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Viscous conducting Aows with smooth-particle applied mechanics
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Smooth-particle methods have a 20-year history of solving complex problems in fluid and solid
mechanics. Here we first discuss the method, pointing out an interesting and fruitful parallel linking
smooth-particle methods to atomistic molecular dynamics. We then assess the accuracy and applicabili-
ty of the method by comparing a set of smooth-particle Rayleigh-Benard problems, all in the laminar re-
gime, to corresponding highly accurate grid-based numerical solutions of the continuum equations.
Both transient and stationary smooth-particle solutions reproduce the grid-based data with velocity er-
rors on the order of a few percent.

PACS number(s): 66.20.+d, 03.40.Gc, 05.70.Ln

I. INTRODUCTION

Smooth-particle applied mechanics [1—6] is a grid-free
particle method for solving the partial differential equa-
tions of Quid or solid mechanics. It is equally applicable
in one, two, and three space dimensions. The mass,
momentum, and energy of a simulated How are all calcu-
lated by summing up particle contributions. Each parti-
cle is smoothly distributed in space according to a
"weight function" or "smoothing function" w(r). The
smooth-particle formulation simplifies the calculation of
the corresponding spatial derivatives [ Vp, Vv, V T(p, e) ]
and the comoving cruxes [P,Q] in such a way as to pro-
vide the right-hand sides of ordinary differential equa-
tions for the time development of the particle positions,
velocities, and energies {r, v = er[. Thus the mathemati-
cal structure of this macroscopic continuum solution
method resembles that of the ordinary differential equa-
tions of microscopic atomistic molecular dynamics. We
discuss the weight function, which characterizes the
method, as well as the formulation and structure of the
associated ordinary differential equations, in Sec. II. We
emphasize and discuss the connection with molecular dy-
namics in Sec. III.

Like molecular dynamics, smooth-particle methods
can be applied in two or three space dimensions nearly as
easily as in one. Their implementation on parallel com-
puters is also straightforward. For these two reasons,
smooth-particle methods are often applied to complex as-
trophysical problems [1,2] such as colliding planets and
stars, for which correct answers are unknown and grid-
based methods are prohibitively expensive. To evaluate
the adaptability and fitness of this method to more typi-
cal problems in applied mechanics [3], we have recently
carried out a detailed investigation [4,5]. Here we de-
scribe the application of this technique to a fundamental
hydrodynamic instability problem, the Rayleigh-Benard
problem of convective heat conduction in a gravitating

fiuid heated from below [7—11].
For simplicity, but without lack of generality, we study

the Rayleigh-Benard problem in two dimensions. The re-
quired details appear in Sec. IV. These include the equi-
librium and nonequilibrium constitutive relations, as well
as the thermomechanical boundary conditions required
to contain and drive convecting systems. In Sec. V we
generate and summarize conventional grid-based contin-
uum results with which our smooth-particle simulations
can be compared. We find that the smooth-particle ve-
locities agree with the accurate grid-based data within a
few percent.

The continuum results we obtain in Sec. V show an in-
teresting very nearly linear dependence of the Aow's
kinetic energy per particle K/X on the inverse square
root of the Rayleigh number, Ra '~ [Ra=gaL hT/—
(vtc)], for a factor-of-2 change in Ra ' . This simple re-
lationship facilitates the comparison of our smooth-
particle results, discussed in Sec. VI, with fully converged
continuum predictions. Section VII is devoted to the
conclusions we draw from our study.

II. BASIC EQUATIONS OF SMOOTH-PARTICLE
APPLIED MECHANICS

Lucy and Monaghan have independently developed the
smooth-particle approach [1,2] to solving the usual evolu-
tion equations —the continuity equation, the equation of
motion, and the energy equation —for a continuum Quid
or solid:

d lnp/dt= —V v,
dvIdt —= —(1/p)V. P,
de/dt = —(1/p)[Vv:P+V Q] .

The notation for the Aow variables is standard, and it is
written here in terms of the time derivatives following the
Pow, the "comoving" or "Lagrangian" derivatives.
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Each individual smooth particle is distributed in space
according to its smooth weight function w(r &h). As a
result, the Row variables and their spatial gradients all
take the form of sums involving all particle pairs that lie
within the range h of the weight function. The density is
a simple summed superposition of smooth-particle contri-
butions. At the location r, the density p(r) can be calcu-
lated by summing up contributions of a11 particles at loca-
tions I r ] lying within a cutoff distance h of the location
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FICx. 1. Lucy's and Monaghan's weight functions w (r). The
functions are normalized, with a spatial integral of unity. We
have used a range of h =3o =3( V/N)'

p(r)= pm w(r —r ) .
J

In its motion, the jth smooth particle carries with it a
mass m, moves at a velocity U, and carries with it a total
energy made up of internal and kinetic parts:
m [e.+(U. /2)].

For simplicity, in the present work we choose all of the
smooth-particle masses equal to a constant mass m. The
time development of the individual particle velocities and
energies is described below by ordinary differential
motion and energy equations. To find the local Aow den-
sity requires only a simple sum rather than the integra-
tion of the conventional continuity equation.

In the smooth-particle work described here we use ei-
ther Lucy's form [1] or Monaghan's "8-spline" form [2]
of the weight function w:

wL„, (0& r &3o )=(5/9rrcr )[1+(r/cr)][1—(r/3o )]
w Moll aghan (

=(40/63mcr )[1—(2/3)(r/o ) +(2/9)(r/cr) ] .

wM, „,„,„(1.5cr &r &3cr)=(80/63m. o. )[1—(r/3o )]

See Fig. 1. We have arbitrarily chosen the range of the
weight functions, h, the "cutoff" distance, equal to 3a, to
be about three times the nearest-neighbor distance for all
particles. Despite this finite range, and despite the spline
nature of Monaghan's weighting function, both choices
have been judiciously constructed to have continuous
first and second derivatives for all r. The two vanishing
derivatives at the cutoff enhance the smoothness of the
field variables as well as the ease of integrating the
motion and energy equations.

The spatial integral of any smooth-particle weight

function is, by definition, unity. In two dimensions,

I"2~rw dr ——1 .
0

With h =3o., and at unit number density no. —= 1, bulk
particles in two dimensions typically interact with 20 to
30 neighbors, providing a sufficiently smooth description
of the field variables, as suggested by the numerical re-
sults in Fig. 9, discussed later.

There are many alternative ways to quantify the
smoothness and accuracy of the smooth-particle descrip-
tion. One useful approach, followed in Ref. [5], is based
on the observation that a symmetric lattice of smooth
particles, when used to describe a quid, necessarily corre-
sponds to an extremum of the energy and also typically
to a spurious shear modulus. Numerical evaluation of
these spurious moduli, as a function of increasing
smoothing length, indicates a rapid convergence to zero.
Typical shear moduli, for our choice of the smoothing
length, are of the order l%%uo of the bulk modulus.

The main advantage of the smooth-particle method is a
simplification of the evaluation of spatial derivatives

I Vp, Vv, VT, V P, V Q], leading to ordinary, rather than
partial, differential equations of motion for the particles.
With smooth particles, spatial derivatives can be evalu-
ated in several ways [2], of which two seem to us to be the
most useful [5]. To begin, we define the hydrodynamic
density, velocity, and energy at a point in terms of sums
over nearby particles:

p(r)= gmw(r —r. ),
J

p(r)v(r)—:g rnv w(r —r ),
J

p(r)e(r)—:+me w(r —r. ) .
J

The temperature at r, required for heat Aux calculations,
is evaluated from the density and energy per unit mass by
using the thermal equation of state T(p, e).

For the Jeux generating v-ariables, such as the velocity v
which provides the viscous part of the pressure tensor P,
and the temperature T which provides the heat Aux vec-
tor Q, a useful form for the gradients at the smooth-
particle locations follows from the gradients of pv and
pT:

V(pv) —=pVv+vVp~

(Vv); =—g m [(v v, )/p, "]V,w,", —
J

V(pT) =pV T+TVp~—
(VT);—:g m [(T —T, )/p, "]V,w," .

J

To symmetrize these expressions, the mean density p;
can be chosen as either an arithmetic or geometric mean
of p; and p. . We have used the geometric mean in all of
our work. Knowing the velocity and temperature gra-
dients makes it possible to apply the constitutive relations
of Newton and Fourier to associate shear stresses and
heat Quxes with each of the smooth particles.
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For Aows of conserued variables, such as the momen-
tum and energy cruxes, an alternative form of space
derivative, which provides an exact conservation of
momentum and energy in the bulk How, is preferred:

V (Plp) = (V.P)—/p (P/p —).Vp~

(V P);/p; = g m [(P/p');+(P/p'), ] V;w;, ,
J

V.(Q/p) = (V.Q)/p—(Q!p ).—Vp~

(V Q), /p;= pm[(Q/p ), +(Q/p'), ].V, w;, .
J

With these choices the smooth-particle motion and ener-

gy equations become

. rspAM—:v; = —X m [(P/p');+(P/p'), ].V;w;, +g . ,
J

e;—= —g (m/2)[(P/p );+(P/p ) ]:(v —v;)V;w;.

—g m [(Q/p );+(Q/p ).] V;w;
J

where SPAM denotes smooth-particle applied mechanics.
As emphasized in Ref. [2], the underlying differential
identities, on which the definitions of [ Vv, V T, V P, V Q]
are based, are not at all unique, so that other systems of
"smooth-particle" equations can be developed. For ap-
plications of a different representation of the gradients,
using Gaussian weight functions, see Ref. [6].

The smooth-particle approach outlined here is perfect-
ly general, in that any constitutive relation can be used.
In our own work we have used Newtonian shear viscosi-
ty, zero bulk viscosity, and Fourier heat conduction, all
with constant transport coefficients, but the method is it-
self not at all restricted. General dependences of the
transport laws on such variables as plastic strain or ten-
sor stress invariants can easily be included. One special
case is of particular interest in illuminating some limita-
tions of smooth-particle applied mechanics by relating it
to molecular dynamics. This special case [12]„in which
the pressure varies as p, is discussed separately in Sec.
III. For generality in our hydrodynamic applications, we
treat not only the ideal gas constitutive law but also two
more realistic dense-Quid equations of state, all with sim-
ple linear transport laws.

Because the density, the gradients, and the Eulerian
time derivatives at each particle location involve the eval-
uation of pair sums, the smooth-particle method has to
proceed in three separate stages. First, the density at
each particle is calculated. Next, the pressure tensors
[P], from [Vv], and the heat fiux vectors [Q], from
[VT], are worked out. Finally, the pressure and heat
fiux gradients [V P, V.Q] are evaluated, allowing v and e
to be evaluated for each particle. The very smooth na-
ture of the integrands makes the use of the classical
fourth-order Runge-Kutta method an efficient approach
to the integration of the particle equations. The most
time consuming step, finding all those interacting neigh-

bor pairs that lie within a range h, requires implementing
a linked-list algorithm [13], with a time proportional to
X lnN, where N is the number of particles.

Boundaries provide the crucial link between the Quid
system of interest and the surroundings with which it in-
teracts. The boundaries affect the pressure gradients and
temperature gradients that govern the particle equations
for [v,eI. There are two natural ways to confine a sys-
tern with boundary particles. See Figs. 2 and 3 for exam-
ples. First, sufficiently many particles, fixed in space, as
well as a leak-proof, perfectly rigid, elastically rejecting
wall, can be used. The fixed boundary particles of Fig. 2
provide a high-density container region capable of repel-
ling approaching particles.

At the fixed boundaries both the parallel and the per-
pendicular velocity components vanish. In implementing
the thermal boundaries required in the Rayleigh-Benard
problem, the temperatures of the boundary particles must
likewise be fixed. It is nearly as easy, and it is also more
"realistic, " to use instead a mirror boundary condition in
which all approaching particles produce rejected images
(as shown in Fig. 3). The image particles can be assigned
velocities and temperatures independent of all the other
particles in their vicinity. For still a different treatment
of boundaries, using a continuous distribution of external
particles, see Ref. [6]. In Sec. IV, we describe the appli-
cation of both of our discrete-particle boundary ap-
proaches to the classic problem of Raleigh-Benard insta-
bility.

III. RELATION OF SMOOTH-PARTICLE APPLIED
MECHANICS TO MOLECULAR DYNAMICS

In the special case that the pressure is inviscid and
varies as the square of the density I' ~p, the smooth-
particle equations of motion

'rsp~M ——v, —= —gm [(P/p );+(P/p )J ].V;w J+g
J

FIG. 2. Rigid boundary rows of fixed particles (with specified
temperatures) are used to confine the bulk fluid. The fixed

boundary particles are shown as open circles, while the bulk
smoothed particles are indicated by arrows with a length pro-
portional to the individual particle velocities. The illustration
shows an ideal gas Rayleigh-Benard Aow with

g =—k/kz =0.5(m c)' /o. at a Rayleigh number of 10000.
There are 5000 bulk particles in a rectangular 50o. X 100o. box.
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FIG. 3. ReAected image particles follow the motion of corre-
sponding bulk Auid particles, but with specified values of veloci-

ty and temperature. The reAected boundary particles are shown
as open circles, and the bulk smoothed particles are indicated
by arrows with a length proportional to the individual particle
velocities. The illustration shows an ideal gas with

g =k /kz =0.5(m c)' /o at a Rayleigh number of 10000.
There are 5000 bulk particles in a rectangular 50o. X 100o. box.
All particles lying within a distance 3o.=3I', V/X)' of the
boundary generate reAected image particles.

become identical to the equations of motion of molecular
dynamics [5,12,14]

I'r' ~ V p]MD

with w (r) playing the role of a pair potential. The result-
ing smooth-particle trajectories are likewise identical to
the classical trajectories of atoms following Newton's
equations of motion [12]. Though special, and applying
exactly only to the isentropic equation of state for a two-
dimensional ideal gas, the quadratic equation of state
P ~p differs only slightly from that of a three-
dimensional isentrope P ~p and is also helpful in un-
derstanding any fluid flow in which the quotient P/p is
approximately constant. This isomorphism with molecu-
lar dynamics is particularly useful in understanding the
peculiar behavior of the smooth-particle equations at
high pressure and also provides an interesting version of
the reversibility paradox. These two consequences are
discussed below.

First, we comment again that smooth-particle applied
mechanics necessarily incorporates artificial viscoelastic
effects, resulting from the particulate nature of the
smooth-particle continuum fields, providing spurious
elastic constants and transport coefficients. Even with a
"Quid" constitutive equation, sufficiently high pressure
can force the underlying smooth particles to freeze,
behaving as a (thoroughly artificial) solid. In the very
high-pressure case P~~, no pair of smooth particles
can have a separation lying between 0 and h. This causes
a peculiar limiting lattice structure with many particles
per site. Though these spurious effects vanish as the
range of the weighting function increases [5], in certain
circumstances —an example, with two particles per site,
appears in Fig. 4—they give rise to qualitative, as op-
posed to quantitative, errors in simulations. Accurate ap-
plications of the smooth-particle approach require that
these spurious effects be negligibly small. A detailed
analysis of this artificial freezing out of convective
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FIG. 4. "Freezing" of the smooth-particle Auid. There are
512 bulk particles in a rectangular 16cr X 32o. box. A grid-based
solution of the Navier-Stokes equations shows that this prob-
lem, with a Rayleigh number of 3000 I,'about twice the critical
value) and the dense-Auid equation of state has a convective
solution with two rolls. A smooth-particle solution, for the
same conditions and equations of state, using Monaghan's
weight function with a range h =3a., leads to an unphysical
high-pressure freezing out of the smooth-particle motion. Simi-
lar results are obtained by using Lucy's weight function.

IV. RAYLEIGH-BENARD SIMULATION WITH SPAM

For Auids that expand when heated, the effect of gravi-
tational forces on the resulting density gradient can lead
to convection currents [4,5]. Then heat is transported
more efficiently, by a combination of conduction and con-
vection. This situation is shown in Figs. 2 and 3, where
the gravitational acceleration is downward while the

motion appears in Sec. IV.
Second, in addition to emphasizing the practical need

for vigilance in simulating Auid How with smoothed parti-
cles, the isomorphism of smooth-particle trajectories to
atomistic ones is also relevant to an academic under-
standing of the irreversibility paradox Boltzmann studied
over a century ago. Boltzmann devoted much of his life-
time to understanding and explaining the fact that micro-
scopic particles, obeying Newton s time-reversible equa-
tions of motion, can give rise to macroscopic hydro-
dynamic irreversibility, as described by the second law of
thermodynamics. In our special case, the smooth-
particle analysis of a two-dimensional ideal gas, the mac-
roscopic equations being represented are the time-
reversible Euler equations for an inviscid nonconducting
Quid, but the model used to describe them is expected to
be that of a Quid composed of particles interacting with
the potential function w (r), and hence having an atomis-
tic viscosity and heat conductivity. Thus Boltzmann's
paradox (microscopic reversibility ~ macroscopic ir-
reversibility) is reversed for the smooth-particle represen-
tation [macroscopic time-reversible equations ~ (irrever-
sible) microscopic molecular dynamics]. The exact rever-
sibility of the smooth-particle equations, and their rela-
tion to molecular dynamics for an Euler Quid, has recent-
ly been analyzed in detail [12].



52 VISCOUS CONDUCTING FLOWS WITH SMOOTH-PARTICLE. . . 4903

PP = [p/(1 pb)] —Pap, —Pe =1.0—Ppa,
a —= so /2m, b = cr /2m . (2)

We choose these values for the two material properties, a
and b, so that the unit reduced number density
no. =No /V=po. /m =1 somewhat exceeds the critical
reduced number density (2/3) and that our reduced tem-
perature range 0.5 & mk~ T/c. & 1.5 lies well above the
critical reduced temperature mks T, /c, =(8/27).

In addition to the ideal gas and van der Waals models,
we have also used a more complex equation of state [4]
from molecular dynamics —a quadratic expansion of the
pressure and energy about a reference state at unit re-
duced density and temperature:

PV/NE=5+85n+2. 55u+9(5n) +25n5u,

mks T /E = 1 —5n +0.75u —0.8(5n )
—0.55n 5u,

u =me/E= E/N—v=1.44—3+1.55n

5n =nfl 1.0,
5u = (E/NE) —1.443, —

& = ( mks TIE ) 1.000 . —

+1.55r+2. 4(5n) +1.25n&,
(3)

At the reference state the reduced energy and pressure
are given by u =E/No=1. 443 and P.o /E=5. Notice
that we use u to indicate a reduced energy. The thermal
equation of state, linking energy to temperature, is re-
quired for heat Aux calculations.

It should be noted that this quadratic dense-Auid equa-
tion of state (3) is not quite "thermodynamically con-
sistent. " For instance, the Maxwell relation based on
differentiating Helmholtz's free energy A with respect to
temperature and volume

a'(p~ )/apa v=(aE/a v), =a'(p~ )/a vap
= —a[(pp)/ap], ,

p:—1/mks T

motionless top and bottom boundaries are held fixed at
cold and hot temperatures, respectively. We have simu-
lated such prototypical Rayleigh-Benard problems by us-
ing both Lucy's and Monaghan's weight functions with
three different equations of state, given in Eqs. (1—3)
below. The simplest of the three state equations is the
ideal gas law, appropriate to a dilute gas,

P =pe, Pe= e/k sT=l,
where k& is Boltzmann's constant per unit mass. We have
also used van der Waals' ffuid equation of state (2) and a
typical dense-fiuid equation of state (3) as determined by
a set of molecular-dynamics simulations [4].

Van der Waals' equation applies to both gases and
liquids. The equation augments the ideal-gas equation of
state to include both the effects of attractive forces
(through parameter a) and excluded volume effects
(through parameter b) In th. e single-phase region of the
phase diagram,

is not exactly satisfied. This means that thermodynamic
cycles can be constructed in such a way as to violate con-
servation of energy. To illustrate, consider just linear
variations around the reference state. (BE/BV), evalu-
ated from the energy equation, is —1.5c./cr, whereas
B(pP)/dp=P +BP/Blnp, evaluated by combining the
mechanical equation of state and the energy equation, is
1.25E/cr T. his lack of consistency causes no apparent
trouble in smooth-particle simulations. On the other
hand, we believe that it is the underlying cause of a slow
divergence, at very long times, of some of our attempts to
find corresponding Navier-Stokes "solutions. "

Our dense-ffuid equation of state (3) was especially use-
ful in revealing a fundamental shortcoming of the
smooth-particle method in treating dense Auids at very
high pressures. Our early attempts to compare Navier-
Stokes and smooth-particle solutions for the molecular-
dynamics-based equation of state led repeatedly to
"frozen" states, with the smooth particles crystallizing
into static hexagonal-symmetry structures with either one
(Lucy) or two (Monaghan) particles per site. See Fig. 4,
for example. With exactly the same imposed boundary
conditions, the Navier-Stokes equations easily generated
reproducible convecting Aows.

This unphysical high-pressure freezing can be traced to
the form of the smooth-particle equation of motion, as
discussed in Sec. III. At sufficiently low pressures a typi-
cal smooth-particle kinetic energy exceeds the maximum
value of the effective potential energy from which the
smooth-particle accelerations are determined:

mu & P(0) =2P ( V /N)2w (0) .

At sufficiently high pressure, on the other hand, P( V/N)
approximates mc, where c is the speed of sound, so that
ordinary hydrodynamic Aows, with compressibility but
with velocities much smaller than the speed of sound,
cannot overcome the potential barrier to smooth-particle
motion.

A more precise criterion for the applicability of the
smooth-particle technique for fluids can be based on an
analog of Lindemann's melting criterion. In two or three
space dimensions, melting occurs when the fluctuation in
the nearest-neighbor separation is of the order of 10%.
For the corresponding potential energy to be available
from the Aow, the pressure cannot be too large:

mv )2Pn [w(0. 9o. ) —w(o)] .

For our Lucy weight function, the combination in square
brackets is about 0.01n. The dense-Quid equation of state
(2), which was fitted to a set of equilibrium molecular-
dynamics simulations, has 2Pn '=mc, where c is the
sound speed. Under supercritical and moderately dense
conditions, the van der Waals equation of state (2) has a
considerably lower pressure relative to the speed of
sound. Thus, though the smooth-particle approach pro-
vides a good description of the van der Waals Qow as well
as ideal-gas ffows based on (1), it can fail to describe
convection —as shown in Fig. 4—for the alternative
equation of state given in (3). The difference lies in the
smooth-particle treatment of the pressure gradient. In
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conventional continuum mechanics, a constant pressure
addition does not affect the accelerations at all because
they depend upon the gradient V.P. In smooth-particle
mechanics such an addition does affect the accelerations,
through the combination (P/p ) Vw.

In our smooth-particle work we have used not only
two different types of boundary conditions, fixed particles
and moving reAected image particles, but also two
different system shapes, with aspect ratios of 1 and 2, in
order to make contact with earlier calculations [7—11].
A system with periodic lateral boundaries and an aspect
ratio of 2 corresponds closely to Chandrasekhar's classi-
cal analysis [7], which predicts —for sticking
boundaries —that stable convection begins to occur as
the Rayleigh number exceeds 1708. A square system,
with specified temperature on the boundaries, corre-
sponds to the simulation of Goldhirsch, Pelz, and Orszag,
using a spectral method [9]. These workers did not esti-
mate the precise critical Rayleigh number for this system.
In both cases we control the boundary values of tempera-
ture and velocity by specifying these for all image parti-
cles.

Both Chandrasekhar and Goldhirsch-Pelz-Orszag con-
sider the nearly incompressible Boussinesq approxima-
tion. This leads to small but definite deviations of our
fully compressible results from theirs, as is discussed
quantitatively in Sec. V. Though we first believed that
the small deviations from Chandrasekhar's analysis were
due to our relatively large temperature gradient (with
AT = ( T ) ), additional calculations with much smaller
temperature differences AT produced only small changes,
so we believe that the Boussinesq approximation is re-
sponsible for the disagreements. The usual theoretical
perturbation analyses typically assume either an isochoric
or an isobaric thermal diffusivity. In fact, for a compres-
sible Auid, any hydrodynamic process is neither isochoric
nor isobaric, so that an intermediate heat capacity is ap-
propriate. A short discussion of the limitations of the
Boussinesq approximation, with references, appears in
Ref. [15].

In addition to the equilibrium equation of state, ir-
reversible momentum and energy transport must be de-
scribed. For simplicity, we have in every case chosen
constant, and equal, reduced transport coefficients, corre-
sponding to a Prandtl number of unity. We have ex-
plored the two simplest choices. First,

g =k /k~ ~ ( m c)' ~ /cr, ,

where g is the shear viscosity, k is the thermal conduc-
tivity, and kz is Boltzmann's constant per unit mass.
Second,

v=g/p—=~=k/(pC~) o- (E/m)'~ o. ,

where v is the kinematic viscosity and ~ is the thermal
diffusivity a. =k/(pC~). C~ is the isochoric specific heat.
The transport coefficients g and k are defined by
Newton's and Fourier's laws:

P„=—g[(Bv IBy)+(Bv IBx)], Q = kBT/By . —

Though the two choices above are equivalent for the

reference state, they in fact lead to slightly different criti-
cal Rayleigh numbers, close to, and bracketing,
Chandrasekhar's analytic result based on the Boussinesq
approximation.

In the continuum simulations we have assigned the
densities and Auxes of image particles to match those of
the corresponding bulk particles. Thus the density and
cruxes are continuous at all system boundaries. To satisfy
the condition of static equilibrium at an exactly constant
density, we have further chosen the magnitude of the
gravitational acceleration to satisfy the static force bal-
ance equation

( BP /B T) d T pg dy—=0 .

Thus, for the ideal gas equation of state, g is chosen equal
to k~6, T/L, where mk~ is Boltzmann's constant, L is the
system height, and AT is the temperature difference
Th ~

T &g ~ For the dense-Quid and van der Waals equa-
tions of state, we have used the same constant-density
condition, evaluating the thermodynamic derivative
(BP/BT) . All of our simulations have been carried out
with the overall reduced density equal to unity; most
have a mean reduced temperature m k~( T) I E=(m k~ /
E)[T»,+T„,~]/2 of unity as well.

V. CONTINUUM FLOW SOLUTIONS
WITH A REGULAR GRID

We obtained grid-based continuum solutions in order
to test the accuracy of our smooth-particle results,
though one aspect of these solutions, as discussed below
and illustrated in Figs. 5 and 6, has some independent in-
terest of its own. Only a brief description of our method
for solving the Navier-Stokes equations is warranted be-
cause the approach we developed turned out not to be
new [11]. We spanned the system with a grid of square
cells, evaluating [ v, e, Bv /Bt, Be /Bt j at the grid points
and [p, P, Q, Bp/Bt J at the cell centers. The centered-
difference equations for the time development of (p, v, e J

at these fixed locations were integrated with the same
fourth-order Runge-Kutta integrator that we used in the
smooth-particle work. The required values of density
from cell centers just outside the system were set equal to
the nominally constant reference-state value of unity.
With this scheme we found no trouble in obtaining fully
converged results for systems of several thousand cells.

Two aspects of the continuum results were especially
interesting. First, we found that there is a considerable
range of Rayleigh number values (from roughly the criti-
cal value, at which Aow begins, to four times that value,
as shown in Figs. 5 and 6) for which the kinetic energy of
the convective rolls varies almost exactly linearly when
plotted as a function of Ra ' . Furthermore, the slopes
and intercepts of these lines also varied almost exactly
linearly with L . These two simple linear dependences
made it possible to extrapolate accurately (five significant
figures can easily be obtained) to a fully converged criti-
cal Rayleigh number using just a few calculations, with
either XXN or XX2X square zones and with Xvalues of
30, 40, 50, . . . . Such highly accurate extrapolated re-
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FIG. 5. Fully converged (L~ ~ ) variation of reduced kinetic energy E/Nc, with Rayleigh number Ra with periodic lateral boun-
daries, fixed upper and lower boundaries, an aspect ratio of 2, and g=k/k& ~ (mc. )' /o. . Both ideal gas (left) and van der Waals
(right) results are shown. In the ideal-gas case additional results using v =—g/p=a —=k/(pCv) ~ (c/m)' o. are included for compar-
ison. The Lucy-weighted smooth particle points shown, for comparison to the Navier-Stokes solutions, are the results of simulations
using 5000 particles.

suits are shown in Figs. 5 and 6 for the two kinds of
boundary conditions. These numerical results make it
possible to assess the accuracy of the smooth-particle
solutions discussed in Sec. VI.

state for an ideal gas using the smooth-particle method to
that found by solving the Navier-Stokes equations, as de-
scribed in Sec. V. In both cases we use the same simple
initial velocities

VI. SMOOTH-PARTICLE APPLIED MECHANICS
FLOW SOLUTIONS

Our smooth-particle calculations were typically carried
out with from 500 to 5000 particles, though even a mil-
lion particles could be used on a modern parallel comput-
er. Five hundred particles can easily generate convincing
and realistic convection currents. See Fig. 7 for a 512-
particle How using van der Waals' equation of state.

Not only the final states of these simulations but also
the approach to these convecting states are described
semiquantitatively, with errors of the order of a few per-
cent. In Fig. 8 we compare the approach to the steady

u„cc sin(mx/L)sin(2my/L), L&x & +—L,
u~ ~ cos(~x/L) cos(my/L), L/2&y &—+L/2

with an internal energy distribution corresponding to a
uniform temperature gradient.

Errors of less than about 1% are disguised by the fluc-
tuations inherent in the smooth-particle method. These
Auctuations are the analog of kinetic temperature in
molecular dynamics, a measure of the mean-squared devi-
ation of individual particle velocities from the average ve-
locity in their neighborhood, (u ) —(u ) . Because the
kinetic energy of the continuum Aows was found to vary
nearly linearly with Ra ', we have chosen the kinetic

0.002
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FIG. 6. A fully converged (L~~) variation of reduced
steady-state kinetic energy I( /Xc with the Rayleigh number Ra
in square systems with four reflecting boundaries. The tempera-
ture along the lateral boundaries is a linear interpolation be-
tween the temperatures of the two horizontal boundaries. The
points shown are the results of corresponding Lucy-weighted
smooth-particle simulations using 1600 particles.
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FIG. 7. Rayleigh-Benard simulation of a van der Waals fluid

using Lucy's weight function. There are 512 bulk particles in a
rectangular 16' X32cr box. The mean reduced number density
n cr = 1 is half the maximum, and the mean temperature is 27/8
times the critical temperature.
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energy of the smooth-particle Aows (p/2)(v) for a
quantitative comparison. We compared the Navier-
Stokes and smooth-particle kinetic energies per unit mass
for Rayleigh numbers 5000 and 10000. A comparison at
a still lower Rayleigh number of 2500 was abandoned. In
this last case the smooth-particle simulation exhibited rel-
atively large fluctuations, while fluctuations are ignored
in the hydrodynamic solution. From the Navier-Stokes
calculations, the corresponding infinitely fine-mesh limits
are 0.003 40 and 0.004 81 for Rayleigh numbers 5000 and

1000 2000 3000 4000 5000
Time

FIG. 8. Approach of the kinetic energy to the steady two-roll
state for the continuum and Lucy-weighted smooth-particle
methods, applied to an ideal gas [Rayleigh numbers 10000 and
g=k/ks =0.5(me)'~ /o ]. The initial condition has a uniform
temperature gradient and two simple rolls, with the functional
form given in Sec. VI corresponding to a total kinetic energy
about one half the final value.

10000. From the smooth-particle results, using the
ideal-gas equation of state, these same specific energies
are 0.0030 and 0.0046. Thus the energy errors are no
worse than 10%, so that velocity errors are of the order
of 5%. Smooth-particle kinetic-energy data are also
shown in Figs. 5 and 6, again with velocity fields correct
to about S%%uo. Comparisons of the density and tempera-
ture contours appear in Fig. 9. We view the good agree-
ment of the smooth-particle and the Navier-Stokes re-
sults as completely satisfactory, provided the pressure is
low enough to allow for smooth-particle Quid How.

Figure 10 displays an interesting feature associated
with Monaghan's weight function with h/o =3 and at
unit reduced density. The smooth particles have a ten-
dency to move in closely associated pairs. This feature is
common to both the Rows (an ideal gas and a dense Auid)
shown in the figure. Under these same conditions Lucy's
weight function shows no such pairing phenomenon. In
the ideal-gas case the two rolls shown in the figure give
way to a single roll at lower values of the Rayleigh num-
ber.

At higher values of the Rayleigh number the "robust"
smooth-particle technique continues to provide solutions
when our centered-difference regular-grid continuum
solutions begin to Auctuate. In this regime more sophisti-
cated grid-based techniques would be required for a
quantitative comparison with the SPAM simulations. It
is the robust, highly stable aspect of smooth-particle ap-
plied mechanics, for extreme conditions and at high
speeds, that accounts for its popularity in studying a
variety of strongly nonequilibrium Auid and solid Aows

pj.
We ourselves have used the method to study the in-

iii iiiiiiiiiii illllII IIII I I III IIIIIII IIII II IIIIIII IIIIII III IIIIIIII

FIG. 9. Density (upper) and temperature (lower) distributions for the continuum (left) and smooth-particle (right) methods using

the ideal-gas equation of state with g=k/k& =0.5(me:)' /o. . There are 5000 bulk particles in a rectangular 50X100o. box. The
Rayleigh number is 10000 and the aspect ratio is 2. The total initial kinetic energy of the 5000 particles was about 9c.. The distribu-

tions correspond to a time of 5000(m o. /E)'
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FIG. 10. Two Rayleigh-Benard simulations with temperatures of 10.0c/mk& and 0.5c/Ikey, using Monaghan s weight function.
There are 2500 bulk particles in a rectangular 50o. X 50o. box. The left-hand simulation uses the ideal gas equation of state, and the
right hand simulation uses the empirical dense-fluid equation of state described in the text. The transport coefficients are
g=k/kz =0.8(mc)' /o. in the ideal-gas case and 0.4(me)' /o. in the dense-Quid case. The gravitational field strength was chosen
to give a Rayleigh number of 350000 in both cases. In the ideal gas the two rolls merged into one for small Rayleigh numbers near
the critical value. Temperature varies linearly with distance along the vertical sides of the box.

teraction of strong shock waves with material interfaces,
the "Richtmyer-Meshkov" instability, and found good
agreement with theoretical estimates of the instability
growth rate [5]. A sample simulation result, for the
growth of a sinusoidal interface perturbation under shock
wave conditions, is shown in Fig. 11. The corresponding
perturbation growth rate agreed with linear stability
theory to within 2%%uo in this case [5].

VII. CONCLUSIONS

Smooth-particle applied mechanics provides a robust
and simple approach to reasonably accurate solutions of
many continuum problems, including Rayleigh-Benard
instability. It completely avoids grid-tangling and mesh
instabilities. In some cases, smooth-particle solutions re-
quire many fewer degrees of freedom than do equally ac-

FIG. 11. Time development
of a sinusoidal shock front per-
turbation using a smooth-
particle description for two ideal

)
' gases initially differing by a fac-

tor of 4 in density. The width of
the system is 30o.. The height is
100o.. The early growth rate of
the interface perturbation is ap-
proximately linear in the time

~

and lies within 2/o of the
theoretical calculation, as is de-
scribed in Ref. [5].
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the smooth-particle trajectories are essentially Newtonian
trajectories, for particles with mass m, subject to an
effective potential function 2Pn to ( r ). Accordingly,
high-pressure subsonic problems, with U &&c, cannot be
reliably solved by using this method.

The smooth-particle method promises to be of special
interest whenever it is desirable to include fluctuations or
to evaluate accurate Aow quantities on a regular grid.
This latter feature is desirable for the calculation of fast
Fourier transforms of field quantities and for automatic
rezoning. Figure 12 illustrates two velocity-arrow views
of the same Bow field: first, the individual smooth-
particle velocities; second, the averaged Aow velocities
computed at the vertices of a square grid. Because the
smooth-particle results we find lie within a few percent of
fully converged solutions of the compressible continuum
equations, it is economically desirable to develop this
method further.

Although we have not carried out detailed studies it is
clear that the convergence of the smooth-particle approx-
imation to a compressible continuum Quid or solid also
guarantees convergence of the long-wavelength density
fluctuations to the corresponding Debye spectrum.

FIG. 12. Two equivalent views of an ideal gas simulation at a
Rayleigh number of 10000 and with g =—k/k&=0. 5(mE)' o..
There are 5000 bulk particles in a rectangular 50o. X 100o. box.
In the lower view the velocities have been evaluated on an
1800-point square grid, still covering the same 50o. X 100o. area,
using Lucy's weight function with a range of 3o.=3( V/X)'
The distributions correspond to a time of 5000(m o. /c, )'

curate finite-difference or finite-element solutions. Con-
siderably fewer smooth particles are required than atoms
in corresponding molecular-dynamics simulations of
Rayleigh-Benard convection, for instance. Nevertheless,
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