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Theoretical studies of sonoluminescence radiation:
Radiative transfer and parametric dependence
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We present results for sonoluminescent (SL) radiation from a strongly modulated air bubble in
water. The SL pulse is due to high temperatures in the bubble produced by the collapse of a shock
wave. The dependence of SL radiation on acoustic pressure and initial bubble size is discussed, as
well as the inclusion of various mechanical energy loss mechanisms. We find that inclusion of loss
terms, especially due to radiation, is necessary in order to understand the bubble dynamics, the
resulting SL pulse, and some recent experiments.

PACS number(s): 47.55.Bx, 78.60.Mq, 44.40.+a, 47.40.—x

INTRODUCTION

Sonoluminescence (SL) has been the object of consid-
erable study for more than 60 years [1]. Recently [2] it
was found that the brief Hashes of light that are pro-
duced are of very short duration (less than 50 ps) and
have a broad spectral range associated with them, span-
ning at least the visible spectrum and extending into the
ultraviolet. The duration of the flashes was found to be
sufficiently short to rule out conventional radiative relax-
ation processes (requiring times of the order of 1 ns or
more). The energy spectrum was sufficiently broad to
eliminate superradiance, superBuorescence, or laser-type
mechanisms, which rely on a high number of photons
occupying a single optical mode. More recently [3] the
spectrum of the Gashes was found to be consistent with a
blackbody spectrum. Furthermore [4], detailed measure-
ments of the radius of the bubble as a function of time
have shown that the wall of the bubble might achieve su-
personic speeds prior to the onset of luminescence. It has
been proposed that SL is associated with the production
of shock waves in the gas inside the bubble [4]. Theo-
retical calculations, based on the gas dynamic equations
coupled to the bubble wall dynamics, have found shock
waves [5—7] as well. The predicted high temperatures,
coupled with a bremsstrahlung mechanism, were used to
explain SL. We 6nd that the inclusion of various physical
processes such as dissociation, ionization, and radiation
in the problem have considerable importance and that
it is necessary in order to fully understand the physics
of collapsing sonoluminescent bubbles. We also compare
our results with recent experimental data [8]. This pa-
per is organized as follows. In Sec. I we formulate the
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model. The subject of Sec. II will be the inclusion of the
loss terms mentioned above. Section III gives a compar-
ison of the results with and without corrections as well
as a discussion of the changes in the results for di6'erent
experimental parameters. Finally, in Sec. IV we present
results for sonoluminescent radiation. We would like to
point out that due to the complexity of the problem, es-
pecially the self-consistent radiation-matter coupling (the
subject of Sec. II), we make some simplifications here in
order to keep the model solvable.

I. FORMULATION OF THE PROBLEM

The physical problem is an air bubble in water, of
equilibrium size of about 4 pm, subjected to a periodic
spherical sound wave of ultrasound frequency (typically
20 kHz) and an acoustic amplitude of about 1.2 —1.3
atm. The motion of the bubble wall follows &om the
equation [9]

~ 0 3 I 1RR+ R= —[P (t—) —P (t) —Po]
2 pg

B d B
[Pg(R) —P (—t)] —4v( —.

p~c~ dt B
This equation, without the acoustic damping term, is
known as Rayleigh-Plesset (RP) equation. Here Pg(t) is
the pressure in the gas next to the bubble wall, P (t) is
the acoustic pressure given by P (t) = P sin(~ t), Po is
the hydrostatic pressure, p~ is the density of the liquid, c~

is the speed of sound in the liquid, and v~ is its kinematic
viscosity. Additional terms resulting &om the compress-
ibility of the liquid have been neglected, as well as the
possibility of heat conduction and mass difFusion. It is
worth noting that during most of the collapse of the bub-
ble, when all terms on the right-hand side of Eq. (1) are
very small (compared with the terms on the left-hand
side), the motion of the bubble wall basically follows
Rayleigh's solution [10] for the collapse of an empty cav-
ity. This is given by R(t) (1 —t/to)2~s, where to is
the collapse time if the gas in the bubble did nothing to
inBuence the motion of the bubble wall. For Fig. 1, this
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FIG. 1. Bubble radius versus time for one acoustic pe-
riod. The solid line is the complete solution of Eqs. (3)—(5)
combined with Eq. (1). The dotted line is the solution of
Eq. (1) assuming adiabatic conditions in the bubble. These
are results for an acoustic pressure of 1.325 atm and an
initial bubble radius of 4.5 @m (these parameters are used
throughout the paper unless specified otherwise). The other
parameters entering are acoustic frequency f = 26.5 kHz,
1/b = 0.794g/cm, pi = 1.0 g/cm, ci = 1.481 kmjs, and
vi = 0.01cm js (for water at 20'C). The value of p in adi-
abatic solution is 1.4. Surface tension o = 72.5 dyn /em is
included.

d( = (r /V) dr = pr dr (7)

or, equivalently, in terms of the initial particle position
Pp

Op = tC
Ot

which specifies the radial motion of the gas particle. In
Eqs. (3)—(5) V = 1/p is the specific volume, E = e(p, p) +
u2/2 is the energy per unit mass, and e(p, p) determines
the equation of state. The variables p, p, and u are the
pressure, density, and velocity of the gas, respectively.
Here o. speci6es the geometry of the problem, being 0,
1, and 2 for the planar, cylindrical, and spherical cases,
respectively. We use o. = 2 in our calculations. The
Lagrangian coordinate ( and r are related by

Ppf'p dip = PT dP.

approximate formula accurately fits the curve for values
of B between 1 and 38 pm. As the bubble collapses, how-
ever, the influence of the bubble interior becomes more
important and it cannot be neglected anymore. It enters
into Eq. (1) through the Pg(t) term. Assuming adiabatic
conditions in the bubble, Pg (t) follows f'rom the adiabatic
equation

The additional terms that appear in Eqs. (3)—(5) are 8,
T, and A, which represent mass loss, body force, and
energy loss, respectively. If the possibility of the gas be-
ing dissociated or ionized is excluded (the approximation
that is going to be corrected in Sec. II), the equation for
the internal energy per unit mass as a function of tem-
perature T is

(2)

where Bp is the equilibrium radius of the bubble, a is van
der Walls hard core (for air Ro/a 8.5), and p is the ra-
tio of specific heats. Equations (1) and (2) were solved
numerically. We will refer to this solution as an adiabatic
solution to the problem. Based on this approach it does
not seem to be possible to explain the production of a
shock wave in the bubble, as it is not clear if the speed of
the bubble wall becomes supersonic with the respect to
the speed of sound in the gas. Also, the emission of vis-
ible light requires a much higher temperature than that
which can be expected based on the adiabatic assump-
tion. So, in order to understand what is really going on
in the bubble, especially close to the point of maximum
contraction, it is necessary to solve Eq. (1) coupled with
the gas dynamics equations.

We assume spherical symmetry for the problem and
also neglect the viscosity of the gas and heat conduction.
Under these conditions, the gas dynamics equations in
the Lagrangian formulation are

which, together with van der Waals equation (without
attraction)

(10)

gives e(p, p), which enters the energy equation (5). Here
b is the inverse of the maximum allowed density, N is the
number of particles per unit mass, k~ is the Boltzmann
constant, and p is the ratio of specific heats.

The problem of Eqs. (3)—(5) coupled with Eq. (1),
which serves as a boundary condition, was solved us-
ing a 6rst-order Godunov scheme [11,12]. This method
was originally formulated with the goal of establishing
a method that retains the simplicity of the method of
characteristics. At the same time, it should include the
possibility of discontinuous surfaces, such as shock waves
and Quid interfaces. In applying the method we divide
the region of interest into a number of cells and average
the values of the thermodynamic variables in each cell.
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The values at the boundaries are calculated using the gas
dynamic equations in characteristic form. These bound-
ary values are subsequently used to determine the average
values at the later time. The algorithm efFectively intro-
duces arti6cial viscosity, which converts discontinuities
common in shock problems into sharp gradients, which
permit numerical treatment. [The artificial (kinematic)
viscosity introduced is of the order of the grid size mul-
tiplied by the sound speed. For a detailed calculation of
the shock structure, it is necessary to choose a grid size
that would realistically represent the gas viscosity. For
our purposes, however, this is not very important. ) We
varied the number of points in the space grid from 500 to
2000 and the results turned out to be insensitive to the
number of points. The time step was determined by the
Courant-Friedrichs-Lewy condition and varied &om 10
s for the bubble at maximum radius to 10 s close to
the minimum. The algorithm turned out to be extremely
stable.

The results are very sensitive to even small changes of
the input parameters, as might be expected for driven
nonlinear oscillators. We discuss the inHuence of chang-
ing the parameters later. In Fig. 1 we present typical
results for the bubble radius versus time. The results of
direct integration of the RP equation (1) (adiabatic so-
lution), for the same parameters, are presented as well.
The maximum radius that the bubble reaches is about
42.5 p,m at approximately 17.2 ps after the start of the
cycle and the minimum is 0.56 pm at about 21.3 ps. For
the erst part of the cycle, it is easy to see that there is al-
most no difFerence in the results between the "adiabatic"
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FIG. 3. Shock propagation inside the bubble. (Acoustic
pressure of 1.325 atm and initial radius 4.5 pm). For these
conditions, the strong shock starts to build up at the point
where bubble radius is about 0.8 —0.9 pm. Time t, = 0 is
defined as the time when the bubble wall speed changes sign,
which is about 21 ps after the start of the acoustic cycle. The
solid line is the shock and the dotted line is the bubble wall.

solution and the full solution of the system of equations
(3)—(5). After the collapse of the bubble starts, however,
the motion of the bubble wall becomes faster and when
the bubble radius reaches values of a few micrometers it
becomes ultrasonic with respect to the speed of sound in
the gas. The bubble wall speed and speed of sound in
the gas just next to the wall are presented in Fig. 2(b)
(for P = 1.325 atm). At this point a shock wave starts
to develop in the bubble and the adiabatic approach is
not applicable any more. Figure 3 shows the shock wave
propagating in the bubble close to its minimum radius.
We should note that the situation presented in this figure
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FIG. 2. Bubble wall speed (solid line) and speed of sound
(dashed line) close to the minimum radius. For certain acous-
tic pressure amplitudes, the motion of the bubble wall be-
comes supersonic with respect to the gas inside the bubble.
The bubble radius where that occurs depends on the choice of
the acoustic pressure. Here we present results for four di6'er-
ent acoustic pressures: (a) 1.425 atm, (b) 1.325 atm, (c) 1.225
atm, and (d) 1.125 atm. The wall motion does not become
ultrasonic for the last case.
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FIG. 4. Spatial profile of the gas temperature at various
times close to the time when the bubble achieves its minimum.



THEORETICAL STUDIES OF SONOLUMINESCENCE. . . 4979

100

0.01

100

0.01

0.1 0.3 0.5 0.7 0.1 0.3 0.5 0.7

wall at about 2 ps after t, (the curves are drawn for
t = t, —3.Ops, t, —2.3 ps, and t + 1.0 ps). In Fig. 4(c)
it reflects from the wall and collapses again (the curves
are drawn for t = t +30ps, t +56ps, t +82 ps,
and t + 15.3 ps). In Fig. 4(d) the shock rebounds after
the second collapse and propagates outward (the curves
are drawn for t = t + 16.2ps, t + 19.9ps, t + 22.4 ps,
and t +34.5 ps). Note the huge temperatures developing
close to the bubble center. The propagation of the shock
could be easily followed in Figs. 5 and 6 as well.

Later we are going to compare some of these results
with those following &om the solution of Eqs. (3)—(5)
where the loss terms are included. The inclusion of these
loss terms is the subject of the next section.

II. INCLUSION OF THE LOSS TERMS

FIG. 5. Spatial profile of the gas pressure at various times
close to the time when the bubble achieves its minimum.
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FIG. 6. Spatial profile of the gas velocity at various times
close to the time when the bubble achieves its minimum.

represents a solution for the particular choice of param-
eters that we are using. Different choices of parameters
(for example, acoustic pressure or initial bubble radius)
lead to different results where more than two shock waves
can be present (this result was also reported in [7]) or
eventually to just one shock wave.

Results for the spatial profile of the thermodynamic
variables as the solution of Eqs. (3)—(5) coupled with
Eq. (1), in which loss terms have being neglected, are
presented in Figs. 4—6. These results are similar to those
given in [5,6]. In Fig. 4(a) the shock is moving inward
(the curves are for t = t, —49.6ps, t —13.5 ps, and
t, —3.1 ps, where time t is defined as the time when
the bubble wall velocity changes sign). In Fig. 4(b) the
shock rebounds and propagates outward and hits the

The results of integration of Eqs. (3)—(5) without loss
terms imply the existence of extreme conditions in the
bubble center during the shock collapse. Theoretical tem-
peratures as high as 10 K and pressures on a megabar
scale have been reported [5—7]. These results would im-
ply that some very energetic processes, including nuclear
fusion, might occur in the bubble close to the origin, as
pointed out in [8]. These results also imply that me-
chanical energy losses may also be considerable. Inclu-
sion of these terms is important in order to make a self-
consistent prediction of the real temperatures that de-
velop in the center of the bubble during the shock col-
lapse(s). Finally, they are responsible for the effect of
St, which we want to explain. These loss terms include
the following processes: heat flow between the bubble
and liquid, thermal conduction in the gas, inclusion of
vibrational degrees of freedom in the equation of state,
dissociation of the gas, ionization of the gas, and radia-
tion losses that are responsible for the effect of SL.

The first two effects are definitely important in order
to completely understand the general bubble dynamics
and the remarkable stability of the bubble oscillations,
as pointed out in many references [13—21]. Their discus-
sion, based on simple mechanical arguments, is given in
Appendixes A and B. The conclusion is that these effects
do not have an important influence on the gas dynamics
on the time scale of interest. This time scale (a few tens
of picoseconds) is determined by the time which the bub-
ble spends close to its minimum radius, shock waves are
produced, and the SL pulse emitted. In the rest of this
section we explain how the rest of the above mentioned
processes should be included in order to get a more com-
plete understanding of the gas dynamics. Some details
are presented in Appendixes C—F. The discussion of the
relative importance of various energy loss mechanjsms
will be presented in Sec. III.

The effect of the inclusion of vibrational degrees of
&eedom and dissociation is mainly in the change of the
equation of state. Dissociation also leads to certain en-
ergy losses, which were included in Eq (5). Two. ques-
tions relate to ionization. First, is there a kinetic path-
way open to initiate the ionization? Second, is thermal
equilibrium established between the electrons and ions?
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For now we assume that the answer is "yes" to both of
these questions. Then the Saha equation is applicable
(see Appendix C). We defer further remarks to Sec. III.
An important point about the ionization of the gas is that
at the temperatures that are of interest to us (10 K or
more), multiple ionization can take place, which leads to
mechanical energy loss and also to a significant change
in the optical properties of the bubble. Equalization of
electron and ion temperatures occurs after many colli-
sions due to the large difference between the electronic
and ionic masses. The approximate result for this time
is [22]

m 1
m Nvo. '

where m is the ionic mass, I, is the electron mass, N is
the ion number density, v is the mean electron velocity,
and o. is the cross section for electron-ion collisions. For
typical values of the parameters entering our problem,
i.e., T 10 K, N 10 cm, the result for w is of the
order of 10 —10 s . This is still short compared
to the time bubble spends close to the minimum. This
means that the translational temperature is established
rather fast and that ions and electrons could be assumed
to be at the same temperature.

The self-consistent inclusion of radiation into the gas
dynamics equations is explained in Appendixes D and
F. We present two radiative mechanisms. The "thermal
approach" is based on the coupling of radiative transfer
equation with the gas dynamics equations. Let us em-
phasize that the resulting radiation is not a priori related
to blackbody radiation. An object is going to radiate as a
blackbody if it is optically thick (d )) l ), where d is the
typical dimension of the object and / is the radiation ab-
sorption length. It will radiate as a volume radiator if it is
optically thin (d (( l ). The radiative transfer equations
(based on the principle of detailed balance) is a compli-
cated problem in itself. Correspondingly, a number of
approximations have to be made in order to efficiently
couple this equation with the gas dynamic equations (for
details, see Appendix D). The important factor that en-
ters into the radiative transfer equation is the radiation
attenuation coeKcient. In general it is very difficult to
calculate this quantity in an exact manner since there
are many processes that; are involved. The overview of
the different processes that are important in getting ap-
proximate results for the attenuation coefficient under
the extreme conditions in the bubble close to its mini-
mum radius is given in Appendix E. Here we note that
a crucial factor which has a big inHuence on the results
for the attenuation coefficient is multiple ionization, dis-
cussed above. Some representative values are given in
Table I. The strong temperature and ft. equency depen-
dence of the absorption coefficient m'„should be noted.
For high temperatures (more than 10s K) the values for
the absorption coefficient are very high, giving very short
radiation mean free paths. For lower temperatures the
values of the absorption coeKcient are smaller, giving
radiation mean free paths that are comparable to the
bubble size (or larger). This means that the absorption
of radiation in the bubble is going to be important, espe-

TABLE I. Values of absorption coefBcient tc' and average
ionization m for a few temperatures T and angular frequencies
of radiation u. These results are for a density of the gas equal
to 0.7g/cm .

T(K)
2.5 x 10
5.0 x 10
10x10
10x10
2.0 x 10'
10x10

(u (s ')
5.0 x 10'
5.0 x 10'
5.0 x 10'
5.0 x 10'
5.0 x 10'
50x10

m
0.025
0.20
0.64
5.0
6.7
7.0

(1/cm)
30x10
5.1 x 10
36x10
3.1 x 10'
2.2 x 10'
5.7 x 10

1.0 x 10
10x10
1.0 x 10
10x10
1.0 x 10
10x10
1.0 x 10
10x10

10x10
50x10
10x10
50x10
1.0 x 10
5.0 x 10
1.0 x 10
1.0 x 10

0.64
0.64
0.64
0.64
0.64
0.64
0.64
0.64

76x10
36x10
1.1 x 10'
79x10
10x10
8.1 x 10
1.1 x 10

1.0 x 10-'

cially for the high temperatures near the bubble center.
The ot;her approach to the radiation problem is based

on bremsstrahlung (Appendix F). We may think of
bremsstrahlung as radiation emitted due to the sudd. en
changes of microscopic "dipole" moments associated with
the collision process. Since the temperatures close to the
center of the bubble at the time of the complete collapse
of the shock waves reaches values of a few million degrees,
one could expect the formation of a plasma. This means
that bremsstrahlung happens in the "ball" of plasma and
one has to include the corrections to individual scatter-
ing events due to the rest of the plasma. We approximate
the plasma in the bubble center as being uniform, which
allows us to formulate a simple model for the calculation
of the corrected bremsstrahlung radiation.

III. DISCUSSION OF THE RESULTS

First, let us study the relative importance of the var-
ious mechanisms for energy loss. The most important
changes result ft. om the inclusion of radiation. It is nec-
essary in order to have the theory consistent with the
law of conservation of energy. As the core of the bubble
is heated by the collapsing shock wave it reaches a high
temperature (which in the absence of radiation would, in
fact, become infinite, as shown by Guderley [23]). The
radiation of energy serves to limit this heating since the
hotter the core gets the more energy it radiates. It is of
crucial importance to include this "radiation reaction"
in a self-consistent way because the reduction of energy
in the core lowers the pressure and modifies the dynam-
ics. Thus the mechanical motion and the radiation are
intimately connected. Previous descriptions of the prob-
lem [5—7] computed the radiation as a consequence of the
dynamical motion but did not include the feedback on
the mechanics. Those theories obtained a serious overes-
timate of the core temperature. The self-similar solution
to the gas dynamic equations in the absence of the loss



52 THEORETICAL STUDIES OF SONOLUMINESCENCE. . . 4981

10 10

0.1 0.1

0.01 0.01

0.001
0.1 0.2

I

0.3
r [p,m]

0.4 0.5 0.6
0.001

0.1 Or2 0.3

r [pmj

0.4 0.5 0.6

FIG. 7. Spatial profile of the gas temperature at the time
immediately after the first shock rebounds from the origin for
diferent methods of introducing energy losses. BRS denotes
the bremsstrahlung model.

FIG. 8. Temperature in the bubble about 200 ps after col-
lapse of the first shock. The solid line represents the solution
without the inclusion of loss terms. The broken line is the so-
lution if all energy-loss mechanisms are included (the thermal
model is used here).

terms leads to the singularity in T(t) when the shock
wave collapses to the origin. Inclusion of the loss terms
tempers this singularity. The physics is simple: as T(t)
rises so does the thermal emission. The system cools ofF.
Energy conservation therefore keeps T(t) finite over any
finite region of space. Furthermore, a numerical treat-
ment of the singular problem might have been dependent
on the grid size used in the calculations. These problems
are avoided by the self-consistent calculation performed
here.

Results for the temperature close to the origin during
the shock collapse are presented in Fig. 7. One can easily
verify that the maximum temperature close to the origin
is about an order of magnitude smaller than the results
without corrections. A very important point about the
inclusion of losses (especially radiation losses) is that it

provides a natural mechanism for cooling of the bubble.
To illustrate this point we present in Fig. 8 the results for
the temperature in the bubble at a time about 200 ps af-
ter it achieves its minimum radius. We can see that there
is a big difFerence in the results, especially close to the
bubble center. Here the thermal approach is used for in-
clusion of radiation losses. The bremsstrahlung approach
leads, however, to similar results for the temperature and
pressure. The inBuence of radiation and other losses on
emission of radiation in the form of a SL pulse is going
to be discussed in Sec. IV.

Let us now discuss the in8uence of the change of some
of the parameters on the results for the thermodynamic
variables. The results for the pressure and temperature
in the bubble after the first shock rebounds from the
origin are shown in Figs. 9 and 10 for difFerent acous-

TABLE II. Expansion ratio R /Rp, maximum velocity of the bubble wall v, radius at which
the bubble wall becomes ultrasonic R"' ', number of photons N„emitted in the SL pulse, and
average power P emitted during 10 ps around the maximum of the power output are presented
for diferent acoustic pressures P and equilibrium radii Ro.

P (atin)
1.425
1.375
1.325
1.275
1.225
1.175
1.125

Rp (pm)
4.50
4.50
4.50
4.50
4.50
4.50
4.50

/Rp
12.8
11.7
10.6
9.4
7.9
7.1
5.8

v (km/s)
6.0
5.3
3.9
3.1
2.2
1.6
0.9

Rultra/R

1.44
1.11
0.80
0.62
0.41

Np
82x10
3.0 x 10
2.2 x 10
6.7 x 105
1.1 x 10
very small

P (mW)
5.5 x 10
3.0 x 10
1.4 x 10
4.2 x 10

6.6
very small

1.325
1.325
1.325
1.325
1.325

10.0
6.00
4.50
3.75
3.00

5.8
8.4
10.6
12.4
14.9

2.13
3.51
3.94
4.24
4.34

0.25
0.55
0.76
0.80
1.00

2.4 x 10'
5.2 x 10
30x10
14x10
5.2 x 10

1.6 x 10
3.4 x 10
3.0 x 10
9.0 x 10

3.1 x 10
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again, rebounds, and reaches the bubble wall one more
time. For the case of Bp = 3.0 pm we were able to count
at least Gve of these rebounds. As the rebounded waves
become weaker, the temperature and pressure gradients
are not as strong as for the erst one.

IV. SONOLUMINESCENT RADIATION

In the previous sections we presented two approaches
to the problem of radiation energy loss. The same mech-
anisms are going to be responsible for the emission of
a SL pulse. The main difference between these two ap-
proaches is in how to treat the small region around the
bubble center where the temperature is very high.

In the thermal model, we think about the bubble as
a miniature "sun. " Both systems contain a hot core,
which is optically thick (cf. Table I), surrounded by a
much cooler envelope. The fact that the system is small
leads to corrections, but the basic fact is still there: the
outer envelope, and not the core region, is responsible for
the radiation that is seen in experiment [3]. The spec-
trum that we Anally get is not a pure blackbody spectrum
since it represents a superposition or radiative contribu-
tions &om the entire plasma, corrected for the absorption
efFects. Nevertheless, one may loosely characterize it as
an effective blackbody characterized by the temperature
in the envelope region (20000-30000 K) since this region
is the most important factor in determining the spectral
properties of emitted radiation (see below). The actual
calculation of SL pulse is based on the result for energy
loss (D2), with the frequency integration modified in or-
der to account for the absorption in the water. The im-
portance of the inclusion of radiation loss terms in the
treatment of the gas dynamics equations can be seen in
Fig. 12. There is not much difFerence in the power emit-
ted until the collapse of the first shock (at a time about 3
ps before t, defined as the time when bubble wall veloc-
ity changes sign). At this point, however, a lot of energy

is radiated and the temperature becomes much smaller
than it did in the uncorrected solution. The second peak
in the power spectrum of the uncorrected solution cor-
responds to the collapse of the second shock wave. We
conclude that inclusion of loss terms, especially radia-
tion, is very important in order to explain the SL pulse.
It also explains the short duration of the pulse (in the
uncorrected solution, the SL pulse lasts much longer; cf.
Fig. 12. Our results imply that the duration of the pulse
is about 10 ps, shorter than 50 ps, which is the current
experimental upper bound [2].

It is important to note that the effect of SL cannot be
explained based on pure bremsstrahlung, since the spec-
tral power of bremsstrahlung radiation falls with increas-
ing frequency instead of rising as seen in experiment [3].
Our bremsstrahlung model represents the extension of
simple bremsstrahlung radiation in the sense that we ac-
count for the frequency-dependent absorption of radia-
tion in a region around the plasma and for the corrections
to individual bremsstrahlung events due to the presence
of the rest of the plasma (cf. Appendix F). The peak
power emitted in the form of SL pulse resulting &om this
approach is similar to the one &om thermal approach and
the duration of the pulse is a little longer. The results
for the spectrum of the emitted radiation are given in
Fig. 13. We see that the spectral properties that result
from the thermal approach (fairly close to the Planck
spectrum with a temperature of 25000 K) are in much
bet ter agreement with experimental results, so it seems
that this approach better explains the physical processes
in a sonoluminescing bubble.

The results for some important quantities that deter-
mine the radiation coming out of the bubble are sum-
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FIG. 12. Power versus time for the SL pulse. Results with
inclusion of all loss mechanisms (solid line) and without in-
clusion of radiation losses (broken line) are presented.

FIG. 13. Spectrum of emitted SL radiation resulting from
the thermal and bremsstrahlung approach. The "pure"
bremsstrahlung results are obtained without corrections due
to the presence of a plasma and absorption. The acoustic
pressure amplitude is 1.325 atm for both the theoretical and
experimental results. The attenuation of radiation in the wa-
ter and the container walls was not taken into account. The
theoretical results were scaled down to the experimental ones.



4984 L. KONDIC, JOEL I. GERSTEN, AND CHI YUAN 52

marized in Table II. Clearly, higher acoustic pressure
amplitudes lead to higher bubble wall speeds, so the
shock waves are produced sooner and their collapses are
stronger. This leads to higher temperatures in the bub-
ble and more radiative energy output. This is also illus-
trated in Fig. 14. The peak power for the experimental
conditions [3] is about 100 mW, consistent with the ex-
perimental lower limit of 30 mW [3]. (The absorption of
radiation in water or container walls was not taken into
account in our approach. ) The sharp rise and slower de-
cay of the pulse, which were observed experimentally [2],
can be noticed as well. The other interesting result of
our theory follows &om the observation that the temper-
atures in the center of the bubble get to be very high if the
bubble is driven with high acoustic pressure (cf. Fig. 10).
We can see in Table I that for the high frequencies (10~s
rad/s or more), the absorption coefficient is very small,
thus the bubble is optically thin. That means that the
emission of x rays could be expected if the temperatures
in the center of the bubble really reach values of the or-
der of 10 K. Since the absorption length of x rays is
fairly long in the water as well, this effect should be ob-
servable. It could also give us the answer as to how hot
the bubble center really is. We emphasize that, as a re-
sult of our theory, this effect should be expected only for
very strongly driven bubbles, with acoustic pressure am-
plitudes of at least 1.4—1.5 atm. However, it is not clear
that the bubble will remain dynamically stable when it
is driven so strongly since it is close to its upper stabil-
ity threshold. The bubble could be destabilized by the
growth of aspherical modes of oscillations. We leave it
to experiment to determine the range of stability of the
bubble.

Concerning the influence of the initial bubble radius
on the SL radiation, we have already seen in Sec. III
that there are two competing effects taking place. The
net result is that the sonoluminescent emission is largest

for some intermediate values of the equilibrium bubble
radius. The SL power outputs for different initial bub-
ble radii are presented in Fig. 15. Here one should take
cognizance of the 5—10% uncertainty in the experimen-
tal results for the equilibrium bubble radius [8]. This
uncertainty limits the comparison of our results with ex-
periment.

The spectrum of the emitted radiation is presented in
Fig. 16. We show the experimental data and our results
for a few acoustic pressure amplitudes. Note that higher
acoustic pressure amplitudes lead not only to more power
output but they also change the &equency dependence of
the spectral power. If one wants to fit the emitted spec-
trum to a blackbody spectrum, the conclusion would be
that the radiation from the bubble exposed to a higher
acoustic pressure field corresponds to a higher "black-
body" temperature.

Finally, we would like to comment on one of the most
intriguing facts about SL radiation, i.e., the strong de-
pendence of SL intensity on water temperature. SL radi-
ation increases more than ten times if the liquid is cooled
down to freezing point [3]. Our approach treats the
bubble-liquid interaction very approximately (through
the RP equation), but we hope that we can indirectly
understand this striking observation. First, as noticed
in [3], the water dissolves about twice as much air at
0 C compared to 20 C. The mass flow between the bub-
ble and water is important in stabilizing the bubble os-
cillations through longer periods of time [8]. One could
expect that more air kom the water is going to evaporate
into the bubble if the concentration of the dissolved air in
the liquid next to the bubble is higher (following Henry' s
law, the partial pressure in the gas is proportional to the
concentration in the liquid). The conclusion is that one
could expect more air in the bubble in a colder liquid or,
correspondingly, a larger bubble. If the bubble is initially
small (for example, 3 p,m), this flow of air between the wa-
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FIG. 14. SL emission for various acoustic pressures. The
full line corresponds to 1.375 atm, the dashed one to 1.325
atm, and the dotted one to 1.275 atm. The results for lower
acoustic pressure amplitudes are out of scale.

FIG. 15. SL emission for various initial bubble radii. The
full line corresponds to Bo ——6.0 pm, the dashed one to 4.5
ym, and the dotted one (barely visible) to 3.75 pm.



52 THEORETICAL STUDIES OF SONOLUMINESCENCE. . . 4985

16

14

8

U 6-
4

o
2

12

[IO" red/s]

FIG. 16. Spectrum of emitted SL radiation. Squares are
experimental data, lines correspond to acoustic pressures of
1.375 atm (solid line), 1.325 atm (long-dashed line), 1.275
atm (short-dashed line), and 1.225 atm (dotted line). Theo-
retical results were scaled down to experimental values. The
attenuation of the radiation in the water and in the container
walls (see [24]) was not taken into account in the theoretical
results.

ter and bubble might have considerable influence. From
Table II we can see that a 3.75 pm bubble produces more
than an order of magnitude more radiation than a 3.0 pm
bubble. Since mass diffusion is a slow process, the time
delay for the emission of SL pulse, reported in [8], can be
explained as well. On the other hand, it seems [8] that
the experiments with water at lower temperatures were
done with higher acoustic amplitudes. That would also
increase the SL emission, as pointed out earlier. Also, the
SL pulse &om the cold liquid was fitted to a higher black
body temperature [3]. This corresponds to our observa-
tion that; the SL spectrum fits to higher temperatures if
the acoustic pressure is increased.

One of the curious features of SL experiments has been
the role played by rare-gas additives. It seems that [24]
some rare-gas is needed to produce SL. The precise ori-
gin of this effect is not yet understood. Penning ion-
ization has been conjectured [24] as possibly being in-
volved, although no details have been provided. One
possibility is that the rare gas may be responsible for
promoting the initial ionization of the molecular gas by
a collisional ionization process. This could come about
as follows. When the gas is imploded and the tempera-
ture is raised, the rare gas has some probability for be-
ing collisionally excited into a metastable state. This
would occur in the core of the bubble near the point of
collapse of the shock wave where the kinetic energy is
high. Metastable states exist for all the rare gases. Thus
Ne, Ar, Kr, and Xe have metastable triplet Pp and P2
states. Helium has, in addition, long-lived Sp and Sp
states. The lifetime of the metastable states is expected
to be very long since they are forbidden to decay by mul-
tiple selection rules. The metastable states are likely to

persist for many oscillations of the bubble and therefore
a slow buildup of their population will occur &om cycle
to cycle. As the metastable population builds up, the
onset for electron ionization will occur earlier in the bub-
ble collapse phase. Following initial ionization, further
ionization will progress by electron avalanche ionization,
where the electron population grows exponentially. The
rare gas may therefore serve as a catalyst in promoting
the initial stage of ionization of the gas. This may ac-
count for the fact that it often takes many oscillations
of the bubble before SL is produced. Metastable states
may also promote competitive processes, such as the dis-
sociation of the molecular gas.

In our theory, we have assumed that the ionization pro-
cess occurs (by whatever means) and have used the Saha
equation to give the density of electrons to be expected.
The Saha equation is based on thermodynamic equilib-
rium. The avalanche process involves the exponential
growth of the number of electrons so once a single &ee
electron is produced, rapid growth in the electron number
ensues and the electrons equilibrate.

One possible way to test the above hypothesis is to
take a pure molecular gas (without rare-gas additives) in
a contracting bubble and expose it to ionizing radiation.
If Bee electrons are produced and electron avalanching
ensues, it could mimic the hypothesized seeding effect of
the rare gas.

Other explanations for the role played by rare gases
may involve the stability of the bubble itself. It is not
yet understood how the exchange of mass and/or heat
with the surrounding liquid inQuences the change in the
equilibrium size of the bubble and how that affects its sta-
bility. One may ask if the admixture of rare gas serves to
regulate this exchange. In our theory we have bypassed
these intriguing questions and assumed that the bubble
is stable, in local thermodynamic equilibrium, and is ra-
diating SL. The parameters of our theory are the equilib-
rium bubble radius and the acoustic pressure amplitude.
These are both obtainable, in principle, &om experiment.

CONCLUSION

Our formulation of the physics of a collapsing bubble
in a liquid provides an improved approach to the sono-
luminescence problem. A self-consistent calculation of
the bubble dynamics, coupled with radiative transport, is
necessary in order to obtain reasonable results for the gas
properties and to explain the sonoluminescent radiation.
The duration of the SL pulse, the spectral properties,
and the strong dependence of the SL pulse on parame-
ters that were reported experimentally [8] are explained
&om a theoretical point of view. The maximum temper-
ature in the bubble is strongly dependent on the acoustic
amplitude and might reach values of tens of millions of
degrees, provided the imploding shock wave remains sta-
ble until very close to the bubble center. At this point,
however, our approach does not take into account mass
diffusion since we are concerned with the steady state
regime of bubble motion. A more complete theory, which
would account for the precise chemical nature of the gas
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in the bubble and remove some of the uncertainties of the
current model, will be possible when more experimental
data are available. For the time being, the process of
mass diffusion, which is important in this sense, is not
well understood. Finally, the formulation of a more com-
plete theory is needed in order to understand some re-
cent experimental results, such as the strong dependence
of the SL radiation on doping with inert gases [24]. We
believe that our approach gives a good starting point in
that direction.

APPENDIX A: HEAT FLOW BETWEEN THE
BUBBLE AND LIQUID

We want to estimate the importance of heat conduc-
tion between the gas in the bubble and liquid during the
Anal stages of bubble collapse. We provide here an esti-
mate of the upper limit of the amount of energy that can
be transferred.

The heat transferred per time is given by

q = N, C„AT
a

(A1)

where % is number of collisions of gas molecules with the
bubble wall per unit time, C is molar heat capacity, AT
is the temperature difference between the gas and liquid,
and N is Avogadro's number. Equation (Al) overesti-
mates the heat transfer since it assumes that all available
energy is transferred in the collisions. The number of col-
lisions follows Rom the estimate of the total momentum
transferred to the wall during the time Lt because of
the collisions AP/At 2mv/3N„where m is molecular
mass and v is the average thermal velocity of molecules.
By equating the total momentum transferred in the time
interval Lt with the average force, which is in turn equal
to the pressure exerted on the bubble wall multiplied by
area, we get a Gnal estimate for heat transferred per unit
time

effect of heat transfer between the bubble and the liquid
does not have an important effect, at least not for the
short time that the bubble spends close to its minimum
radius.

APPENDIX 8:
HEAT CONDUCTION IN THE GAS

One of the assumptions in our study of shock prop-
agation is that heat conduction in the gas can be ne-
glected. Let us estimate the importance of this effect
for the time scale at which shock wave(s) actually exists:
about 50 —100 ps. The How of heat is given by the heat
conduction equation

BT
ot x

where the coe%cient of thermal diffusion is given by
= I 6/3. Here l is molecular mean free path and

v is the average molecular thermal speed. For standard
values of temperature T and number density n, the value
of y is about 0.2cm2/s [22]. Noting that l is inversely
proportional to the density of the gas n and v is pro-
portional to T ~, when the shock is close to complete
collapse (n 500 n, and T 10 K), we get a value for

6 x 10 cm2/s. From Eq. (Bl) we see that the time
Lt required to equalize the temperature across distance
Ax is given approximately by

(B2)

For a typical distance of 10 cm, the time required is
a few nanoseconds. This is very long compared to the
typical lifetime of the shock waves, so we conclude that
the effect of heat conduction in the gas is not important
in our problem.

(A2)

Here P is the pressure in the bubble, A is the area of the
bubble, M is the molar mass of the gas in the bubble, and
k~ is Boltzmann's constant. Typical values of the vari-
ables entering Eq. (A2) for the bubble close to the mini-
mum radius are P 10~~ dyn/cm, A 4.5 x 10 s cm,
and AT 10 K. (We assume that the liquid is at room
temperature. This assumption overestimates the transfer
of heat since the liquid next to the bubble wall is heated
as well. ) This gives QAt 7 x 10sAt ergs/s. This value
should be compared with the typical value of the total
energy in the bubble E~, given by Eq. (9) multiplied by
bubble mass. For p 0.5 g/cm and a bubble mass of
approximately 5.5 x 10 g we get Ez 1 erg. For the
time Lt 100 ps, the upper limit on the heat transferred
between the bubble and the liquid is about 0.07erg. We
conclude that at most a few percent of the energy of the
gas could be expected to transfer to the liquid, so the

APPENDIX C:
VIBRATIONAL DEGREES OF FREEDOM)

DISSOCIATION, AND IONIZATION

The temperature at which the vibrational degrees of
freedom un&eeze is on the order of a few thousand de-
grees. As we are mainly interested in much higher tem-
peratures (10 K or mare), we included this effect simply
by changing the ratio of heat capacities from 7/5 to 9/7
for temperatures higher than "critical" ones. The critical
temperature was taken to be 4 x 10 K. This choice does
not have much infl. uence on the Gnal results. The same
is true for the choice of temperatures that govern the
process of ionization and dissociation mentioned below.

The dissociation of air starts at temperatures of the
order of 10 K [22]. The energies required for dissociation
are considerable, 5.11 eV for 02 and 9.74 eV for N2 [25].
The equation of state becomes
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e(T) = N
[1 —a(T)]k~T + 2—1

+Nn(T) U,

N
a(T)k~T

7 —1

(C1)

n(T) =
TD2 TDj.

(c2)

where o.(T) measures the degree of dissociation [Na(T)
molecules are dissociated] and U is the dissociation en-
ergy. Here p is the molecular ratio of heat capacities
(9/7 for air if the vibrational degrees of freedom are in-
cluded) and p is the monoatomic ratio (5/3). The first
term on the left-hand side of Eq. (Cl) corresponds to the
energy of molecules, the second one to the energy of the
atoms, and the last one represents the energy required
for dissociation. Since our treatment is approximate, we
used statistically averaged values for the dissociation en-
ergies of 02 and N2 mentioned earlier. This last term
was included in Eq. (5) as a mechanical energy loss. As
in the case of the vibrational degrees of freedom, we are
not interested in the details of the dissociation process.
Hence a simple linear model was employed for n(T):

Eq. (C3) we obtain m, which gives the degree of ioniza-
tion and also the energy lost in the ionization process.
For the typical temperatures that develop in the center
of the bubble of 10 —10 K it can easily be seen that
multiple ionization is taking place. The equation of state
that allows for ionization is

QCL 1 +772 1 QC

+(N + N )Q(m), (c4)

where N and N are the numbers of atoms and
molecules per unit volume, respectively. Here p, p, and
p, are the heat capacity ratios for molecules, atoms, and
electrons, respectively. Q(m) is the energy required to
remove an electron with ionization potential correspond-
ing to m. The first three terms on the right-hand side
of Eq. (C4) are internal energies corresponding to atoms,
molecules, and electrons, respectively. The electronic ex-
citation energies were neglected in the above equation.
The last term in Eq. (C4) was included in Eq. (9) as
mechanical energy loss.

AT3~'
I(m+ 1/2) = k~T ln

mn
(C3)

where I(m + 1/2) is given by a continuous curve con-
structed by joining the points I corresponding to ion-
ization potentials for ionization of degree m. In Eq. (C3)
n is the number of atoms (molecules) per unit volume, T
is the temperature, and A is the constant coming kom
the Saha equation A = 2(2vrm k~/h ) ~ . By solving

where T~q and TD2 are temperatures at which dissoci-
ation starts and ends (taken as 5 x 10s K and 10s K),
respectively. The relaxation time for dissociation for con-
ditions such as ours (high temperature and density) is of
the order of 10 i2 s [22], which is fairly short compared to
the time the bubble spends close to the minimum radius.
That means that there is enough time for equilibrium to
be established. Finally, the net result of dissociation is
that the number of particles per volume increases &om
N to [1 + a(T)]N and there is a mechanical energy loss
mechanism, which is to be included in our gas dynamics
equations.

Inclusion of ionization into the gas dynamics equation
is more complicated. Ionization in air starts at temper-
atures of about 10 K, but already at temperatures of
few times this value there is a considerable number of
double and triply ionized atoms. The ionization process
at equilibrium is governed by the Saha equation, which
becomes complicated to use if there is multiple ionization
taking place. To simplify things, we employ a continuous
approximation that gives the average degree of ionization
m (the number of electrons per initial atom or molecule).
Namely, the Saha equation gives a system of recurrence
relations for the number of ions with degree of ionization
m. By replacing finite difFerences in the Saha equation
by difFerentials and using conservation of the number of
particles and of the total charge, the following transcen-
dental equation is obtained:

APPENDIX D: THERMAL APPROACH

Inclusion of radiation losses involves the coupling of
the radiative transfer equation

1 BI" + A . V'I„=K'„(I„p—I„)c Bt (D1)

with the gas dynamics equations. In Eq. (Dl) I„
is the radiative intensity of the body, I

„

is the
equilibrium Planck distribution given by I„„

hv
2h/c v (e "~~ —1), and K'„ is the attenuation coef-
ficient. All these quantities depend on the &equency v.
Here c is the speed of light and T is the temperature.
Equation (Dl) is based on the principle of detailed bal-
ance and is written in a form applicable for spherically
symmetric problems. The unit vector 0 specifies the di-
rection of photon propagation. In order to simplify the
space integration, we assume the radiation propagates
in the rad. ial direction. The full treatment of the radia-
tive transfer equation is a complicated problem in itself.
Since other quantities entering Eq. (Dl) (for example,
the attenuation coefficient) are not known precisely, our
approximate treatment of Eq. (Dl) is satisfactory. More
exact treatments of radiative transfer for the conditions
common in astrophysics can be found in [26]. It should be
noted that Eq. (Dl) is not limited to the case where the
size of the system is large compared to the wavelength of
photon. Equation (Dl) is a statement of local conserva-
tion of energy for the electromagnetic part of the energy.
The left-hand. side is essentially Poynting's theorem and
the right-hand side includes energy sources and sinks. At
thermal equilibrium I„„=I„and the sources cancel the
sinks. Thus the right-hand side describes phenomenolog-
ically how absorption and emission relate to other at low
radiation intensities. It is an approximation to use for v„
the photon absorption coefEcient. However, in comput-
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ing r &om first principles it is the local electric field E(t)
that determines the loss processes and this Geld exists at
all length scales. To the extent that the local field equals
the radiation field, v'„canbe estimated as being equal to
the photon absorption coefBcient. I'urther simplification
is found by assuming equilibrium between the radiation
and matter. It can easily be seen from Eq. (Dl) that the
time tz, required for the equilibrium to be established, is
of the order of 1/(cK'„).

The value of the attenuation coeKcient is sufBciently
high to make tz short compared to the time bubble
spends close to the minimum. [For T in the range of 105—
10 K and &equencies near the maximum of the Planck
spectrum of 10i Hz, K'„is typically 105 —10s cm i (see
Table I). Thus t„is on the order of 10 i s, which is
much shorter than the time the bubble spends close to the
minimum radius. ] This occurs for &equencies at which
most of the energy is emitted. This efFectively says that
Eq. (Dl) can be employed without the time derivative
term. Solving this simplified equation (Dl) and calculat-
ing the energy flux S„(r,t) through a spherical surface of
radius r &om the radiative intensity, the energy Aux per
unit area is given by S„(r,t) = f I„(r",0, t)O dQ. Using
the condition of thermodynamic equilibrium and spheri-
cal symmetry of our problem, the radial flux S„(r,t) was
calculated [26]. Finally, we obtain the following result for
the energy loss per unit mass during the time Lt in the
shell of width Dr:

(E1)

This is what appears in Eqs. (Dl) and (D2). The calcu-
lation of the absorption coefBcient itself is extremely in-
volved and requires a detailed knowledge of the structure
of gas. The best one can hope for is to get good approxi-
mate results for this quantity. The result, which includes
bound-&ee and &ee-&ee transitions in the hydrogenlike
approximation for atoms (Kramers-Unsold formula) used
for the conditions of multiple ionization, is [22]

Kv= &vm ) (E2)

aN (m+ 1)

section for absorption. Only at low densities and high
temperatures does scattering become important. Under
these conditions full ionization takes place, so the bound-
&ee transitions are absent and the &ee-&ee transitions
are small. The latter are proportional to the square of
the gas density. The absorption coefficient rc„(weare
going to drop the subscript a in what follows) should be
corrected for induced emission and leads to the following
expression for the efFective absorption coeKcient:

A(r, t) = [S„(r,t) —S„(r—Ar, t)]dv, (D2)
Lt

7D 7 0 3~3 hck~~
' k~T ' k~T (E4)

where m(Ar) is the mass in the shell and r is the distance
&om the bubble center.

The properties of matter enter Eqs. (Dl) and (D2)
through the attenuation coefBcient v'„. This quantity
involves all processes that are responsible for absorption
or emission of radiation. The model for the attenuation
coeKcient is given in the following appendix.

APPENDIX E: CALCULATION OF THE
ABSORPTION COEFFICIENT

Electronic transitions that are connected with emission
or absorption of light can be divided into three types:
&ee-&ee transitions (bremsstrahlung emission and ab-
sorption), bound-free transitions (photoelectric absorp-
tion), and bound-bound (discrete) transitions. From an
energy point of view, continuous transitions (&ee-&ee or
bound-&ee) are of primary interest. At the tempera-
tures that are of interest to us (5 x 10 K or more) it
can be assumed that air molecules are mostly dissociated
and atoxns are multiply ionized. Thus, in what follows
we are going to limit our treatment to these conditions
and neglect additional complications (such as molecular
transitions). The attenuation coefficient e, in principle,
consists of an absorption part K,„anda scattering part
v„,. Scattering (mainly photon scattering &om electrons,
known as Thomson scattering) is usually important only
in a very rarefied gas. The reason for this is that the
cross section for scattering is much smaller than the cross

and the &equency dependence of function F (x) is given
by

(E5)

where N is the number of ions per unit volume with
charge m and I is the ionization potential for removing
m —1 electrons. The m sum can be omitted by going
to the continuum limit, as discussed before. The contri-
butions of bound-&ee (photoelectric effect) and free-&ee
(bremsstrahlung absorption) transitions to the total ab-
sorption coefficient are in the ratio (e —1)/1. Thus,
for the low-energy photons (x « 1), the main contribu-
tion comes &om &ee-&ee transitions, and for the high-
energy photons (x )) 1), the main contribution comes
&om bound-free transitions. In our problem, in which
there is a wide range of &equencies and temperatures,
both kinds of transitions are going to be important in
the absorption process.

APPENDIX F: BREMSSTRAHLUNG MODEL

The radiation cross section dy/der for the
bremsstrahlung can be obtained using the Born ap-
proximation (Bethe-Heitler formula; see, for exam-
ple, [27]). The result for the radiation cross section for
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bremsstrahlung radiation emitted during "collision" of
an electron and singly ionized ion in the nonrelativis-
tic approximation [27] (without correction for the rest of
plasma) is

where x—:E/(Ru).
The next step is to include corrections to individual

scattering events that lead to radiation because of the
presence of the rest of the plasma. These corrections
can be included by noting that (in the dipole approxima-
tion) the electric dipole p(u), in a cavity with dielectric
constant e(~), emits radiation as it if had an effective
dipole moment p(u) = 3/[2+ e(u)] P(u). (This result is
independent of the location or orientation of the dipole. )
Here e(u) is the plasma dielectric constant given by

In the Born approximation the factor A' is equal to
one. In Eq. (Fl) E, v, and m, are the electron energy,
velocity, and mass, respectively. The 0 function enters
in because the electron energy has to be larger than the
energy of the emitted photon. The result for the energy
radiated per unit time per unit &equency per unit volume
is

dE dy
d~ dV dk des

(F2)

where n, and n; „arethe concentrations of electrons and
ioiis, respectively, and (v dy/d~) represents the thermal
average of the product of the electron velocity v and the
radiation cross section. It is assumed that the electron
gas and ions are at the same temperature (the relaxation
time is fairly short, as seen before) and that the velocity
of the electrons satisfies the Maxwell distribution (the
relaxation time for establishing a Maxwell distribution is
short compared to the time scale that is of interest to
us). The result for this thermal average is given by

2(d
e((u) = 1— (F6)

dE
dt dV

64vr e'c ( e' ) (Pm, &

3 m. (m.c') ( 2m )
(d&

X —Aenion+(P~p& ~p&) (F7)

where e and m are the electron charge and mass, re-
spectively, and P = 1/(kgyT). The function E is given
by

where ~„is the plasma &equency and w is the electron
collision time. This collision time is assumed to result
&om Coulomb scattering of electrons and is given by
1/r = n, vcr', where n, is the electron density, v is the
electron velocity, and o~ is the Coulomb cross section. In
this approximation it is assumed that the cavity has well
defined walls, i.e. , that the electron density falls rapidly
over a short distance. Finally, after inclusion of above
mentioned correction, one gets the following result for
the emitted energy per unit volume per unit time:

where P = 1/(k~T) is Boltzmann factor and the integral
I is given by

1
F(PRup, (upr) = — der

Q)p p

OO e—Ph~x 3
x dx

gx(x 1) 2 + e(w)
. (FS)

E+ E —~
I(P~) = e ~ ln dE.

(F4)

—P h

I(P, (u) = — dx,
x(x —1)

(F5)

By partial integration, this integral can be written in the
form

The function E was calculated numerically and, finally,
the energy loss given by Eq. (F7) was included in the loss
term on the right-hand side of Eq. (5). The calculations
were carried through by introducing a cutoff in order to
define the size of the plasma region around the bubble
center where bremsstrahlung takes place. This cutoff was
defined in terms of the critical degree of ionization m .
The plasma region was de6ned as one where the degree
of ionization m is larger than m, . The results for the
energy loss are not very sensitive to the choice of m,
which was taken to be 1.0 in the actual calculations.
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