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For a short-correlated velocity field, simultaneous correlation functions of a passive scalar sat-
isfy closed equations. We analyze the equation for the four-point function. To describe a solution
completely, one has to solve the matching problems at the scale of the source and at the diffusion
scale. We solve both the matching problems and thus find the dependence of the four-point correla-
tion function on the difFusion and pumping scale for large space dimensionality d. It is shown that
anomalous scaling appears in the first order of 1/d perturbation theory. Anomalous dimensions are
found analytically both for the scalar field and for its derivatives, in particular, for the dissipation
field.
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INTRODUCTION

It is already commonplace to talk about an anomalous
scaling of the high-order correlation functions in devel-
oped turbulence. By this, the deviation of the scaling
exponents &om their "naive" values taken &om dimen-
sional estimate or perturbation theory is usually meant.
Another meaning ascribed to that term is related to the
cases where the exponent of the 2nth correlation function
is not n times the exponent of the second one so that the
degree of non-Gaussianity depends on scale. The experi-
mental evidence in favor of anomalous scaling of a scalar
field advected by turbulence has existed for some time
[1—4], while attempts at a consistent derivation (start-
ing &om the equations of fluid inechanics) of correlation
functions of order higher than 2 started only recently
[5—10]. The problem of a passive scalar advection, be-
ing of physical importance by itself, may serve also as
a starting point in studying anomalous scaling in turbu-
lence [6,11]. At a first step, we found [12] the whole set
of simultaneous correlation functions for the Batchelor-
Kraichnan problem of a scalar advected by a large-scale
random velocity field [13,14]. It has been shown that,
whatever the (finite) temporal correlations of the veloc-
ity field are, all correlation functions of the scalar are
integer powers of a logarithm for all the distances in the
convective interval of scales and no anomalous scaling
thus appears at the leading terms. The present paper
is an account of the next step: we consider a multiscale
velocity field with power spectrum. Following Kraichnan
[15], we restrict ourselves by the simplest possible tem-
poral behavior assuming both velocity Geld and scalar
source to be white in time. That leads to a substan-
tial simplification of the analytical description, since any
simultaneous correlation function of a scalar satis6es a
closed linear differential equation of second order (see [6]
and below).

In an isotropic turbulence, an n-point correlation func-
tion depends on n(n —1)/2 distances for a dimensional-
ity of space d & n —2. For the pair correlation func-
tion, the respective ordinary difI'erential equation could
be readily solved for any distance between the points-
see [15] and (1.20) below. The solution is expressed via
the Qux of a squared scalar P2 and molecular and eddy
diffusivity, the scaling exponent (2 in the inertial inter-
val being fixed by the condition of fIux constancy. If the
scaling exponent of the 2nth correlation function is n(2,
that is called a normal scaling. An anomalous scaling
would mean that the true answer has additional factors
like (l/r)+, where A is anomalous dimension, r is the
distance between points, and L is some length parameter.
One may imagine three reasons for anomalous scaling ac-
cording to the three lengths that may be relevant: (i) l
is the pumping scale I so that the anomalous scaling ap-
pears due to infrared nonlocality, (ii) l is the difFusion
scale rg so that the anomalous scaling appears due to ul-
traviolet nonlocality [16,11], and (iii) anomalous scaling
appears due to the existence of the high-order integrals
of motion [17] so that the length parameter appears from
the ratio of the difFerent fIuxes. The 6rst nontrivial ob-
ject that may reveal anomalous scaling is the fourth-order
correlation function. One may be interested in two-point
objects like ((Hi —02) ) or the pair correlation function
(eie2) of the dissipation field e(t, r) = r[V'0(t, r)], yet
they do not satisfy any closed equation. To And such two-
point —fourth-order objects, one should solve the complete
equation for the four-point function and then fuse some
points. Considering d ) 2, one has to deal with the
space of six variables, which makes the direct solution at
arbitrary parameters quite difFicult. Gawedski and Kupi-
ainen [10] recently developed a perturbation theory that
describes the efFect of the weak advection on the fourth-
order correlation function for a noncascade diffusionlike
regime and found the respective anomalous exponents.
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Our main target here is the description of the cascade in
the convective interval of scales. We solve the equation
for the four-point correlation function assuming the space
dimensionality d to be large. The non-Gaussian part of
the correlation function is small in parameter 1/d, which
makes it possible to develop a regular perturbation the-
ory. In the present paper, we obtain the scaling expo-
nents analytically in the first order in 1/d (assuming 1/d
to be the smallest parameter, in particular, 1/d « $2)
and show that the main contribution into the general
fourth-order correlation function has I-related anoma-
lous scaling with

4(2 —$2)
d

Note that A turns into zero when $2 -+ 2, which con-
tradicts Kraichnan's closure [6,7] and is in qualitative
agreement with the result of Gawedski and Kupiainen
[10], even though they considered a difFerent limit.

For the correlation functions between the points sep-
arated by some distances &om the convective interval
and by others &om a diffusion interval of scales, we show
that the main term does not depend on rg. We also
show that the subleading terms in the case of some dis-
tances being much smaller than others necessarily have
another anomalous exponent with respect to small dis-
tances. Such subleading terms determine, in particular,
correlations of the spatial derivatives of the scalar field,
which thus have an rg-related anomalous scaling (in addi-
tion to a general L-related scaling). Note that the results
on the r~ dependence are obtained without 1/d expan-
sion so they are exact at any dimension. For example,
the dissipation field has an rg-related anomalous scaling
with an exponent that is equal to the scaling exponent
of the eddy diffusivity so that the irreducible correlator
((eie2)) oc (I /r12) r& does not depend on the diffusion
scale rg when the distance rq~ is in the convective inter-
val. Another consequence of our results is the statement
that (e2)/(e)2 tends to infinity with the Peclet number
increasing. On the contrary, the one-point statistics of 0
(say, the flatness (84)/(82)2) is independent of the Peclet
number Pe= L/r~ at the limit of large Pe.

Besides, we find the nontrivial rg-related anoma-
lous scaling describing the traceless tensor V' OVp8-
d b p(V'8) . We also argue that high-order integrals
of motion may inQuence scaling if the pumping is non-
Gaussian and that the di8'erent kinds of L-related anoma-
lous scaling may be the case starting &om the sixth cor-
relation function.

The anomalous L-related scaling of the fourth-order
correlation function of the scalar field con&onted with
a diagrammatic analysis that shows no in&ared diver-
gences at any finite order of a Wyld diagram technique
[11]evidently means that such an anomalous scaling is a
nonperturbative phenomenon.

The structure of this paper is as follows. We formu-
late the problem and find the pair correlation function in
Sec. I. The second section is devoted to I dependence
while the third section is devoted to rg dependence of
the fourth-order correlation functions. The correlation
functions of the scalar derivatives are also considered in

the third section. Section IV describes possible general-
izations and the Conclusion summarizes the results.

I. FORMULATION OF THE PROBLEM

We consider the advection of a passive scalar field
8(t, r) by an incompressible turbulent How. The advec-
tion is governed by the following equations:

(Bq —P)8 = P,

P(t) = —u V' + K&, V' u = 0,

(1.1)

(1.2)

where both convective and difFusive terms are included
in the operator P(t); A designates Laplacian here. The
external velocity u(t, r) and the external source P(t, r)
are random functions of t and r. We regard the statis-
tics of the velocity and of the source to be independent.
Therefore all correlation functions of 0 are to be treated
as averages over both statistics. Averaging over pump-
ing will be designated by an overbar and averaging over
velocity will be designated by angular brackets.

A. Basic relations

We assume that the source P is b-function-correlated
in time and spatially correlated on a scale L. The lat-
ter means, e.g. , that the pair correlation function of the
source

p(ti, ri)4&(t2, r2) = b(ti —t2)x(r12),

as a function of the argument r12 = ~ri —r2[, decays on
the scale L. The value y(0) = P2 is the production rate of
0~. Since the pumping is Gaussian, high-order correlation
functions are determined by y(r). For example,

p(ti, ri) p(t2, r2) p(t3, r3) p(t4, r4)

x(r12) x(r34) b (tl t2) b(t3 t4)
+ y(r13)y(r24) b (ti —t3)b (t2 —t4)

+y(r14) y(r23) b (ti —t4) 8(t2 —t3). (1.4)

A formal solution of (1.1) is

(1.6)

xP(ri) . P(r„).
Since 8 and P are related linearly, the pair product of the
passive scalar field averaged over the statistics of pump-
ing is expressed via the pair correlation function of the
pumping
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t
t)(t, rg)0(t, r2) = drU, (t, r)U2(t, r)y(rg2)

t
dr T exp

~

Pq (r)
—OO T

+P, (r) dr ~&(.»). (1.7)

(u (tq, rq)u (t2, r2)) = h(tq —t2)V
V-P = V,S-P —X-P(r„), )):-P(0) = 0 .

Here the so-called eddy diffusivity is as follows:

gaP (
2(aP a P) + ( ) gaP 2—p

r~ 2 —7

(1.8)

(1 9)

where 0 ( p ( 2 is supposed and () stands for an average
over the velocity field statistics, isotropy being assumed.
The representation (1.9) is valid for the scales less than
velocity in&ared cutoff L„, which is supposed to be the
largest scale of the problem. The marginal "logarithmic"
p = 0 and "diffusive" p = 2 regimes require special care.

B. Simultaneous pair correlator

Let us calculate the simultaneous pair correlation func-
tion of the passive scalar

f(r&2) (t)(r&)()(r2)) . (1.10)

Since we assume the statistics of the velocity field to be
b-function-correlated and Gaussian, then the nth order
correlator of the velocity field [which appears in the ex-
pansion of the T exp Rom the integrand of (1.7)] can be
found explicitly by the Wick theorem which prescribes to
reduce any average to a product of pair correlation func-
tions. Those terms are summed up into a usual operator
exponent

(T exp~ [P (r) + P (r)]«
~

L;, = V ~(r;, @TV~+ (
—+ ~)(E; +, E,), (i.i2)

where r,~
= r; —r~ and A; = V', . We find from (1.7)

(f(r») = d«xp~ (t —r)l:~2 ~X(r]2).

Here and below U;, P; designate operators acting on vari-
ables r;. Time-ordered exponents on the right-hand side
of (1.7) commute with each other (because they have dif-
ferent space arguments), which allows us to rewrite in
(1.7) their product as a single T exp factor.

The next step is to average T exp in (1.7) with re-
spect to the statistics of the velocity field u. Following
Kraichnan, we consider the case of a velocity b-function-
correlated in time but multiscale in space. Velocity statis-
tics is completely determined by the pair correlation func-
tion

l:q2f (rq2) = —y(rq2), which is an ordinary second-order
differential equation

Z(~) f = —y, where 8„=8/c)r,
l"(P) ( ) 1—dg (

2—~+ 2—
w) d —lg

2 —7

(1.14a)

(1.14b)

previously derived by Kraichnan [15]. In (1.14b) the dif-
fusion scale rg was introduced,

2r.(2 —p)
D(d —1)

(1.15)

f(r) = P2 J' g(r')dr', (1.16)

g(r) 2~d 1+(r/rg)~ »—r)L (1.17)
g y+( // ~)2—

For a general p, the pair correlation function is expressed
via the conHuent hypergeometric function

f(r) =
d(d —1) sin[2vr/(2 —p)]

—4'( —( /r~), 1, 2/(2 —p))), (1.18)

see [18] p. 29 and [19] p. 27. In the Richardson-
Kolmogorov case, d = 3, p = 2/3, and one gets

f(0) —f(r) = —r ~ —rd arctan (r/rd) ~ . (1.19)

Both (1.18) and (1.19) are valid at any r & I for the
steplike pumping. At r (& L, those formulas describe
the pair correlation function for the case of an arbitrary
pumping y with the correlation scale L. One can see
that the transition &om convective to diffusive interval
is described by a universal function.

If the Peclet number Pe= I/r d is large, the pumping
and diffusion scales separate three intervals of scales with
a different scaling behavior:

r (' I~(2 W)—
~(d /)(d 1)D 4~d—I ~ —~~ d ~~ I' i

f(r) ( p 2
2~(d y)~ ~ d ~ d ~, rd (( r ( L (1.20a)

d(2 ~)
2 g(g &)(g &~D, r~ && L & r.

Those expressions fully determine the behavior of the
pair correlation function.

C. Different-time pair correlator

Equation (1.14) is integrated explicitly. The solution is
completely determined by two physical boundary condi-
tions: zero at r = oo and absence of a singularity at
r = 0. We consider the pumping correlation function
close to a step function y(r) = P2 at r ( I and zero
otherwise:

Integrating the right-hand side of (1.13) with respect to
time (l:, is a well defined integral operator) we get

The dynamical analog of (1.7) looks as follows (t2 )
tg):
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0(ti, ri)0(t2, r2)

t
= U2(t2, ti) d7 Ul (tl, 'r')U2(tl, r)g(P12)

= U2(t2, ti)0(ti, ri)0(ti, r2) . (1.21)

Since the velocity field is b-function-correlated, one may
reduce the average of the product &om the right-hand
side of (1.21) to the product of the averages

II. POUR-POINT CORRELATION FUNCTION
OF THE PASSIVE SCALAR

We begin the analysis of the fourth-order correlation
function E~~34. It will be based upon the equation
(2.5), previously derived independently by Kraichnan

I

Let us stress that if rg &( L, then Vp && K. The point is
that Vp can be estimated as Vp DL„~, where L is the
scale of the largest vortices. Since L„)L is assumed,
Vp )) K. That means that the time dependence of corre-
lation functions of the passive scalar 0 is determined by
the velocity of the largest vortices and is therefore fast.
Note that in the comoving reference kame this dynamics
is much slower [11].

[20], Sinai and Yakhot [21], and Shraiman and Siggia
[22]. It is a second-order partial differential equation in
the space of 4d variables. Isotropy allows one to dimin-
ish the number of variables to five at d = 2 and to six
at d ) 2, which is still too many to enable finding E
explicitly at all possible distances r,~ ranging &om zero
to infinity. Our aim is modest: we are looking for the
scaling exponents only. First, we shall find the overall
scaling exponent (4 which describes how I' (which is the
irreducible part of Ei234) scales if all the distances r;~
are multiplied by the same factor. This is the subject
of this section where we employ 1/d perturbation theory
assuming space dimensionality to be large. That will also
allow us to find the anomalous exponents that describe
the L dependence of the correlation function. Second, we
shall consider the case with one or two distances being
much less than other ones and find the scaling exponents
with respect to small and large distances separately. This
could be done at an arbitrary d. That will allow us to
fuse some points and to find the r~ dependence of the
cumulants of second powers of spatial derivatives. This
is the subject of the next section.

A. The equation for the simultaneous four-point
correlation function

Using the technique developed in the preceding section
we derive the equation for the simultaneous four-point
correlation function Eq234 I et us form first a four-point
object averaged over the pumping only by analogy with
(1.7),

t t t
0(t, ri)0(t, r2)0(t, rs)0(t, r4) = d7i de d&3 dw4Ui(t, Ti)U2(t, ~2)

xU3(t r3)U4(t r4)p(Ti ri)$(r2 r2)$(73 r)3(jk(74, i'4). (2.1)

Due to (1.4) the object separates onto three parts Q]2 ~ 34 + Qi3 24 + Q]4 ~ 23 where

Q;, ,tt = f f d7d~U, (tv)Ut(t, ~)Ut(t, ~)Ut(ti)y(r;, )y(,hatt),

t t T r
AT exp d7'(P, +Pz+PI, +Pj) dw T exp

l
d7'(P;+P ) l—OO T —OO T

T

+Texpl d~ (Pe+Pl)
l

x(~v)x(~~i).
T

(2.2)

The commutativity of P; and P~ at i g j has been taken
into account at (2.2).

For the b-function-correlated velocity field, one may
average the time-ordered exponents on the right-hand
side of (2.2) explicitly, first expanding them into series,
and second performing the Gaussian decomposition of
the velocity correlators in the same manner as was done
for the pair correlator of the passive scalar in (1.11). That
results in the following expressions:

(2.3)

where l:;~ was defined in (1.12) and 2 has the following
form:
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8 —= —) V ~(r;~)V'; '|7 + v) (2.4)

where V; = 8/Br; . The integration over r in (2.3) gives

(&—,,'+ &g)') X(r'~) X(ru) = f(r', )X(rI.i)+X(r;, )f(r~~),

right-hand side and of the operator 8? Of course, the
solutions with such "naive" scalings exist in all three re-
gions (we call them forced solutions Eg „).The problem
is that to match those particular solutions at pumping
and difFusion scale, it may be necessary to include into
the full solution the zero modes of the operator

where 2;~ f(r;~) = —y(r, ~) was used. Inserting the
last expressions into (2.3) and collecting all the terms
(Q;~, g~) we find for the full four-point object E]234
(8(rl)8(r2)8(rs)8(r4))

F =Ff „+Z. (2.7)

t
Fi234 — dr exp (t —r)& ) f (r,~)y(ra&),

('B~(A:&)

where the notation (ij) stands for a pair of non-
coinciding (i g j) site indices. That leads to the following
equation:

—&%234 = f (ri2)X(r34) + f (r34)X(ri2) + f(ris)X(r24)
+f(" )x(".)
+f(»4)x(rss) + f (r23)x(r14), (2 5)

with the right-hand side expressed in terms of the func-
tions f(r;~) already found: see (1.16), and (1.20). Note
that at a conQuence of the points r,. ~ r~ the right-hand
side of (2.5) tends to a constant. Using (1.14) one can
obtain an equation for the irreducible four-point correla-
tor I']$34 —((8(ri)8(r2)8(rs)8(r4))) =—E]234 f]2f34-
fisfs4 —fi4fss

~I 1234 @12;34+ @13;24+ @14;23' (2.6a)

4,~.g( = K ~(r;() —K ~(r;g) + K ~(r~I, ) —K ~(r~()

xV,,V'~, f (r,, )f (rg(), (2.6b)

where V';. = 8/Br, .
The operator 8 (2.4) is negatively defined. To prove

this we represent 8 = Kdg, f + 8, where the convective

part could be written as 2, = ( gu(r;)V; ) . Here we
designate ()„as an average over the velocity field u(r)
random in space —from the viewpoint of initial u(r, t),
the averaging is over the instant configuration. Incom-
pressibility guarantees that 8 is Hermitian and nega-
tively defined as well as Cg,'y. Therefore, 8 has a con-
tinuous nonpositive spectrum and the density of states
regular at zero. The last statement follows &om the in-
~q~~lity Il«d'f + &.II

) II«&'t'll and the absence of »n-
gularity in the density of states for Zp, y. We can thus
conclude that the equation —CI' = C is well defined for
I' and 4, which do not grow at infinity.

The operator 8 is scale invariant if all the distances
r,~ are either much larger than rd or much smaller. The
right-hand side is scale invariant if all the distances are
either larger or smaller than L. We thus could divide
our space of r;~ into three domains where the scale in-
variance of I'(r;~) is to be expected. It is natural now
to ask a simple question: what prevents us from making
the statement that the scaling exponent of the solution
is equal to the difFerence between the exponents of the

Here the zero mode Z may have a scaling difFerent Rom
that of Fg „.To avoid misunderstanding, note that since
the operator 8 is nonpositive, it cannot have a global
zero mode that satisfies boundary conditions. The parts
of the solution with an anomalous scaling may never-
theless be considered as zero modes within separate do-
mains. At r;~ (& L, for instance, one should worry about
zero modes that appear due to matching conditions at
r,~ L, as such modes are allowed to grow with r,.~.
At an oversimplified level, this is what happens when we
obtain the constant L-dependent term in the expressions
(1.20a) and (1.19b) for the pair correlation function. In a
multidimensional space, operators may have zero modes
much more complicated than a constant and, indeed, the
operator 8 does have an infinite number of zero modes.

We cannot yet find the zero modes and solve the
matching problem analytically at arbitrary d. Fortu-
nately, for d ) 2 (generally, for d ) n —2, where n
is the number of points in the correlation function) we

found the representation of 8 that allows one to repre-
sent I'(r;z) (with all distances of the same order or the
main term if some distances are smaller than others) as
a power series with respect to some numerical parame-
ter (1/d in the convective interval). The coefficients in
the series are functions of r,.~ all having the same scaling
exponents and logarithms that appear from expanding
anomalous exponents in powers of 1/d. By analyzing
those functions in the next subsection, we establish the
overall scaling properties of I'(r,z) in the convective and
difFusion intervals. The possibility to sum the logarithms
into a power function is provided by an explicit scale in-
variance of the equation that determines the zero mode
in the convective interval. The consideration of the sub-
leading terms in the case of some distances being small
in comparison with others requires a special approach,
which will be developed in Sec. III.

B. Representation of tetrahedron lengths

To establish overall scaling properties of the irreducible
fourth-order correlator I' it will be convenient for us to
use a special representation of Eqs. (2.5) and (2.6). In
an isotropic case, the four-point correlation function I' is
a function of six distances r,z between the points, d ) 2
being assumed. The case d = 2 where there are only five
independent variables deserves special consideration. In
the variables r,~

= Ir;~ I, the operator 8 is a sum of two

Parts, l'. = 80+ 81..
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Zp —— + "&
i)j

D 1 fd+1 —P 2(2r ~ r +r. —r ~ —r
4 g p i 2 i1( in 1m ij mn)

"21"sm "1n

02+-(,', + .' —,' )(.', +,'.—,'.) l~
r2 r2 —r2)+ K
ij + im mj

2rijrim Orij Brim
(2.8)

Here the summation is performed over subscripts satisfying the conditions i g j and m g i,j,n g i, j.
What is nice about that representation is that if we omit l:i from l:, then the reducible part Fi&34 ——fi2f34 +

f]3f24 + f]4 f23 of the fourth-order correlator appears to be a solution of (2.5) . It is

E~ ) = ) f(r,1)f(ri, i) = (in the convective interval)

~(2 —~)'L" (2 —~)'
+2(d 1)2(d +)2 +2(d 1)2d2

d (+ij,A:l —rijr&& ~ (Tij + rA;) ) )2 d+
(2-~)'E .'; (2-~)'L E .;

2q'(d+q)(d —1) d q (d —1) d(d —Z)
'

(2.9)

(2.10)

which is the zero approximation of (2.7). Here Z,j gi is
the zero mode of l:p. What is remarkable is that a direct
check shows Eg „to be a partial solution in the convective
interval of the full equation l:I"r „=f—(ri2)y(r34) +.
It means, particularly, that if we develop the iteration
procedure in 8p Zq, then all the terms appearing at
higher steps will enter zero modes of the full operator
8 but not the forced term found. Another remarkable
feature of the zero step is an absence among the terms
three-point zero modes of l'.p, like Z, j;A, . They will ap-
pear in the next step only.

The basic fact is that Zp oc d while Q~ oc d as d ~ oo.
Assuming 1/d to be a formal small parameter, we shall
implement the iteration procedure with respect to Zq,

(2.ii)
This procedure leads to a representation of I' as a series
over the powers of 1/d:

easier to analyze than, e.g. , (2.6a). The point is that
the operator Zp is a sum of the six suboperators l'. ~"~

from (1.14b), each depending on the single variable r;j
only. This particular form of Zp enables us to analyze
the zero modes and establish the necessary properties of
its resolvent The .solution of Eq. (2.11) is expressed via
the corresponding integral kernel as follows:

r~"~~~q = f ss f ~.', isis;. .'}c,r,~ '~i,.-', )-, (s.is)-
i)j

where r designates the set of six variables rij and the
integration is performed over time t and six separations
r,'.. The resolvent 'R can be represented as a product,

(2.14)

is ) (
l"—ll" )n~(0)

n, =l
(2.12) where the function 'R~") (t; r, r') satisfies the equation

which is actually the series for the non-Gaussian part of
the zero mode.

One may note that the four-point correlation function
is defined not in the whole six.-dimensional space of rij
but rather in the physical subspace restricted by triangle
inequalities rij + rjI, & riI, . This creates no additional
difIiculties since the solution we shall find satisfies all
boundary conditions in the physical subspace. In addi-
tion, the answer is expressed in terms of powers of Zp rC&

which do not have singularities at the boundary of the
subspace.

At each step of the iteration procedure we should solve
an equation of the (2.11) type. Such an equation is much

(8, —l:& ))R,~ )(t;, ') = b(t)b( — '), (2.i5)

with the condition R~")(t;r, r') = 0 at t ( 0. Note the
essential property of 'R simplifying the subsequent anal-
ysis: it is independent of the pumping scale L. That
means that there is only one characteristic length in X:
the diffusion scale introduced by (1.15).

Now we are going to establish the properties of the
resolvent Ts'.~&)(t;r, r') Iet us remem. ber that there are
two terms in the operator l:&") (1.14b) which are of the
same order at the difFusion scale rq Solving (2.15) at .the
diffusion and convection intervals, we get for the resolvent
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7Z(" = exp~ — ~I~/2 z ~ ~r / r', at r, r', ~tv. && rd4tr ( stK / (4tK)

~(p) ( Y) (p —d)/2 l(d+p —2)/2~2 —p (2.16a)
p(d —1)tD

(r'+ r' )(2 —~) & &2(2 —~)(«')' '~
x exp~ — ~1~/ &

~ ~

at r r (Dt) /'Y )) rp2d —1tD ) ~
q p2d —1 tD ) '

We shall need also the asymptotics in the mixed limit r, r~ && r', (Dt) ~/~, for r and r' lying in the different intervals
(diffusion and convective ones, respectively). This asymptotic has to match with one following from (2.16a) in the
subinterval rq (( r (& r', (Dt) /~ It .gives us an idea: to improve the expansion of (2.16a) with respect to r/r'
introducing a function y(r):

(2 —p) pr'(" ') ( r'~(2 —p)
&'( — ) D I'( /~) i ~'(~ —1)tD/

exp /—

&+ —&+,at r, r«& p', Dg ' ~2(2 —p)r'+ 2(2 —p) y(r)
dd —1 pt d —1pt (2.17a)

In the limit rd « r, the function y(r) should pass to r~ as
follows from (2.16a). Substituting (2.17a) into (2.15) and
solving the resulting equation for y one gets an expression
with one unknown parameter:

y(r) = y(o) + (~ — )D
0

(2.i7b)

Generally, the integration of the second-order differential
equation produces two parameters, but here one of them
has been already fixed by the condition of the finiteness
of y(r) at r ~ 0. The only scale which can determine the
dimensional parameter y(0) is rg. It gives the following
estimate y(0) r& and, thus, closes our analysis of the
mixed asymptotics of the resolvent at r, r~ && r', (Dt) ~/~.

C. Overall scaling of the fourth-order correlator

The analysis of the series (2.12) enables us to estab-
lish the scaling behavior of the irreducible part of the
fourth-order correlator I' in different regions of scales.
The crucial point is that all terms of the series (2.12) have
the same scaling behavior as I'~ ~ up to some logarithmic
functions that are our main concern. Indeed, we should
worry that some logarithms may appear at each step of
the iteration procedure (2.11). Summation of powers of
logarithms can produce anomalous exponents changing
the index of the whole sum in comparison with the first
term of (2.12).

We shall analyze in this section only logarithms
ln(I /r, ). B~esides, the logarithms of the ratios of separa-
tions ln(r;z /rI, ~) may arise at any step of the iteration pro-
cedure (2.11) which could change the behavior at small
ratios. This happens only in subleading terms where the
coefBcient at logarithms is proportional to a power of
the small ratio. One may worry, nevertheless, whether
the logarithms could be summed into the large exponent
that compensates the small factors. That means that
the case of small ratios needs a separate nonperturba-
tive analysis, which is done in Sec. III. The results of

(2.iS)

where B is a "radial" variable and n is a unit six-
component vector. In terms of those variables the op-
erator Co at B )) rg is written as

8~ = (R B +(6d~+ 1 —p)RBR+ 'I),(d —1)D

where T is an angular operator:

6
&( —~+ ))-~(„- 6„)

2 ( t9n~ )
gJ gJ

+(p/2) ) n /~ ' n'
BfLm l9fl mm=1

0
Amn) e

On~l=1

(2.19)

The consequence of (2.19) is a possibility to look for the
zero modes in the following form:

Z„=R "Y„(n),
TY„(n) = A„Y„(n),
a„'+ (6d —p)o,„+A„= 0.

(2.20)

(2.2i)
(2.22)

The roots of Eq. (2.22) determine exponents in the ex-
pression (2.20) for the zero modes which appear to be
power functions [like (2.9)]. Dangerous logarithms would
occur if the roots of (2.22) coincided. That corresponds

the analysis show that after resummation the sublead-
ing terms remain the subleading ones. Therefore, the
logarithms of the ratios can be neglected at the general
investigation. Later in this section, we will speak about
the overall scaling of the zero modes, which deals with
their exponents in terms of the ratio L/r

First, we show that the zero modes of 80 cannot con-
tain logarithms ln(L/r;~) It can be .proved using an "an-
gular" representation in r;~ space introduced as
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to the values a „=—(6d—p)/2, A = (6d —p) /4, which
is impossible since all eigenvalues A of the operator T
are negative. The property follows from the fact that all
eigenvalues of Co are negative and Co is reduced to T for
B-independent functions. Nondegeneracy of the eigenval-
ues guarantees the absence of the logarithms ln(L/r, ~) in
the zero modes of l.o. Note that the coincidence of a
for two difFerent A„(i.e., the existence of two zero modes
with the same scaling yet difFerent angular structures)
apparently does not lead to the appearance of logarithms
as well.

To establish the exponent of the overall scaling, let us
analyze the integral (2.13). First, we show that at any
step of the iteration the integral converges at r' )) L
so that this region gives a negligible contribution if we
consider separations r;~ & L. To do that, one should
And the behavior of I'~ ~ at large scales. The decay of 4
from (2.6b) is difFerent for a different direction in the six-
dimensional space (rU. ). By analyzing the most slowly
decaying case we get 4 B y, where B is determined by
(2.18). Now we can analyze (2.13), and using the resol-
vent which is determined for all scales one can directly
show that the region B )) I gives a negligible contri-
bution. Then the analysis of I"~ ~ in the region B )) L
shows that I'~ ~ decays like 4. That means that the above
scheme is reproduced at any step of the iteration proce-
dure.

Consider the case where all r,.z are in the convective
interval. Then we can use (2.16a) for 7Z~"l. The contri-
bution to I'~ ~ associated with r' ( r is I independent.
One can check using (2.16a) and (1.20a) that the integral
in (2.13) converges at small r' already in the convective
interval. That means that the contribution associated
with r &om the convective interval is also rg indepen-
dent and it is thus given by the simple dimensional es-
timate: P22/D multiplied by a scale invariant function
of r,~ with the exponent 2p. That contribution could be
neglected in comparison with the terms proportional to
positive powers of L which will be found below. Using
the expressions analogous to (2.17) for small r' one can

I

rtn(q = f dt f d 'tt(t; , ')i, p't't(--'), --
(2.23)

expand it in the series in r, , and calculate (for instance)
the terms p«portlonal to r12r34& r12r13& and r12 respec-y y y y 2W

tively:

also check that the contribution to the integral due to the
diffusion region is finite and negligible. The main con-
tribution to I'~ l at the integration over r,' in (2.13) is
given by the region r,'- - I, the characteristic time being
estimated as t L~/D . It follows then from (2.16a) that
for r (& L the corresponding expression for R~"~ is a reg-
ular expansion in r~, which means that the contribution
to I'~ ~ associated with the considered region r; - L is
also a regular expansion in r~ /L~. Only the first terms,
proportional to positive powers of L, are important; the
subsequent terms proportional to negative powers of L
can be neglected in the convective interval.

The zero term in the r~ expansion of (2.13) is a coii-
stant which can be estimated as P2L ~/D . The first
term (that would be proportional to L~r~) is actually
equal to zero. This can be understood as follows. As is
seen from (1p20a) and (2.8) in the convective interval, the
right-hand side of (2.11) does not depend on L: (1.20a)
contains only an L-dependent constant. This constant
had to be removed in (2.13) since the operator (2.8) con-
tains only cross derivatives. That L independence on the
right-hand side means that an L-dependent term in r&'~

should be treated as a zero mode (up to a possible loga-
rithmic factor) of the operator l:o (in the convective in-
terval only). Zero modes with the scaling r d exist (e.g. ,
r&~2 —rs~4) but one cannot construct such a mode sym-
metric in permutations of the points 1,2, 3, 4. Thus the
presence of such zero modes would violate the intrinsic
r; ~ r~ symmetry of the problem.

The next term behaves oc r2y. If I'~ ~ contains loga-
rithmic factors multiplied by r y, then the normal scaling
is renormalized into an anomalous one. I et us consider
the general expression for I'~ ~,

—,& (tD/L') &I', ,.= r„r,. , &.(tD/L'), —&I„„=.„,~.(tD/L~), (2.24)
dt (1) dt

L L

Ai(t/L') = dr'„tt" (t;n, r( )f dp,',2tpt't(t;p, p,', ) f d„'„ttt l(t, p „)f d„ tptpl(t. p „)
0) r23 dr24R t j Ot) r24 Z1 r j r (2.25)

A(tll') = «(,&"(t;n, ~'») d~»tttdt(t;n, , j f dp' ptt~t(t. n „)f d„pt(.)(t n „, )

d"ls "(t;n, ~'») f dr2, pp" (t;n, r,', )d, (p')pIo~(p') (2.26)
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As(t/L ) = driz'R (t;O, ri2) drs4iZ" (t; 0, r34) dr, s'R (t) O, vis) dri4R" (t;O, ri4)

L L
x dr' 'R~"~ t;O, r' dr' R~"~ t;O, r' 8 r' F~ ~ r', (2.27)

z(~)(~;0, ~) =
q2 (d —1)SD r[d/q] q2 (d —1)~D

P

x(~)(~;0, ) =x()(~;0,~) „d —1p2 d d —1ptD

2(d —1) p d(d —l)ptD d(d —1) (d+7)p2t2D2

(2.28)

(2.29)

While integrating over time at tD « L~ one can expand the functions A;(tD/L~) in a regular series in tD/L~:

A; (tD/L~) = Co' + C,' tD/L~ +.. . . (2.31)

The crucial point is the presence of the zero term in the expansion. Were Co' equal to zero, we would immediately

figure out the part of the well known zero mode from the divergent integral over t ( Ci' ) in (2.24), the respective term
in (2.24) being L independent. As we show below, Co' g 0 so that one gets the logarithm ln[L/r] in the respective

( Co' ) contribution to Al, This term stems from the forced solution of the equation ZOI'( ) = —ZiE( ) (it is
proved already that there are no logarithms in zero modes of Co). From the viewpoint of the initial equation (2.5),
those logarithms stem from the zero modes of the full operator 8 —see (2.10) and below.

Let us calculate Co' directly. First of all one finds from (2.8)

- 2

~1+ ~1 r12r34 + r13 24 + 14 23
(o)

7(d —1)d

(-~)' - + -»
8(d —1) d2 ) .I

2 r;i(r;„+ r, ~ —r,, —r~„)

'Kg WTl g IJ j') Xj 'ET% JTl (2.32)

(2.34)

(2.36)

where the summation is performed over all the sets of dif-
ferent subscripts (i, j, m, n) = (1,2, 3, 4}. E( )(r) and,
respectively, the integrands in (2.28)—(2.30) are sums of
a huge number of very simple terms that have been calcu-
lated by MATHEMATICA. We do not present here the cum-
bersome expressions obtained formally at arbitrary p and
d since the physical meaning could be ascribed to them
only when the Zi/80 expansion is a small-parameter ex-
pansion. The formulas below show that there are two
cases where this is so: Cz' go to zero at p —+ 2 and at
@Moo:

Co m, at d m oo(i) 4(2 —7) (2.33)p3d5

Co m —,at d —+ oo(2) 2(2 —p)s

Co m, at dm oo(s) 2(2 —~)'
(2.35)p3d5

(i) (5d —2 —d~) (2 —p)
s

2(d —2) (d —1)s ds

(2) (2 + d —4d) (2 —&)C, -+ — „„,„, , at, q -+ 2- (2.37)

C, ~+, , at q-+2- . (2.38)

I

A A

It is natural that our 80 Z1 expansion gives a small cor-
rection in the limit d ~ oo while we should admit that
the same behavior in the limit p m 2 is surprising for
us. That means that the l'.

o Z1 expansion might be
meaningful also when d is arbitrary while 2 —p is small.
To establish that, one should check whether nonlogarith-
mic terms in I'( ) are proportional to (2 —p) as well,
which is beyond the scope of the present approach. A
nontrivial task to develop a consistent (2 —p) expan-
sion will be the subject of further publications. As the

p —+ 2 velocity spectrum diverges at small scales, one
should introduce an ultraviolet cutoff r„ in (1.9) so that
r ~/(2 —p) ~ ln(r/r„). The scalar correlation functions
contain logarithms already at p = 2 (in the paper [10],
the limit p ~ 2, D/(2 —p) +const has been considered
where such logarithms are absent).

On the contrary, the perturbation theory in 1/d which
is the main subject of this section is regular and uniform
with respect to distances r;~. Note that we assume 1/d to
be the smallest parameter in the problem, in particular,
1/d « p, so that our results do not describe the limit of
small p which will be the subject of further publications.

We have found all the logarithmic terms entering the
fourth-order correlator on the first step of the iteration
procedure:
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F12,34 —+i2,24 + Y 0 ) ij kl n[ /rl(o) (i)

+Co~'~ ) n~ ~n~1 [nL/ ]n+ Co~ ~ ) n,',~In[I jn])
+I-independent or nonlogarithmic terms

+ ~ ~ ~

) (2.39)

where the summations are performed over all t;he pos-
sible combinations supposing all the indexes i, j, k, l to
be different. The expression in front of the logarithms
in (2.39) is a sum of the well-known zero modes ( r2'i),
which is guaranteed by the identity that could be directly
checked,

(Z;z ]ei) is present on the zero step of the iteration pro-
cedure. It is clear that (2.41) cannot be described in
terms of a single anomalous exponent A(d) because the
expression in the last set of brackets does not coincide
with P Z;~ I,i.-We thus come to the conclusion that Z
should consist of at least two terms with different scaling.
In other words it means that one gets a degenerate case.
Indeed, the full operator l., the bare operator l.o, and
the perturbative one l'.

q are scale invariant. The bare
zero modes scale similarly, and it is very essential that
the first perturbation step should dismiss the degeneracy.
On the first step of the iteration procedure there should
appear two zero modes,

C{s) + d (C(i) + 4C(2)) 0
2(d+ p)

(2.40)

It agrees with the absence of any logarithms among zero
modes of l.o.

We have thus found the first (in 1/d) term of the ex-
pansion of the zero-mode part of the solution of the full
operator,

Zi —) (nZ, , i,i + PZ,~,i, ) (.1 Ai ln[r/L]) ) (2.42)

Z2 ——) (1 —~)Z;~ qi —pZ;, ,;I, (1 —b, 2 ln[r/L])

(2.43)

such that

2 — 2

Z = ) Z;; I,i+p~ Co~ ) ) Z;~ i,iln[L/r] Z = (Z, + Z2),
(2 —~)'

~2d4 (2.44)

+C,'") Z;, ,; lk[nL/r]
~

+. . . (2.41)

Note that there are two types (Z,~ i,i and Z;~;q) of zero
modes of l.o possessing scaling 2p; only one of them

I

where Z was found above in (2.41).
To extract additional information that will fix all the

numbers n, P, A;, we should calculate the first-order log-
arithmic correction —l:0 l:i PZ,.„z to the second bare
zero mode g Z; ~ . First of all one finds

(2~22)(2+22)
2 u

2 ~—2w —2-
in jn d+ 1 'Y

4 "v 2 —7 re rin + rj n re

(2.45)

Performing calculations analogous to what was done at
the calculations of the coeKcients |0 one finds that all
the logarithmic terms that appeared are proportional to
the bare zero mode PZ; ~ only. It is a manifestation
of the fact that the functions on a triangle constitute
an invariant subspace of the full operator l'.: l'. acting
on an arbitrary function of three distances &om a tri-
angle ri, r;~, r~~ produces a function of the same three
distances again. Thus the cancellation of a coefBcient
before the logarithm proportional to another four-point
zero mode will occur on all the higher steps of the it-
eration of P Z;„~„ too. Thus, the resulting zero mode
(say Zi with a = 0) is scale invariant with the following
asymptotics of the anomalous exponent at d ~ oo:

4(2 —p) 4

10+ p
(2.47)

A A

Note that; the above l'.
&

l'.0 iteration procedure was not,
strictly speaking, a direct 1/d expansion: not only ma-
jor terms d but also subleading ones d have been
included into l.o. That made it possible to have both
unperturbed operator and perturbation of the same (sec-
ond) order. To reinforce the results and obtain the ex-
plicit solution for I'i (not only its logarithmic part as
above), let us briefly describe the direct 1/d procedure
where the main part of l'. in the convective interval is the
difFerential operator of the first order,

(2 —~)(2+ ~)
2d

(2.46)
l.", = d' ) r' '0"

i)j
(2.48)

The asymptotics of all the remaining coefBcients defin-
ing the second (mixed) scale-invariant zero mode Z2 are
restored &om (2.41)—(2.44) and (2.46),

yet we will directly account for the necessary boundary
conditions while integrating over characteristics below.
The zero modes of (2.48) which we are going to iterate are
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02

Brim Or~n
(2.50)

d m oo limits of Q Z;j i,i and Q Z;j,g. Zo = Q 2r, rqi-
(r, ~+. r&~&) and Zo = g 2r~ r~&. —(r, ~+r,.&) . To find
the 6rst-order corrections to the bare zero modes one has
to solve the differential equation

(2.49)

i)j r'' 2

"2n "U "2n
2—w

) ij
(

2 + 2 2 2
)4

d2 D
Z1 = — dtl-lzo r~ ~ t+B-2

2 —~
(2.51)

where B;~ should be considered as constants, and Z& it-
self is de6ned up to zero modes of the bare operator l:&.
The result of integration (2.51) at an arbitrary p is bulky.
We present here the explicit expression in the simplest
possible case of p = 1,

where Zi is the part of the full operator (in the convec-
tive interval) proportional to d; note that it stems both
from Eo and Zi. Equations (2.49) are integrated by char-
acteristics, for example,

4 - ~ 1 -t'('-- ")[('-- '-)'+('--, -)'-('-- ',)'-('--.-)']
2d rim rj ni)j

(rjn rij )[ (rj n rin) (rj n rjm) + (rj n rij ) + (rj n rmn) ]

rim rjn )
- (",-".)(",-",) ~

Zi(p = 1) = ——) r, ——) ~ (rU + ri,~
—2r;I, )1 n[L/r, .

]A—(r;~ + r;i, —2rjj) ln[L/rij] ~.

z)y rik rkj

One can directly check that those are the solutions of
(2.6) at the first order in 1/d. Being interested only in
ending the overall scaling we can just set all the separa-
tions under the logarithm to be the same. Generally, one
can extract the logarithmic parts of Zz, Zz directly &om
the right-hand side of (2.51) setting formally the upper
limit of the integral to be very large and looking for the
logarithmically divergent terms

Zi = (2ZO —Zo) ln~ —
~
+ (nonlog. terms),

2(2 —p), -, )Ll
4rJ

Zi = Zo ln
~

—
~

+ (nonlog. terms).
q' —4 —, (Ll

d (r)

(2.52)

(2.53)

This is the direct analog of (2.41). The formulas (2.52)
and (2.53) immediately give the leading d ~ oo asymp-
totics (2.46) and (2.47) obtained above from the general
iteration procedure.

The structure of the resolvent 2.16a) at small r deter-
mined by (2.17) shows that for I' l there exists the limit
~ ~ 0. This property being reproduced at any step of
the iteration procedure enables one to construct a solu-
tion I'~' ~ which is the limit of I' at ~ ~ 0. The function
I'&' ~ is close to I' in the convective interval and remains
6nite at any r;~ + 0. The behavior of I'~' ~ is determined
by the estimation (2.54), where r is the maximal value
among r,~.

We thus come to the conclusion that for separations r
&om the convective interval rg (& r && L,

I'(r) —I (0) P r ~(L/r) /D, I'(0) P L ~/D

(2.54)

up to dimensionless constants depending on d and p and
the anomalous dimension 4 is given by the largest expo-
nent (42), which is asymptotically

a = S, = 4 + O(1/d') . (2.55)

Finally, we treat the case where all separations are in
the diffusion interval. The contribution to I'~ ~ associated
with r' )) rg gives the constant L ~(L/rg) P2/D .
The contribution associated with scales r' & rg has to
be analyzed carefully since for all separations Rom the
difFusion interval the typical integration time t in (2.13)
is also characteristic of the difFusion region. We use
(2.16a) for R~"l and (1.20a) for f The estim. ate for the
r-independent contribution gives r&~P22/D2. To ana-
lyze an r-dependent contribution associated with r' & rp
it is convenient to return to the initial form (2.6) of the
equation for I'. At the analysis we will not divide l'. into
l'.0 and l'.~, the consequent conclusions are consequently
nonperturbative. In the diffusion region, l. is reduced to
the sum of I aplacians. The right-hand side of (2.6b) is
proportional to r ~, which generates the forced part of
the solution proportional to r ~. To And the principal
r-dependent term one has to compare the forced solution
with zero modes of the sum of I.aplacians. All the modes
are well known: they are constructed &om even powers
of r,.z. There are no modes with second powers of r;~ in I'
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since they are not invariant under permutations of points
ri. The zero mode of 8 of the fourth power possessing
the permutation symmetry,

{2.56)

A. Four-point correlator arith a small separation

Suppose that among separations r;~ there is a separa-
tion p, say r34, which is much smaller than other sepa-
rations. Then the main term in the operator 2 (2.4) is

associated with derivatives over the vector p = r3 —r4.
This term can be written as

turns out to produce a larger contribution than the forced
term. Thus, we conclude that the principal term in I' is
of the fourth power in r. The parametric dependence of
the coeKcient at the power can be easily established from
a matching at r rd, .

I' —(C1L ~ + C1r~ )P2/D

l:p
= K ~

(p) V V'~ + 2r &p, (3.1)

where 7' = 8/t9p . To solve Eq. (2.6a) for I'1234 in
this case, we can formulate an iteration procedure where

C~ is treated as the main contribution to C. Namely, a
solution of (2.6a) can be represented as

r r& (L/rg) P2/D, at r (( rd, . (2.57)

The consideration of this section shows that the de-

gree of non-Gaussianity increases as the distances de-
crease in the convective interval and eventually comes
to a constant when the distances are in the diBusion in-
terval. For example, the Hatness factor is proportional to
(L/r) in the convective interval L » r » rg and it is
an r-independent constant of the order of (L/rd)+ in the
diffusive interval rd, &) r.

n=l

—Cpl'„= Ct„(r13,r23, p),

@1 ~1 0(rl r2) + C 12;34 + @13;24+ @14;23

4„= (g —Dp)1'(„,), n & 1,

(3.2b)

(3.2c)

(3.2d)

III. FOUR-POINT OBJECTS WITH STRONGLY
DIFFERENT SEPARATIONS

In Sec. II we established the overall scaling behavior
of the four-point irreducible correlation function I q234.
In particular, one may check that at any step of the it-
eration procedure (2.11) the contributions to I'1234 asso-
ciated with possible small values of the separation ratios
are negligible in comparison with the leading term. To
show that the summation over n could not convert sub-

leading terms into leading ones, here we check the self-

consistency of our approach nonperturbatively in 1/d us-

ing the full operator L. In the next subsection, we show
that if any separation p is much less than the other ones,
the p-dependent contribution to I'$234 is much less than
the leading term. This property enables one to And such
two-point objects as {(01—02) ), which can be extracted
&om I f234 by fusing some points. Besides, to establish
the properties of the correlation functions ((&10')) and

((t1e2)) one should know not only the limit of I'1234 for
coinciding points but also the dependence of I'q234 on
distances between nearby points in groups strongly sep-
arated from each other. It is the aim of this section to
obtain the dependence. Here, we shall use perturbation
theory with respect to the ratio between small and. large
distances. Calculating the corresponding contributions
to I $234 one can obtain the two-point correlation func-
tions of products of diferent spatial derivatives. We shall
demonstrate how an absence of an rd-related anomalous
scaling in I'1234 prescribes it for ((E'182)) alld ((61E2)).

where r~3 and r23 are separations much larger than p
and I'0 is a p-independent part of I'. The procedure in-

troduced by (3.2) can be considered as a series over the
small parameters p/r13, p/r23. We impose two boundary
conditions on I': to be of order of I'0 at p r$3 r23 and
to remain Gnite at p = 0.

The right-hand side of (3.2b) can be assumed to be
known. A solution of (3.2b) satisfying the imposed
boundary conditions has the following form:

t'„(r~, rt, p) = ttt f dr%(t; p, r) I „(r~,r~, r), (3 3)
0

where Z. is the kernel of the resolvent of the operator Z~:

(Bg —C~)'R(t; p, r) = h(t)8(r —p) . (3.4)

(3.5)

where v = (d —3)/2 and only the polynomials with even
numbers participate since R is an even function of z (at
d = 3, Jacobi polynomials turn into Legendre ones . One
can obtain from (3.4) separate equations for R(

Since the operator 8& explicitly depends on p the resol-
vent 'R is not a function of the difference

~

r —p [ only
as it would be in a homogeneous case. The symmetry
enables treating 'R as a function of p, r and x = pr/pr
It is convenient to expand the function in the series over
Jacobi polynomials [23] which are the eigenfunctions of
the x-dependent part of C~:
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( )
/'d+ 1 —p 2 5 2n(2n+ d —2) (2„)Dp ~+ 2r. R p, 1")

(~ ~) (d —2 + 4n) I (d —2 + 2n)
2 —' ("—')/ I'[(d —1)/2+ 2 ]

'

where C~" was introduced in (1.14b).
Solving (3.6) one g«s the behavior of 'R( ) in the diffusive and convective intervals explicitly:

(2„) (d —2+ 4n)I'(d —2+ 2n)
2~+ m(& )/ I'(2n —1 + d/2)

/' 'r+ p'') f rp )x exp
l 14/& —]+2 I I ("p), r, p, ~~~ && r,8tv. J (4te )

(2„) (2 —p)(d —2+ 4n)I'(d —2+ 2n)
p(d —1)2" ~sr(" ')/2I'(2n —1+d/2)

(r'+ p')(2 —~) & /2(2 —V)(~p)' '&

(3.7a)

(3.7b)

where

8(d+ 1 —p)n(2n+ d —2)
'gn = — d 7 + 3.8

d —1

and I„designate modified Bessel functions. Note that
7Z( ) = R(")I'(d/2)r "/(2vr"/ ), where 7Z(") was intro-
duced by (2.15) and (2.16). It is possible to formulate
for 7Z( ) interpolation formulas of the (2.17) type.

To establish the behavior of I' determined by (3.2)
we should analyze the integral (3.3) using (3.7). The
main part of the integral is determined by the region
r r13, r23. Thus the p dependence is associated with
the limit of (3.7) at p « r. We see that the resolvents
in this case tend to zero with decreasing p. We can also
assert based on (3.8) that the higher the number n of the
angular harmonic is, the faster is the decay of the corre-
sponding resolvent. Since the procedure (3.2) produces a
convergent series over a small parameter, the above state-
ments can be extended to the sum of the series. Thus we
proved that the p-dependent part of I' is parametrically
smaller than its p-independent part at p (( r1, r2, which
was the purpose of this subsection;

where C1, C2, C3 are dimensionless constants depending
on d and p.

Generally, we do not assume here and below in this
section that A is small (or d is large), yet the condition
A ( 2p is assumed. At the limit d —+ oo, the numerical
coeKcients C1, C2, C3 could be found from the results of
Sec. II. In particular, we can get the following asymptotic
expressions:

24 2 —p 2 J 2

+2PI
E, r») + 0 ~ ~ (3.11)

justified in the preceding subsection. Indeed, the state-
ments (2.54) and (2.57) are valid for r being the largest
length B of the tetrahedron. One thus gets for I'o

(C,L'& —C,R'&(L/R)~)P,'/D', r«g R && L
(C&L2' —CsR4(L/R)~r ' )P /D R && r

B. Faur-point eorre}ator with two separated pairs

In the rest of this section, we consider I'1234 in the
case of the special geometry with two separations be-
tween points being much smaller than all the other ones,
namely B && p12, where

at r12 (( r13 r23)

((0 —t) )'0') —{(() —0 )'){~')

+I4(2 —7)~Pr~ r, s
/' L ) ' f I )

(,"»)

at r12, r34 (( r13 ~ r23 ~ r24 ~ r14

+ 4 ~
)

(3.12)

r1 ~2 p1 r3 &4 —p2
R = (rs+ r4 —r, —r2)/2. (3.9)

Here, the mutual orientations of the vectors and the ratio
pj /p2 are supposed to be arbitrary. We denote by I'p(R)
the main contribution to I 1234) which is equal to I']234
at p1 ——p2

——0. The estimate for I'0 can be extracted
kom the results that have been obtained in Sec. II and

= ((e~ —~'2)'(es —~4)') —((6 ~
—02)') ((t)s —t)4)')

12 34~ (3.13)

where dots designate the terms with a normal scaling
(r ~). Note that if one expands (3.11) in small A' s, then
the remarkable cancellation of the terms linear in loga-
rithms happens: (1 —2P)A2 + 2PEq ——0.
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Now, we aim at finding leading corrections to I'0(R) at
small values of pi/R and p2/R. For this we should solve
(2.6a) at the conditions pi, p2 (( R. In this limit the
principal part of l. is l.p, + l.p, , where l:p is determined
by (3.1). It is the reason which caused us to formulate
an iteration procedure, where l.p + JCp is treated as a
main contribution to l:. Namely, a solution of Eq. (2.6a)
can be represented as

r„„=r.(R)+ ) r„(R;p„p,),
n=1

(l:q, +—l:~,)r„=C'„(K;Pi, P2),
P

C, = l.r, +e„.„+e...„+e...„,
I„=(l: —l: —l:,)r(„ i), n ) 1.

(3.14a)

(3.14b)

(3.14c)

(3.14d)

I'„(K;pi, p2) = dt dr'dr"7Z(t; pi, r')
0

x'R(t; p2, r")4„(R;r', r"), (3.15)

where R is the kernel of the resolvent of the operator l'.
p

introduced by (3.4), (3.5), and (3.7). The main contri-
bution to the integral (3.15) is determined by the region
r' R, r" R. The higher the number of the angular
harmonic n in (3.5) and (3.7) is, the smaller is the re-
spective contribution into I' due to additional powers of
the small parameter p/R in R,(2"). Therefore, besides the
first harmonic, we consider further only the second one
to show how a nontrivial anomalous exponent appears
due to an angular dependence.

The procedure introduced by (3.14) can be considered
as a series over the small parameters pi/R, p2/R. We
impose two conditions on I': to be of order of I'0 at
p1, p2 R and to turn into zero at p1,2

——0.
Before consistent derivation, let us notice that the

rg dependence could be readily found from (3.14b) and
the additional anomalous scaling of the subleading (p-
dependent) terms naturally appears already at the first
step as a consequence of the given scaling of I"0. I et us
consider p (( r~. The solution of (3.14b) for I i will be

p1+ p2 multiplied by the R-dependent terms 4 and l:I'0,
which are both proportional to R~(L/R)+ —see (3.21)
below. Assuming that no special cancellations happen,
one may conclude, in particular, that ((0 (0)e(R))) oc

rz R~(L/R) instead of R ~ 2(L/R)+, which would
be given by a naive counting of powers.

Let us start now a regular examination of (3.14b). A
solution of that equation has the following form:

sion (3.15) for a solution of (3.14b). We consider the
case where the largest scale R of the tetrahedron is much
smaller than the pumping scale I. That means that the
only external scales for the integrations in (3.15) can be
R or rd but not L. The interest in the contribution to I'
stemmed &om large enough scales r', r" R and time

r~ (where one defines r as r /r at r (( rd, but as
r~/D at r )) rg), and one can expand the resolvents in
(3.15) in a series over the small parameters r, /t and ana-
lyze the convergence of the temporal integral for different
terms of the expansion. Of course, the integrals depend
on the concrete form of 4. However, in any case only
a finite number of the first terms of the expansion are
determined by the time t w~. The respective contribu-
tions into I' are the zero modes of the operator l'.p, + l'.p,
that grow with p and are symmetric under the permuta-
tion pi ++ p2. All the remaining terms (stemmed f'rom
r', r" (( R) are summed up into the term estimated as
wp4. We will name this part of the solution the forced
one, I'f.

The r dependence of the forced part of the term I' de-
pends on a concrete form of the function C„ in (3.14b).
On the contrary, the form of the zero modes is univer-
sal: they depend on the source term 4 only via coefIi-
cients. We thus start by determining the zero modes that
give the main contributions at small scales. To find the
zero modes that contribute to the solution, we will fol-
low an indirect (but, probably, the simplest) way. Since
the zero modes are formed at the large times t 7~ in
the integral (3.15) (which means that they appear due to
matching at p R), we can extract their scaling behav-
ior expanding the expressions (3.7) for the resolvents in
the series over r~/t (3.7) and keeping the first terms of
the expansio~. Thus we can extract the exponents of the
first zero modes and their angular dependence but not
coefficients at different terms of the same order. To find
the coefficients we can construct a combination of a given
order with arbitrary coefFicients and then find relations
between the coefficients demanding that the combination
is a zero mode of l.p, + l'.p, , which can be established by
directly applying the operator.

Let us realize the scheme using the expressions (3.7).
We see that the p expansion of the expressions produces
powers of p~ and p~, where as follows from (3.8)

The angular structure of the zero modes also can be es-
tablished if we take into account the explicit form of two
first Jacobi polynomials:

C. Zero modes

The asymptotic formulas (3.7) for the resolvent enable
one to extract a scaling behavior of the general expres-

&'"'(*)= 1 &'""'(~) =
8

(d*' —1) .

Then one can directly check that the zero modes of the
first and of the second orders are as follows:

Y 7 + 2Y Y

(os) P22 (L) P1P2 2(g+~) (Pl + P2 )) P )) d)

22 d 4 4 2'Y4D iR) 2(v+2) (Pi + P2)
(3.17a)
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(3.17c)

(o2) 2B2p b—~ ((pi [d(Rpi)' —B'pi])+(pi++ p2)) ' p»rd~ (3.17b)
D (By (d(Rpi)' —R'p,')+(pi++ p2) rd R, p«rd)

(p2) Pz ~ ~PL' ((p2 —bipi)pi d(Rpi) —R pi)R +(pi++ p2), p»rd,
D' (R) (((p, —b2p, ) d(Rpi)' —B'p', )R '+(pi ~ p2)))rd'+' ', p«rd. ,

(2, 2) 'R2(~-~) ~ ~ ((li 'ld(Rpi)' —R'Pl])(pi++P2))B '+cl(PlP. )' ' d(PlP2)' —Pip22, p»rd,
D (R) ((d(Rpi) —R pi)(pi++ p2) 8 +c2 d(pip2) —pip2)rd, p«rd,

(3.17d)

where cq 2 are dimensionless constants and

(b+p)(d+2p —2) —2d d+4
bg —— 2=

dp d

The upper indices of Z, introduced in (3.17), character-
ize the type of a zero mode with respect to the angu-
lar structure. The lower index denotes the original or-
der of the resolvent's expansion over r'/t producing the
concrete term. We keep the terms of the second order
(3.17a), (3.17c), and (3.17d) besides the first-order term
(3.17b) since theypossessqualitativelydifferent pdepen-
dence: the term(3. 17b) isanadditiveonewhile theterms
(3.17a), (3.17c), and (3.17d) contain cross contributions.

Note that higher-order angular harmonics will be char-
acterized by the exponents b, which can be extracted
fromtheasymptoticbehavior oftheresolvents(3. 7) char-
acterized by (3.8). Let us write the explicit expressions
for the exponents:

1 8n(d+1 —p)(2n+d —2) l
2

)d

—1

(3.19)

CI'p-+ (Z~ —v&")I'0(R); (3.20a)

and(b) from 4]324+4]4~ 23,

pR R~ (df(R)~
@i3;24+C14;23~@"=2~R 2 l dR I

' (3'20b)B' qdB
The expression for the respective forced solution is

I'i dd = — 4"+(ZR —K&~)IP(R)

I

dure (3.14c). The right-hand side of(3.14c) contains the
terms of different order in p/R, different angular func-
tions, and diferent types of the dependence on pq and p2
(additive and multiplicative). We shall analyze the re-
spective contributions order by order in p/R separately
for the diferent angular functions. The terms with the
cross dependence (like pip2) are of special interest since
they contribute to the (ee) correlation function.

Theleadingcontributionin p/Ron theright-handside
of (3.14c) is p independent (and consequently angular
independent). The contributionoriginates (a) from ZI'o,

which at n =1gives(3. 16). The exponents h will figure
in the expressions of the (3.17) type for higher harmon-
ics. It is worthwhile to emphasize here that the exponents

are nontrivial: to obtain them by the 80 l.q expan-
sion that we used in Sec. II, one would get terms like
p'ln(p/R), which should be summed up into p.

We introduced in (3.17) the dimensional factors (in
front of the braces) with which the zero modes appear
at 1. The factors in front of the braces are taken from
the analysisof theintegral(3. 15); since thecontributions
stem from the region p R(where the resolvent is not
precisely known), the dimensionless coefficients (includ-
ing ci and c2) could not be found within our approach
with one exception, which will be described below in Sec.
III E. The dependence of the zero modes on rg can be es-
tablished by matching the respective term from inertial
and diffusive interval at rg and using the rg independence
of I' in the convective interval.

D. Forced terms

Let us begin the discussion of the forced terms with
r'„which appears at the erst step of the iteration proce-

rdr
xl

( o 2rd ~+r2
rdr+

o 2rd~+r2 &)—(3.21)

—~"~l ~~Ppi pi P2P2 f(p') f(P2) (322)
p] p2 dpi' dp2

Apart from(3. 22), we have to takeintoaccount thecross
terms originating from other terms on the right-hand side
of(3.14c). The termshaveacharacter ofaregular expan-
sion in p/R and are consequently proportional to p2ip22.

Such terms are much less than (3.22) in the convective
interval and are of the same order in the di8'usive inter-
val. Since we are interested not in the factors but only
in the scaling behavior, we can restrict ourselves with

The subsequent additive terms are produced by taking
into account the next p terms on the right-hand. side of
(3.14c). They produce the additive forced contributions
to I'i with the scaling oc p +~ in the convective interval.

The leading cross term originates Rom C]2 ~ 34 the main
term of its expansion is
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Z „' Z ' (R/L) (r„/R)

Z „' Z ' (R/L) (F„/R)

(3.23a)

(3.23b)

(3.23c)

(3.2M)

Let us now consider the forced term I'2f arising at
the second step of the iteration procedure. Analyzing
the structure on the right-hand side of (3.14d), one con-
cludes that it decreases downscales with p not slower than
[I'z+(zero modes)]. Consequently, the forced term I'21

decreases downscales with p not slower than v~[1'z~+(zero

modes)], which is faster than I'f. Thus, one can drop
I'2 in comparison with I'z and all the set of zero modes.
The same argument allows one to drop the higher forced
terms I'~, n & 2.

the analysis of (3.22). The term is proportional to p2~

in the convective interval and to p in the diffusive one,
which gives for the principal behavior of the correspond-
ing forced term p ~ and p, respectively.

The source (3.22) produces not only cross terms in I' of
scalar and tensor structures but also additive and gener-
ally mixed ones possessing all the variety of angular and
p~ ++ p2 symmetries used in the classification of the zero
modes (3.17). All those terms scale with R as R ~ both
in the convective and diffusive intervals by p. To match
those forced terms from the convective and difFusive in-
tervals one has to introduce the additional zero modes in
the diffusive interval by p,

L )& p, then one has to consider the integral (3.15) with
(3.22 and the respective term &om (3.7) of the expansion
of R & —see (2.16a) and (2.17). One can directly check
that the main contribution into the integral stems &om
the scales I and time vl. so that no matching at R is
necessary. We do not write here the bulky expression
for the integral; it turns into zero only at a single value
p/d = 0.086 found numerically. That numerical value
depends on the shape of y. For the remaining values of
p/d, the integral is nonzero and provides the contribution
of the structure (3.17a).

Next we consider the second angular harmonic pre-
sented in (3.17b), (3.23b), (3.17c), and (3.23c) and the
product of the second angular harmonics in (3.17d) and
(3.23d). The scaling of the respective harmonics of the
forced terms coincides with that of the isotropic contri-
bution: p ~ and p in the convective and diffusive in-
tervals, respectively. The zero modes (3.17b), (3.17c),
and (3.17d) scale as p, p~+~, and pz~ in the convective
interval, and as p, p2, and p in the diffusive one, re-
spectively. One concludes (a) in the convective interval,

the zero mode Z~
' l (Zz~

' l or Zz~ '
) is dominant if

3p ) b (respectively 2p ) b or p & 2b/3), otherwise at
the smallest p the forced terms prevail; (b) in the diffu-
sive interval, at 3p ) b (2p ) b or p & 2b/3) the zero
mode (3.17b) [respectively (3.17c) or (3.17d)] becomes
dominant at large enough R; otherwise the zero mode
(3.23b) [respectively (3.23c) or (3.23d)], matching with
the forced solution originating &om (3.22), prevails.

IV. POSSIBLE GENERALIZATIONS

E. Comparison between the sero modes and. forced
terms

To 6nd the main contributions into I' one should com-
pare the zero modes and forced terms of the same angular
structure. The leading term in the expansion in p/R is
the isotropic additive forced term (3.21) inside of both
the convective and diffusive intervals.

The zero modes are L dependent but the nonadditive
forced terms are not. Thus keeping the parameter I/R
large enough, one forces the zero modes to dominate. A
possibility for the forced terms to prevail appears at the
smallest p separations, when the dominance of the zero
modes could be compensated by different p dependencies
of the zero modes and the forced terms. The present
subsection is devoted to such a comparison.

We compare (3.17a) with the forced terms generated
by (3.22). Both in the convective and difFusion interval
we get the dominance of the angular independent zero
mode (3.17a) containing the cross contribution. To be
sure that (3.17a) does give the main contribution into
((eqe2)) (and thus provides for its anomalous scaling), we
have to check whether or not the respective dimensionless
coefBcient in &ont of that mode can turn into zero. We
consider that mode in a special case R )) I )) p when the
coefBcient can be found unambiguously contrary to other
cases where the matching at p R is necessary. If R ))

We remind the reader that the above results on rg de-
pendence are general while those on I dependence are
formally obtained only when the respective anomalous
exponent L is much less than the normal exponent 2p.
The whole approach of Sec. II was developed for the
fourth-order correlation function at d ) 2. The general-
ization for the nth correlation function at d ) n —2 is
straightforward by means of the same representation of
8 in terms of r,~. Such a generalization leads to the new
predictions for n & 4: the scaling exponent 2p —L should
appear at all high-order functions. The direct check
shows that the respective zero modes appear in the par-
tially reducible contributions only. For example, the six-
point object E&2s45s = (8(rq)8(r2)8(rs)8(r4)8(rs)8(rs))
should necessarily contain terms like f(rq2)1'345@ i.e.,
r ~ L~+ . Such contributions should cancel out in
structure functions like (((8q —82) )). To find the scal-
ing exponents of the nth structure functions in the limit
d ~ oo, one should iterate the zero mode with the scaling
exponent np, which will be published elsewhere.

Quite a difFerent picture may appear for d & n —2.
In this case, n(n —1)/2 distances between points are
not longer than independent variables. Additional con-
straints should be imposed on that set of (otherwise very
convenient) variables, which may lead to the possibility
of additional zero modes.

As a 6nal remark, let us emphasize that the above
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results are valid for a Gaussian pumping only and dis-
cuss what might be the consequences of the pump-
ing non-Gaussianity. Let us add to the fourth-order
pumping correlation function (1.4) the irreducible part
y4(ri, r2, r3 r4)'$(ti t2)8(ti ts)6(ti t4). One
may model the function y4 by the step function:
y4 (ri, r2, rs, r4) = P4 if all r;~ & L and zero if any
r;~ ) I. The production rate of 04 is 3P2f(0) + P4 (re-
member that the advection preserves the integral of any
power of the scalar field). The ratio r, = P4/P2 hav-
ing the dimensionality of time is a correlation time of the
pumping, which is assumed to be the smallest time in the
problem. As a result, the terms generated by y4 will be
small, yet we keep them to show what qualitatively new
terms may appear in the case of a non-Gaussian pumping
with a finite correlation time. Equation (2.6a) acquires
an additional term:

—zr„„=~, + c».„+c„.„+c„.„.
The presence of the function y4 changes scaling in the
convective interval; it causes the terms with anomalous
scaling w, r, - to appear in I' which corresponds to the
scaling („=(2 discussed in [17,6]. Also, the terms with
r12 appear in ((e102)), while no additional terms appear
in ((eie2)). Note that within our approach the r, -related
terms are small corrections even at the difFusion scale
despite the fact that they decrease slower than the main
terms as distances decrease. Most probably, finite cor-
relation time of the pumping will lead to a substantial
contribution with another anomalous scaling, yet this is
beyond the scope of the present analysis. The develop-
ment of the theory for the finite correlation times of the
velocity and pumping is necessary for a meaningful com-
parison between theory and experiment. This will be the
subject of future publications. On the other hand, the
more detailed experimental results are desirable, in par-

ticular, direct measurements of the correlation function
of the dissipation Beld.

V. CONCLUSION

We have shown that the fourth-order correlation func-
tion E$234 has the scaling exponent 2p —L in the con-
vective interval at d ) 2. The anomalous exponent 6 is
analytically found at d —+ oo. Considering the behavior
of Fq234 in the convective interval where some separa-
tions p tend to zero, we established that the p-dependent
contribution to Eq234 also tends to zero. Moreover, noth-
ing terrible happens when p passes through the diBusion
scale rg and we Bnd that

((01 —02) ) oc ~ri —r2~ ~ L (5.1)

for rq2 &om the convective interval.
We analyzed also the case where two separations are

much smaller than the distance R between the pairs
and found the contribution, mixing both small distances,
which determines the correlator

((01 02) (03 04) ) ((01 02) ) ((03 04) ) )1 (5.2)

at P$2 7 34 (( R. We established that the scaling be-
havior of that correlation function in the convective in-
terval is characterized by the additional anomalous ex-
ponent b defined by (3.16). The corresponding contri-
butions to the irreducible part I'f234 of the correlator
E1234 are presented in (3.17). The isotropic contribution
(3.17a) behaves oc r~12r&~4(L/R)+, while the anisotropic
one (3.17d) behaves oc rf2r3~4R~2~ l(L/R) . The cross
terin (3.17c) behaves oc (rf2r3~4 + r34r12)R~ (L/R)
The analysis of the continuation of the correlation func-
tion. (5.2) for r12, r34 passing to the diffusive interval
gives the following scaling laws:

(( luse)) = K (((V 01) (703) ) ) oc gr(L/ l r)3

(([%~017'p01 —d 'b~p(%01)'][V„'03%„03'd b„„(V'03) ])) oc rq ris (L/ris)

(('1[+~03+@03 " ~~@(+03) ])) ~ rd "» ( /"»)

(5.3)

(5.4)

(5.5)

where the separation rq3 lies in the convective interval.
The double angular brackets designate irreducible cor-
relation functions. The analogous analysis can be per-
formed for the correlation function

((01 —02)'03) —((01 —02)')(0s) (5.6)

at r12 « ris. The contribution (3.21) gives the law oc
Py3 Pj2 for the isotropic part of the correlation function
(5.6) which leads to

((e10s)) ~ r~ris(L/r») (5.7)

The anisotropic part of the correlation function (5.6) is
determined by the contribution (3.17b), which is propor-

tional to r~3 r». It leads to

((01[7~02+@02 " ~~@(+02) ]))oc r~ "is (Llr»)
(5 8)

The appearance of an rd dependence in the correla-
tion functions (5.3)—(5.8) may correspond to the pres-
ence of the ultraviolet divergences found in [16,11] in
the diagrams for powers of gradients both of the veloc-
ity and of the passive scalar. That means that, con-
trary to L-related scaling, rp-related anomalous scaling
of the scalar derivatives could be caught perturbatively
[24,25]. Moreover, in the asymptotic limits of the nor-
mal overall scaling of I'1234 (at d -+ oo) it is tempting to
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describe the structure of (5.1), (5.3), (5.4), (5.5), (5.7),
and (5.8) using the language of the so-called operator al-
gebra [26—28] (developed in the context of second-order
phase transition theory), of which the validity for tur-
bulence was argued in [16]. Namely, at d -+ oo in ac-
cordance with those expressions, the passive scalar 0 has
dimensionality —p/2, (V'8) has dimensionality 0, and
[V' OV'p8 —d h p(V'0)2] has dimensionality b —p. In
the general case of arbitrary d and p when the L-related
anomalous scaling does exist, the underlying algebraic
structure (if it exists at all) is unclear at the moment.

All said above concerns the terms associated with zero
modes of the operator 8 in the convective interval. There
exists also a forced solution in the convective interval
originating &om (3.22). The tails in the diffusion inter-
vals created by this forced solution can be interpreted
as zero modes (in the diffusive interval only), which are
determined by the estimates (3.23). Those zero modes
produce the contributions to the correlation functions
(5.4), (5.5), and (5.8), which are oc rzz~ and can prevail
if at large enough res, 8 ) 3p/2, b ) p/2, and b ) 3p
correspondingly. Those contributions are not governed
by the operator algebra even in the asymptotic cases of
d —+ oo or p ~ 2 . It is natural &om the diagram-
matic point of view since those contributions correspond
to "one-bridge" diagrams, which do not contain series
producing anomalous scaling. Thus the factor cx ri3~ is
determined simply by the "bridge" factor V'V'K (x B
Of course analogous contributions exist in all above cor-
relation functions, but only in (5.4), (5.5), and (5.8) can

they prevail at some b.
To conclude, the 1/d expansion tells us that the

anomalous scaling is present already in the oversimpli-
fied model of the b-function-correlated velocity Geld. If
one formally uses the formula in the Introduction for the
anomalous exponent in the Richardson-Kolmogorov case
d = 3, p = 2/3, it gives 4 = 16/9, which is substantially
larger than the experiments and numerics give (4 0.4
—0.5). The difference could be accounted for by the in-
accuracy of both an asymptotic formula at finite d and
the model with b-function-correlated velocity. Note that
our results are valid not only for the steady state but
also for decaying turbulence of a passive scalar with a
compact spectrum as an initial condition. In that case,
the scalar cascade is accelerated as it goes towards small
scales (with typical time t oc r(2 ~)~2) so that the small-
scale part of the scalar distribution is quasisteady.
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