin smectic films, the above
"bulk" mechanism is not expected to be appropriate due
to a large gradient of the external field near the wall.

In order to better understand the layering mechanism
in thin films, we can attempt to analyze the problem in a
simplified way, centering our attention only on the devel-
oping layer. We assume that the nematic order parame-
ter plays the dominant role in the mechanism of layering,
as will be discussed shortly. Therefore we can hypotheti-
cally integrate out all degrees of 6.eedom except the local
nematic order parameter g in a layer. In a more general
scheme, coupling between q and other variables (partic-
ularly the mean layer density) should also be explicitly
considered. Nevertheless, the following analysis remains
formally valid for the nematic order parameter or for any
other single variable, provided it changes discontinuously

at the (first-order) layer transition. After the integration
process we would obtain, for the transition in the nth
smectic layer, the following single-order-parameter &ee
energy:

I I I
I

I I I

[
I I f
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I i I
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0
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FIG. 8. Coexisting density (continuous lines) and or-
der-parameter (dotted lines) profiles at the O-l layer tran-
sition for T = 0.31 and pg ——0.6 and values of the coupling
parameters speci6ed in the text.

where g is the order parameter of the n " layer, S(q ) is
the local orientational entropy, and the remaining terms
correspond to the expansion of the interaction energy in
powers of the local order parameter. In order to study
the nature of the phase transition it is suFicient to retain
only the terms explicitly shown in (6). In this case, we
have a local Maier-Saupe-type model where the quadratic
term —n g (n ) 0) is analogous to the standard
Maier-Saupe interaction term, and the linear contribu-
tion —p g (p & 0) is equivalent to that of an external
field. The model constructed in this way should be valid
to investigate any layer transition, including the "bulk"
case. Clearly, however, its utility requires establishing
the precise relationships between the coeKcients n, P
and the molecular coupling constants e3, ~3, and 6 as
well as their dependence on T, pb, and layer number n.
The general relationships may be very complicated (par-
ticularly for the "bulk" case) and we have not attempted
to derive them. Instead, we follow simple arguments to
obtain the dominant contributions to n and P for the
first layer transition.

Figure 3 shows that the coexisting density and order-
parameter profiles for the first few layer transitions difFer
mainly in the heights of the profile peaks associated with
the developing layer. While those profiles indicate that
changes in the number density of the layer cannot gen-
erally be neglected, the latter efFect can be reduced by
moving the system further &om bulk liquid-vapor coex-
istence, which reduces the partial-drying nature of the
zero-layer surface phase. This is shown in Fig. 8, which
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plots the coexisting profiles at the 0-1 transition at bulk
coexistence for the case T = 0.31, pg ——0.6, E2 = 0.43,
e3 ———0.62317, and e = 0.3014. This is similar to case
(A), but at a higher bulk density. The main difference
Rom Fig. 3(a) is that now the zero-layer profile also ex-
hibits a substantial density peak near the wall. In this
case, it is plausible to view the 0-1 transition as a local
isotronic-nematic transition in the presence of the exter-
nal field due to the substrate. In this picture, the main
qualitative difFerence between the two coexisting struc-
tures is due to the change in the local orientational order
parameter of the layer, rather than in its density. If we
neglect changes in the density profile we can consider, for
n = 1, a simple idealized situation corresponding to a Hat
density profile with a single narrow peak at the wall. In
this case, it can be showii [29] that ni will be proportional
to e2 and Pi will be a linear combination of e and e3.
(The dependence on es results from translation-rotation
coupling in the pair potential V~.) Changes in the den-
sity profile will renormalize both o. and P . As well,
more complicated density profiles may introduce new re-
lationships, such as a dependence of o. on e3. However,
we believe that even in more general circumstances, the
dominant contributions to the parameters n„and P„will
be those stated here.

As is usual, the local isotropic-nematic transition will
be driven by competition between the entropy, favoring a
free-energy minimum near g = 0, and the Maier-Saupe
interaction term —o. g, favoring a minimum at positive
g when o. is suKciently large. For fixed thermody-
namic state conditions, and on neglecting the external-
field term, the transition would occur at a single, unique
value of o, . The value of g in the coexisting "nematic"
phase would then be given by the Maier-Saupe value,

—0.42, which supports the "thumb rule" used in
Sec. III8 for judging the occurrence of a layer transition.
The role of the external-field term —P il is essentially
to stabilize one &ee-energy minimum against the other.
Strictly speaking, as in the "bulk" mechanism (see Sec.
III A), the "isotropic" phase in this picture should really
be considered a paranematic phase. For a large enough
value of P„, the local nematic-paranematic transition dis-
appears at a critical point [23].

The above picture implies that, under fixed thermo-
dynamic state conditions, the layer transition can only
occur for a limited range of values of both n„and P„.
In particular, if the transition occurs at all, it can only
do so for o. within a finite range of some nonzero value.
Due to the presumed dependence of o. on e2, this in turn
implies that the layer transition disappears both for suf-
ficiently small and sufficiently large values of e2. We have
confirmed this prediction by examining the behavior of
the first few layer transitions with changes in ~2. This
is illustrated for the 0-1 and 1-2 transitions in Fig. 9,
which plots the variation of the discontinuity Lq;„q in
the integrated order parameter for these transitions as a
function of e2, at fixed temperature T = 0.31 and den-
sity of the bulk isotropic phase pp ——0.6, as in Fig. 8.
In Fig. 9, the wall coupling strength e varies as a func-
tion of e2 to maintain coexistence of the difFerent films.
The other coupling constant ~3 is also "slaved" to vary
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FIG. 9. Discontinuity in g;„& at the 0-1 (open circles) and
1-2 (filled circles) layer transitions as a function of e2 for
T = 0.31 and p& = 0.6. The parameters e and e3 vary
along with eq to maintain both bulk I-A coexistence and the
layer transition.

along with e2 in order to maintain bulk I-A coexistence.
The figure shows that Lq;„t, which can be considered
to measure the strength of the layer transition, exhibits
a maximum value and tends toward zero for both large
and small values of e2. In particular, the 0-1 transition
completely disappears both for e2 ( 0.2 and E'2 ) 0.47,
well before reaching the I-N-A triple point which occurs
at e2 ——0.555. A similar behavior is found in the lower
density case, pb = 0.55 (as shown by Fig. 3 in Ref. [16]),
but there the layer transition for large e2 is preempted
by the occurrence of the bulk I-N-A triple point.

These findings can be connected to previous experi-
mental and theoretical results. The key point to note is
that increasing or decreasing e2, with e3 simultaneously
varied to maintain bulk I-A coexistence, corresponds to
increasing or decreasing distance &om the bulk I-N-A
triple point, respectively. [This follows &om the nature
of the bulk T —pb phase diagram, shown in Fig. 1(b)
of Ref. [14], and the feature that the slope of the bulk
I-N coexistence curve is essentially proportional to e2

[29].] The present findings therefore suggest, as a gen-
eral principle, that smectic layer transitions disappear as
the coupling constants are varied to both approach and
recede &om the bulk I-N-A triple point. This feature
is exhibited by the theoretical phase diagram given by
Selinger and Nelson [13] (see Fig. 5 in that reference),
where it is seen that the 1-2 layer transition in that work
occurs only within a narrow range bordering the bulk I-A
transition line and disappears both near and far &om the
bulk I-N-A triple point. These results are also consistent
with the finding by Pawlowska et al. [12] that there are
no discrete-layer transitions at the wall-nematic interface
near the first-order bulk N-A transition, despite the fact
that the A phase can completely wet that interface.

The above arguments emphasize the qualitative im-
portance of the nematic order parameter to the layering
mechanism. In order to obtain layering, it is necessary to
have an inhomogeneous density distribution together with
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a coupling between this inhomogeneity and the nematic
order parameter. It is well known that such a coupling is
able to change the bulk N-A phase transition from sec-
ond to first order. A similar mechanism appears to con-
trol layering, predicting that layer transitions disappear
when the nematic order parameter is saturated either
to a large or small value. This is further supported by
the Gnding that our model predicts that layer transitions
tend to be smoothed by increasing density, as shown in
Fig. 3 of Ref. [16]. Consistent with this is the fact that,
for the same parameters as in Fig. 9, the layer transition
is completely absent when pb ——0.7, a particular example
of which is plotted in Fig. 5(c). The feature of a weaker
degree of layering with increased density is believed to
be an unrealistic outcome of the present theory, resulting
&om the absence of coupling between anisotropic hard-
core interactions (which should dominate at high densi-
ties) and the orientational order parameter in our model
free energy [14].

Finally, one notes &om Fig. 1 and Table I that there
is a progressive increase in the values of Ae3 at the layer
critical points beyond the 1-2 transition. This indicates
increasing dominance by the "bulk" layering mechanism
as the smectic film thickens.

V. CONCLUSIONS

Our mean-Geld calculations have revealed that smectic
layering behavior at a semi-infinite substrate surface can
be quite rich. We have obtained, for the Grst time, a full
layering-wetting surface phase diagram which reconciles
some of the conflicting features predicted by earlier theo-
ries [12—14]. We have attempted to explain the variety of
surface behavior by two complementary physical mecha-
nisms for layer growth, one based on translation of the
bulk I-A dividing surface and the other based on the pic-
ture of a local isotropic-nematic transition in the growing
layer. While the latter mechanism is strictly applicable
only within a narrow range of the model parameters, it
is able to provide a clear intuitive picture of the first
few layer transitions and, moreover, accounts for earlier
theoretical Gndings that these transitions disappear both
suKciently close to and suKciently far &om the bulk I-
N-A triple point. The disappearance on approaching the
bulk triple point is consistent with experimental results
[3—5], although the latter have not yet been carried out
over a suKciently wide range of homologous liquids to
confirm the prediction that layer transitions disappear
far away &om the triple point.

In this work we have focused on the dependence of sur-
face phase behavior on the molecular coupling constants
of the model, rather than on the variation of this behavior
with thermodynamic state conditions for fixed coupling
constants, as might be more appropriate for comparison
with experimental results. In addition, the present model
utilizes an external substrate potential whose coupling
strength is assumed to be independent of the structure of
the liquid phase. While appropriate to studies of liquid-
solid interfaces [5], this model does not strictly apply to
a &ee interface such as is considered experimentally in
Refs. [3,4]. Nonetheless, one might argue similarly to

Refs. [12,13] that the free interface should correspond to
some suitable "effective" external potential for which the
present model is, at least qualitatively, applicable. Our
results &om studying the effects of the substrate-induced
external potential also reveal that a richer variety of be-
havior than so far detected experimentally may occur, in
particular, complete smectic wetting. The absence of this
phenomenon in experiments to date suggests that those
experiments are confined to the "weak substrate" regime
[21]. Variations in the degree of layerwise smectic growth
under different surface treatments, recently observed in
studies of 12CB confined within porous membranes [6],
indeed hint at the possibility of finding complete smectic
wetting.

We shall close with some remarks on the limitations of
the present work and on other aspects of smectic layering
yet to be resolved. As already noted, the theory does not
adequately take account of orientational coupling due to
anisotropic hard-core interactions, which predicts the loss
of layering with increasing liquid density. This may also
be responsible for the fact that we are unable to gen-
erate stable discrete-layer states at a true liquid-vapor
interface [14]. The other principal limitation is due to
the neglect of fluctuations, both elastic fluctuations in
the bulk smectic phase (which destroy true long-range
order in that phase) and roughening fluctuations at the
I-A interface. As also noted earlier, the latter fluctua-
tions will likely destroy the infinite number of layer tran-
sitions in the case of complete smectic wetting, but may
still leave in place a single prewetting transition such as
that found here, albeit unaccompanied by discrete lay-
ering in the thick-fllm region [21]. An earlier study [25]
predicted that elastic correlations in a smectic film may
destroy smectic wetting altogether, while simultaneously
enhancing the number of layer transitions in the partial-
wetting region due to coupling between elastic and in-
terfacial fluctuations: see also Ref. [13]. It is at present
dificult to incorporate these fluctuations in a molecular
theory of the type used here, and clearly further work on
understanding these effects is desirable.

More recent experimental studies with finer resolution,
at both solid-liquid [5] and free [30] interfaces, have con-
cluded that the layer transitions in pure 12CB are second
order, although they may be driven first order by addi-
tion of impurities. These results have been connected
[30] to the presence of a tricritical point on each layer-
transition line, although here we have found that such a
point occurs only for the infinite-layer transition, where it
is a purely bulk effect. An alternative explanation, more
consistent with present theory (and also suggested in Ref.
[30]) is that such apparent "second-order" transitions are
not true transitions but represent pretransitional anoma-
lies similar to that shown in Fig. 5(c). Again, further
studies to resolve this question are called for.
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