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DifFusion in a gaseous dilute solution under heat and momentum transport
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A diffusion problem in a gaseous dilute solution in a steady state with both temperature and
velocity gradients is studied. The results are obtained from the Gross-Krook model [Phys. Rev.
102, 593 (1956)] of the Boltzmann equation for a binary mixture. A perturbation expansion around
a nonequilibrium state with both arbitrary velocity and temperature gradients is applied to get the
diffusion tensor of the solute particles. This tensor is given in terms of the shear rate, the mass
ratio, and the force constant ratio. In addition, the velocity distribution function corresponding to
the tracer species is explicitly written.

PACS number(s): 51.10.+y, 05.20.Dd, 05.60.+w

I. INTRODUCTION

The understanding of diffusion processes taking place
in fluid mixtures far &om equilibrium is still an open
problem. The general description of these systems is
much more complicated than that of a single gas since the
transport properties are now functions of the mass ratios,
the molar &actions, and the size ratios. This complex-
ity leads to consider tractable examples to gain insight
into the general behavior of the mass transport under
arbitrary nonequilibrium conditions.

In the past few years a great effort has been devoted
to the study of diffusion problems in fluids subjected to
strong shear flows. In the context of dense gases, gen-
eralized Green-Kubo relations for self-difFusion [1] and
mutual diffusion tensors [2] under shear How have been
derived. Similar studies have been carried out for dilute
binary mixtures in the case of mechanically equivalent
particles [3] as well as in the case of unequal masses when
one of the components is present in tracer concentration
[4]. All these results refer to situations in which a weak
concentration gradient coexists with an arbitrarily large
linear velocity profile, the temperature being uniform.

The aim of this paper is to analyze a diffusion prob-
lem in a low-density binary mixture under steady planar
Couette flow. The physical situation corresponds to a
mixture with a nonuniform molar &action enclosed be-
tween two parallel plates in relative motion and. at differ-
ent temperatures. Our goal is to describe the influence of
both velocity and temperature gradients on the diffusion
in the system. Since the analysis of the general prob-
lem seems to be unapproachable, we will consider again
a mixture with a solute molar &action much smaller than
1 (tracer limit). Consequently, the state of the solvent
is not significantly modified by collisions with the solute
particles and, in addition, one can neglect the effect on
the state of the solute of collisions among the solute par-
ticles themselves.

Unfortunately, the program outlined above cannot be
carried out analytically using the Boltzmann equation
[5], since no explicit solution for the steady Couette How

is known, even for the single gas. Therefore, one must

resort to numerical solutions or to the use of simplified
kinetic models. Here we will follow the second approach
by considering the Gross-Krook (GK) kinetic model [6]
for binary mixtures. This model is constructed in the
same spirit as the Bhatnagar-Gross-Krook (BGK) model
of a single gas [7], for which an exact solution has been
found for the steady Couette flow [8,9].

Since the state of the solvent component is well charac-
terized, we shall solve the kinetic equation corresponding
to the solute component by performing a perturbation
expansion around a nonequilibrium state with arbitrary
values for the shear rate and the thermal gradient. To
first order in the gradient of molar &action, we get ex-
plicit expressions for the relevant transport properties
associated with the solute particles, namely, the mutual
diffusion tensor and the partial pressure. Both quantities
are nonlinear functions of the shear rate and also of the
ratios of mass and force constant. These expressions ex-
tend previous results obtained in the case of mechanically
identical particles (i.e., equal masses and force constants)
[10].

The plan of the paper is as follows. The physical
problem is introduced in Sec. II. A brief summary of
relevant results concerning the steady Couette problem
at the level of the BGK equation is also included. In
Sec. III we obtain the main transport properties of the
solute. Further, its corresponding velocity distribution
function is explicitly written up to first order in the ex-
pansion. Finally, the results are summarized and dis-
cussed in Sec. IV.

II. DESCRIPTION OF THE PROBLEM

Let us consider a dilute binary mixture. Let f, (r, v; t)
be the velocity distribution function of species i (i = 1, 2).
The local number density and mean velocity of species i
are defined, respectively, as

n; = f dv f, ,
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1
u; = — dvvf; .

ni
(2)

We also define a local temperature T; for each species
through

2
' '

2
n;k—~T; = ' dv (v —u, ) f, ,

where k~ is the Boltzmann constant and m; is the mass
of a particle of species i.

In the case of a dilute mixture, the master equation
for f; is the Boltzmann equation [5]. However, due to
its mathematical complexity, it is a very difFicult task to
solve such an equation, especially in far &om equilibrium
situations. For this reason several kinetic models have
been proposed. Here we consider the well-known GK
model [6], in which the Boltzmann collision operators
J;~ [f,, f~] are replaced by relaxation terms of the form

p2 = n2k~T2 ——const, (1o)

vent, say, 2, is not disturbed by collisions with the tracer
species, so that the velocity distribution function f2 ver-
ifies a closed equation (the BGK equation). Further, the
concentration of the solute particles is so small that their
mutual interactions can be neglected versus the solute-
solvent collisions.

Under the above conditions, we assume that the sol-
vent component is in steady planar Couette fIow, namely,
it is enclosed between two parallel plates (normal to the
y axis) in relative motion (along the x axis) and main-
tained at different temperatures. In this state, an exact
solution to the BGK model has been found [8]. This solu-
tion is characterized by a uniform pressure p2, and linear
velocity and parabolic temperature profiles with respect
to a scaled space variable, i.e.,

JGK v (f f )

where v;j is an effective collision frequency and

(4)
1 0—u2 ——a = const,

v22(y) By

exp (v —u;, )' . (5)2k' T,j

X, X Ji, —Jj
in the special case of Maxwell molecules [i.e. , particles
interacting via a potential V~ (r) = r,~r 4]. Under these
conditions one obtains that

m U +mjuj
uij =

m;+ mj

T~ =T+2 ' '
2 (T~ —T)+ (u; —u)m +m~ 2 * 6k~

The parameters u;j and T,j are determined. by imposing
the conditions

1 t9
T2 ——

v22(y) By

2m2
p(o, ) = const .

kg
(12)

The dimensionless parameter p is a nonlinear function of
the reduced shear rate a through the implicit equation

2F2(&) + 3Fih')
Fi(~)

where F, (p) = [(d/dp)p]'Fo(p) and

P2 ——m2 dv v —u2 v —u2

OO

Fo(p) = — dttexp( —t /2)KO(2p ' t'~ ), (14)
Y 0

K0 being the zeroth-order modified Bessel function.
Taking into account the profiles (10)—(12), the rele-

vant fIuxes associated with the solvent particles can be
obtained. For instance, the partial pressure tensor

and one can identify the effective collision frequency v;j
by

and the partial heat fIux

q2 — dv (v —u2) (v —u2) f2
2

(16)

vj = Anj
'+ jKij

mimj
(9) are given by [8,10]

where A = 4m x 0.422.
We describe now the problem we are interested in. We

consider a dilute binary mixture in which the masses of
both species are arbitrary. Since the general description
of diffusion in arbitrary nonequilibrium conditions is a
complex problem, we will choose a case that shares the
simplicity of the single gas problem but yet introduces
the mass ratio as a new ingredient. This case corresponds
to a gaseous dilute solution, in which the concentration
of one of the components (the solute) is much smaller
than that of the other component (the solvent). In this
limit (tracer limit), one expects that the state of the sol-

2,yy =»( — ~[Fi(~) + F2(~)l)

P2 0F,(&) u. ..
&22

P2k~ a'—0(~)
2m2V22 P 0g

(18)

(2o)

(21)
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In addition, the velocity distribution function f2 can be
obtained. Its explicit form can be found in Ref. [9].

Since the state of the solvent component is well known,
our goal is now to compute the main transport properties
of the solute component (tracer particles) when diffusion
takes place. This will be done in the next section.

III. TRACER DIFFUSION UNDER HEAT
AND MOMENTUM TRANSPORT

Under the assumptions established in the tracer limit,
the steady kinetic equation for the velocity distribution
function fi becoxnes

above expansions into Eq. (22), one gets a hierarchy of
equations for the successive functions fi . Now we are(k)

ready to examine the first two approximations.

A. Zeroth-order approximation

This approximation is concerned with a situation
where no mutual diffusion appears in the system. This
reference state has been recently analyzed by the present
authors [12] and now we offer a brief summary of the
most important results. In the absence of diffusion, i.e.,

xq ——const and uz ——u2, the state of the solute is char-(o)

acterized by the profiles
v. &fi = —»2(fi —fi2),

where, according to Eq. (9),

) i/2
Vy2 = (d V22

(22)

(23)

py2 = 2~BTg2 = const,(o) (o)

1 B (p)—u~2 = a = const,
V~2 By

(27)

(28)

cu—:(vi2/K22) / and p = m2/mi being the force con-
stant ratio and the mass ratio, respectively [ll]. We are
interested in analyzing the effect of the steady Couette
Qow on the diffusion of solute particles in terms of both
velocity and temperature gradients and the parameters of
the mixture. To this end we shall solve Eq. (22) by follow-
ing an approach already used in our previous works [4,10].
Assuming that the molar fraction xi ——ni/n2 is only
slightly nonuniform, we perform an expansion around a
nonequilibrium state (with arbitrarily large velocity and
temperature gradients) by taking V'xi as the perturba-
tion parameter. As a consequence, the transport coefE-
cients obtained &om this method will be nonlinear func-
tions of the shear rate and the thermal gradient. Since
we are interested in deriving an explicit expression for
the tracer diffusion tensor, our calculations will go up to
the first order in V'xi. We assume that fi can be written
in the form

1 B (p)T2 ——
vy2 By

2m1
p = const .

kB
(29)

Here, ui2 ——ui ——u2 and Ti2 /T2 ——y+2M(1 —y) with
M = p/(1+ p, )2 and y = Ti /T2. The ratio y between
the temperatures of the solute and the solvent is the cru-
cial quantity at this stage of description. Equations (28)
and (29) imply that

(so)

2p g+ 2M(l —y)
1+p (u4

The self-consistency of the solution leads to the following
implicit equation for p:

fi = fi '+O(&"+'&i) (24) 2+.(7)+13—=
l +i(~) = = . (»)

3 M(1- y)
py+2M 1 —y

lli2 = lli2 + O(V Xi)(k) k+1

T12 ——Ti2 + O(V xl) ~

(k) k+X (26)

where the approximations u~2 and T~2 define the cor-(k) (k)

responding reference function fi~zl. By substituting the
I

where the approximation fi contains the contributions
up to order k in the gradient of molar &action. In a
similar way the fields uq2 and Tq2 must be expanded as

The solution of this equation gives y as a function of
a, p, and u. In general, y varies monotonically from 1
(limit of zero shear rate) to 1/p (large shear rates). From
the knowledge of this quantity, the partial shear viscosity
and thermal conductivity can be computed [12].

In addition, an explicit expression for the solute dis-
tribution function has been derived. As a matter of
fact, this function represents the reference state around
which we perform our expansion. It can be written as

fi = ni(mi/27rA~T2) 4'(g), where

1+ 3/2 tt
[~ + 2M(1 —y)] / dt[2t —(1 —ct)t ]

el(wl

1/2

, /'1+ pb 1 + ct

2p, ) 1 + a e(&

2

1+m p e)
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Here (tp, ti) = (0, 1) if („)0 and (tp, ti) = [1,2/(1 —n)]
if („(0. Besides, I~—:(mi/2kB T2) / (v —u2),

1 —
2

v22 ( m2 ) T2 By

is the reduced thermal gradient, and

Notice that when the operator [1 + (v„/v12)(B/By)]
acts on the function f12 only terms of first order in V'xi(l)

need to be retained. The solution (42) is still formal as

f12 depends on fi through its first nontrivial inoments(l) (l)

jl( and pz . The calculation of these moments is quite
tedious and is made in the Appendix. The result is

(e2 + 8p) 1/2 (35)
.(1) 1+0, p2 D ( )

P ml Vl2
(43)

B. First-order approximation

Let us assume now that we disturb the above state by
introducing a weak molar fraction gradient Vxl. We are
interested in obtaining the diffusion tensor when only
terms up to first order in Vxl are retained. In this
approximation, and according to Eq. (22), the balance
equation for the concentration of the solute component
implies that u2 ~ V'zl ——0. Consequently, we will take the
concentration gradient parallel to both temperature and
velocity gradients, i.e. , V'xi = (Bxi/By)y. Under this

geometry, the kinetic equation for fi reads

fi = —»2(fi —f12 )
(l) (l) (l)

|9g

where fi(2) is given by

(36)

ml 1,(l)

nlk~rl2 + ~(p) i J

& m, V' 3) &T(,')

i2k T,'," 2) iT(,')

1+(l)

f (P)

J(" = dv V (38)

and the reference function

Here V = v —u2 and we have introduced the flux of
tracer particles jl

(p) 5 (1+p) (1+2p) p2kB BT2 Bxi
pl pl p2 mi v2, By By

20a
(44)

The explicit expressions of the reduced tracer diffusion
tensor D and the function 0 are given in the Appendix.
These expressions extend previous results derived in the
particular case of mechanically equivalent particles (i.e.,
u = 1, p = 1) [13]. Equation (43) can be seen as a gen-
eralization of the usual Fick's law (valid in the absence
of both velocity and temperature gradients). It describes
the mass transport of solute particles when the solvent is
subject to arbitrarily large velocity and temperature gra-
dients. Due to the anisotropy induced by the shear flow,
a diffusion tensor rather than a scalar is identified. Since
no concentration gradient exists along the x and z direc-
tions, the relevant elements in this problem are Dyy and
D». These elements are given in terms of the shear rate,
the mass ratio, and the force constants ratio, but they do
not explicitly depend on the thermal gradient. The fact
that the mass flux does not depend on the thermal gra-
dient (which implies the absence of thermal diffusion) is
probably due to the particular Maxwell interaction since
a similar property also appears in the linear regime [5].
For a = 0, D;y ——b;I„so that one recovers the familiar
mutual diffusion coefFicient for the tracer species.

In Figs. 1 and 2 we show the shear-rate dependence
of Dyy and D&y for ~ = 1 and three values of the
mass ratio. The diagonal element Dyy decreases as the

()
12 1 (p)(2~kBT12

) 3/2
m, v' i

2kBT12 ) 1.0

The ratio T12 /T12 is related to the partial pressure of(l) (o) .

the tracer species through the relation
0.8

(T(1) (1) (P)
12 1 (1 2M) Pl Pl
(p) (o)(T P12

(40)

where

(k) ml
d V2f (k)p' 3

(41) 0 0 I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

0.0 0.2 0.4- 0.6 0.8 1.0

The formal solution of Eq. (36) is

—1

f =~1+ "
i fvi2By j (42)

2a

FIG. 1. Shear-rate dependence of the reduced element D»
for cu = 1 and three values of the mass ratio: p = 1 (—),
)II, = 10 (———), and p = 0.1 (- - -).
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FIG. 2. Same as in Fig. 1, but for —D ~. FIG. 3. Same as in Fig. 1, but for O.

shear rate increases whatever the mass ratio considered
is. Consequently, the mass transport along the y direc-
tion is inhibited by the shear How. For finite values of the
shear rate, this inhibition becomes more noticeable when
the mass ratio is difI'erent &om 1 than in the particular
case of identical particles. The ofI'-diagonal element D~„
measures cross efI'ects induced by the shear fiow in the
mass transport of tracer particles. We see that this coef-
ficient is always negative and its absolute value increases
as the mass of the tracer particles increases. In partic-
ular, for light tracer particles, this value is practically
zero. In addition, we find that there exists a small region
of shear rates for which —D „increases with a, while the
opposite occurs for larger shear rates. This decrease is
not completely monotonic in the case of small mass ra-
tios since there is a region of shear rates for which —D „
increases slightly again with a.

Equation (44) indicates that the deviation of the par-

tial pressure of the solute component &om its equilibrium
value is at least of second order in the gradients (Burnett
order) since it is proportional to (BTz/By) (BTi/By). The
function 0 measures the combined efFect of the shear rate
and the mass ratio on the partial pressure. It is again a
nonlinear function of both parameters. In ig. 3 we have
plotted 0 for the same cases as in Figs. 1 and 2. Ac-
cording to the behavior of 0 for small shear rates (see
the Appendix), we find that this function monotonically
decreases as the shear rate increases i p & 0.468. Thus
for p = 0.1, there is a region in which 0 increases with
a. We observe again that 0 tends quickly to zero in the
case of light tracer particles.

The knowledge of the first moments of the velocity
distribution function of the solute allows one to explicitly
write it. Following mathematical steps identical to those
done in Appendix C of Ref. [10], it is straightforward to
prove that

i/2
(i) (p)fi —fi = —II

l j2 ~
ae( B, +

) p(( D, + 3) (y17(y

(B 111xi) (y17(y +
(p) (D y( + Dyy(y + GD y(y17(y)

P 12'

5 (1+ p, ) (1+2@) T2 p' v2z+—(1 —2M)
4 v,6 p T12

(45)

where B,:—(1/vi2)B/By and we have introduced the op-
erators

0
Z

(46)

Equation (45) extends the one derived in the self-difFusion

0prablem [10] since it applies to both arbitrary mass ratio
1and force constants ratio. The function fi is expressed

in terms of a complicated operator acting on the reference
distribution function fi . It represents a generalization0)

of the familiar Navier-Stokes distribution function corre-
sponding to the mutual diffusion problem [5].
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IV. SUMMARY AND DISCUSSION
A mutual diffusion problem in a gaseous dilute solu-

t on far &om equilibrium has been analyzed. The so-
lution is assumed to be so dilute that the state of the
solvent is not disturbed by the presence of the solute
and the state of the solute is only affected by cross colli-
sions among particles of the solvent and the solute. This
situation is usually referred to as the tracer limit. Un-
der these conditions, and for a low-density binary mix-
ture, the solvent distribution f2 verifies a closed Boltz-
mann equation and the solute distribution fq obeys a
Boltzmann-Lorentz equation. The physical situation we
have addressed corresponds to a system enclosed between
two parallel plates in relative motion and kept at different
temperatures (steady planar Couette flow). In addition,
we assume that the molar fraction xq is nonuniform, so
that tracer diffusion appears in the system.

Due to the mathematical complexity embodied in the
Boltzmann collision operators, we use the nonlinear GK
model for binary mixtures of Maxwell molecules. In this
case, the kinetic equation for f2 becomes the BGK model
of a single gas, for which an exact solution in the steady
Couette flow is known [8,9]. Consequently, our goal now
is to solve the corresponding kinetic equation for the ve-
locity distribution function fq of the solute. By assuming
that the molar &action gradient is weak, we perform an
expansion around a nonequilibrium state with arbitrary
velocity and temperature gradients. Therefore, each ap-
proximation fz will neglect terms of order higher than
k in Vxq, but will retain the full nonlinear dependence
on both the shear rate a and the thermal gradient e, as
well as on the mass ratio p and the size ratio u. Here
we have restricted ourselves to the first order in Vx~ and
an explicit expression for the mass flux of tracer parti-
cles jz has been obtained. It obeys a generalized Fick
law from which the mutual diffusion tensor D;~ is iden-
tified. This tensor happens to be a nonlinear function of
the shear rate, but it is independent of the temperature
gradient. In addition, the partial pressure of the tracer
particles has also been obtained, being linear in e and
nonlinear in a.

According to the symmetries of the problem, the trans-
port coeKcients D y and Dyy provide all the information
on the physical mechanisms involved in the mutual diffu-
sion of tracer particles under steady Couette flow. While
the diagonal element can be interpreted as a generaliza-
tion of the usual mutual diffusion coefficient (as it couples
the yth component of the mass flux with the yth compo-
nent of the concentration gradient), the off-diagonal ele-
ment takes into account the cross couplings generated by
the presence of the Couette flow. For small shear rates,
D» —1 and D „—w g2/(1+ p)[(1 + 2p)/p]a.
Prom a physical point of view, one expects that the ac-
tion of the shear does not alter the qualitative behavior

I

of the mass transport in the sense that Dyy ) 0 and
D y ( 0. Our results confirm the above predictions. At
a quantitative level, we observe that the net consequence
of the presence of the Couette flow on the mass transport
is to inhibit the diffusion of the tracer species along the y
direction. In general, this inhibition is more significant as
the mass ratio differs &om 1. With respect to the x direc-
tion, —D „ is not a monotonic function of the shear rate
and its absolute value increases as the mass of the tracer
particle increases at a given value of a. Furthermore, we
have been able to explicitly get the velocity distribution
function f~~

!. It is given in terms of a complicated opera-
tor acting on the reference distribution fz . The velocity
distribution f~

! is a linear function of the concentration
gradient but it presents a highly nonlinear dependence
on both the shear rate and the thermal gradient as well
as on the mass and size ratios.
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APPENDIX: EXPLICIT EXPRESSIONS
OF THE TRACER DIFFUSION TENSOR

AND THE PARTIAL PRESSURE
In this appendix we derive the expressions for j&

and p~ . Introducing the operator 0, = (1/vq2)0/Oy,(~)

Eq. (36) can be rewritten as

(1+use )fi = fi2
(1) (1) (A1)

k=o

Let us start with the calculation of the components of
the mass flux vector. The x component is given by

dvV~ f,.(~) (~)

= ) (—8.) jdvv„[v —a(k+1)v„]f,
k=0

-(&)

1 + ) (2k —1)!!0 "(k~T~2 /mg)"
1+@

Direct integration of this equation implies that 0,j$ y
0. Further, we assume, to be verified later, that
B,xq(T~2 /T~2 ) = 0. In order to get the moments of
f~! !, it is more convenient to consider the formal solu-
tion to Eq. (Al) given by

(o)
+2 ~12

m]

(o)
+2—~12

m1

j~ ) (2k+ 1)(2k+ 1)!!8,"(k&T~2 /mz)"
1+@) (k+ 1)(2k+ 1)!!0"+'x,(k~T, 2 /mg)"—

k=0
OO (1)) (k+ 1) (2k+ 1)!!8,"+ x,

( )
—1 (k~T, 2 /mg)

k=o
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where use has been made of Eqs. (27) and (28). Now, taking into account Eq. (29) and retaining terms up to first
order in O,x1, one gets

-(1) oo (o) oo

1+) (2k)!(2k —1)!!(—p)" + 2a ]9,xi ) (k+ 1)(2k+ 1)!(2k+1)!!(—p)1+@ m1

(ol ( (i)
j „) (2k + 1)!(2k+ 1)!!(—p)" + aB xi —1 ) (k+ 1)(2k + 2)!(2k + 1)!!(—p) . (A4)

All these summations can be expressed in terms of the functions F, (p) defined in Sec. II and whose asymptotic series
expansion is [8]

F.(q) = ) (k+1)'(2k+1)!(2k+1)!!(—q)".
k=o

Therefore, Eq. (A4) can be rewritten as

(A5)

~ (1) „(o)'* (1 —2pFi)+2 ' aFiB.xi-
1+p, m1

(o)a — .(1) p12I'P j1 y + 2 aE208 x11+p '» m1

(T(i)
12 (A6)

where, for the sake of brevity, we have called F, = F,(p).
The y component of the mass Aux can be obtained in a similar way. Following identical steps, one has that

(') )-( d )aj d~„&+i f(&)

(o)
P12
m1 ) (2k+ 1)!!8,"+'x (k T /m, )"

k=o
oo fT(i)) (k+ 1)(2k+1)!!0.'"+'x,

I =o

.(1)
+ '" ) (2k+ 1)!'29 "(k T /m )"

1+@

(kBTi2 /mi)(&1 (A7)

Now, collecting all the terms up to first order in B,x1 one obtains

(o) (1)

ji „——— g xi ) (2k + 1)!(2k+ 1)!!(—p)" + '" ) (2k)!(2k + 1)!t(—p)"
k=p 1+@

(ol ( (i!" o]. x, ", —1 ) (2k+2)!(2k~1)!!(—~)"

(o) ( ) (o) (1)
FOB,xi + '" [1 —2p(Fi + 2F2)] — FiB, xi o

—1 (A8)

Since 0,ji „——0, Eqs. (A6) and (A8) imply that 02xi(Ti2 /Ti~ ) = 0 and 0,ji = 0.
I et us consider now the partial pressure. It is defined as

p, = —m, ) dvV (—a.) v„fi2(1) k k (1)

k=o

= —m~) (
—8)"f dvv„"]V —2ix]k+ l)V u„+ a ]2+ 2)]2+1)a„]fez (A9)

where in the last step we have taken into account that B,V = —2aV~ and B,V = 2a . Now we are going to evaluate
each separate term on the right-hand side of Eq. (A9). For that, we will follow again steps similar to those made in
the problem of mechanically equivalent particles [10]. The first term is
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-(1)
~ ~- ('"+ )"q-+ („T()/ ).+e 12
p

OO (Q) OO

) ( g )f g ~2 lkf(1) &12 ) ( + )"g2k (k T(o)/ )f
m1 „- 2 +1

(o) ~ 1) (1)) (k + 1) ( )"g2& 12 ] (k T'( )/m )"

(Q) OO

~12 )-(2k), (2k+3)-( -)~
m1 - 2k+1

„(o) OO

+ 2 (29,z1)(88T12 ) ) (2k+ 5)(2k+ 2)(2k+ 2)!(2k+ 1)!!(—P)"
1 k=p

'" B,T12 ) (2k+. 5)(2k+ 2)!(2k+ 1)!!(—P)"
2m1 1+p

T(1) ) „(o) k+112 1 12 ) (2k)!(2k + 3)!!( ~)&

+a ~ » —1 ""O.T(;) ) (2k+5)(2k+ 4)(k+1)

x(2k+ 2)!(2k+ 1)!!(—p)"

where use has been made of the identity

a'"+'T(o)"" = (k+1)(2k+1)(a.T,(,'))a"T,(,') .

The second term is

OO .(1) OO

) (k+ 1)(—8 ) J dvV v +
f~v ———2 ' ) (k+1)(2k+1)!!(8)v+~( kv~T!v/m~) +

k=p ~ k=p

(9,T1(2 ) (k + 1)(2k + 2)!(2k + 1)!!(—)" .1+pm1

The third term is

(A1O)

(A11)

(A12)

(k~7 /m )
(o)
12

OO (P) OO

) (k d-2)(k+ 1)(—8.)"f dvv„+ f~v = '~ ) (2k+ 2)(2k+ 1)(2k+ 1)!!8,"vg(kvT)v /~, )mlk=p k=p
(1) OO

) (2k+ 3)(2k + 2)(2k + 3)!!(9,"+ (k~T12 /m1)"+
1+@

(P) OO
)/ T(1)

+2 ) (k+ 1) (2k+ 1)(2k+ 1)!!(9,"x1
(T(o)

(Q) OO

= x1 ) (2k + 2)!(2k + 1)!!(—7)"
m] k=p

„(o) OO

((9,x1)((9,T12 ) ) (k + 1)(2k + 4)!(2k + 3)!!(—P)"

.(1) OO'" B.T1(2) ) (k+ l)(2k+ 3)!(2k+ 3)!!(—P)"
m 1+@

(o) t/ T(1)
12 x1 2 —1 ) (k + 1)(2k + 2)!(2k + 1)!!(—P)"

x1 ' —1 !9 T,2 ) (k+1)(k+2)

x(2k + 4)!(2k+ 3)!!(—p)" . (A13)
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By substituting Eqs. (A10), (A12), and (A13) into Eq. (A9) and taking into account the relation (40) between p~~
l

and T&2, one arnves at(~)

(T,",
1 —2M (T~P& )

(~)
(o) k& 1 (o) .(~)(B,T~3 ) (O,xq)Cq —2 B,T~& j ~ „Cz + 2xq

(T„

(A14)

where the coeKcients C; are given by

1C]: [2p(5F~ —4Fz ) —Fz (Fp —1)] — (Fz —Fz)P
6F

(A15)

C2 — —(3F1 + 2F2) — (Fp Fl)p6' (A16)

C3 = —(Fo+ 5) — —[6FpF~ —(Fi + 4F3)] —=p12 6F F1
(A17)

C4 —— [SpFz(3' + 2Fz) + Fp(Fg + Fz) —F~ —Fz] — (Fp + 2Fgp + 16Fzp —1)p,
12iF1 8p2Fg

(A18)

with

2 F2 — — F2
Cs ———=p(2Fz + 3Fj) —2=P,3F F1

M(1 —~)
g+ 2M(l —y)

(A19)

(A20)

Notice that in deriving Eq. (A14) use has been made of Eq. (32). Equations (A6), (AS), and (A14) constitute a set
of three coupled equations. By applying the operator 8, on both sides of Eq. (A14), one gets

g, xg
( )

—1 I
= —2pCyB, xy +

( )

4+C4 8 &1 (O)(Tzz

4 — (~) 12
(~)

PC2j~ „+2C38, xg
( )+~

l e ()m, 4
1 5

p~pl 1+p a (A21)

From Eqs. (A6), (AS) and (A21), one can obtain the
explicit expression of the mass Aux. It may be written
in the form of a generalized Fick law Eq. (43), where the
relevant elements of the tracer difFusion tensor are given
by

Ng ——SCspA(FpFz —Fi )
—(2F&p + p) [2CqFqpA + Fp(2C3A 4C4pA + 1)],

(A24)

Dy„——[y + 2M (1 —y)]p (A22)

Nz ——(2Fgp + p, ) [4CzFgpA —(2Fj p + 4Fzp + p)
x (2C3A 4C4pA + 1)]
+4CspA[FpFz + 2Fz(2F&p + 4Fzp + p)], (A25)

where

D y
——[y+ 2M(1 —y)]p 'a,

2 N3 ——SCzpA(FpFz E~ ) + 2(2F&p + 4F—zp + p)
x [2C&F&pA + Fz(2C3A —4C4pA + 1)]
+2CgpAFpFg + Fp (2C3A —4C4pA + 1) . (A26)
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Here A—:2M —1 = —(1+p2)/(1+ p)2. In the limit of
small shear rates, one has that

with

2 5p + 18@+11
'JJw

5 4(1 + (A27)
N4 ——(2Egp + p) [2C2Eo + Cz(2E1'7+ 4E2++ p)]

+2Cs[Eo + 2'(2Egp+ 4Ez'y + p)] . (A30)

1 ( 2 i 1+2p
(I+p) p

(A28)

From the knowledge of the mass Aux, the partial pres-
sure pz can be obtained. It can be written in the form
of Eq. (44) where 0 is given by

2

n = —-[~+2M(1 —~)]', ', (A29)
5 1+p21+2p N2

The first terms in the power expansion of 0 are

4 200@ + 1562@ + 553@ —505@—550 1 —— a2.
75 (u4p(1+ p,)(1+2p)

(A31)

Consequently, 0 monotonically decreases as the shear
rate increases if p & 0.468.
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