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Multiple-scattering theory of excess electrons in simple Auids
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A formalism is developed to study the dependence on the density n of the conduction-band energy
minimum Vo(n) (relative to vacuum) of excess electrons in simple Auids in the framework of the
multiple-scattering theory. Focusing our attention on the low-density expansion of Vo(n), it is suggested
that Vo is not an analytic function of n because of the contribution of infinitely remote atoms of the Quid.

This expansion is investigated within the random-phase approximation (RPA). In its simplest form, the
RPA treatment predicts an analytic behavior generalizing Fermi's linear law. Taking the case of excess
electrons in Quid argon as an example, we calculate the term of order n, which appears to be due to
excluded-volume effects and is very sensitive to the temperature and the interatomic potential. The in-
clusion of multiple-scattering effects is investigated through a higher-order RPA treatment, which is
shown to present the same nonanalytic behavior of Vo(n) as the "exact" result. In order to explore this
behavior experimentally, it is proposed that accurate Vo(n) measurements be performed at very low Auid

densities along isotherms.

PACS number(s): 61.25.Bi, 71.25.—s

I. INTRODUCTION

Studies of the properties of excess electrons in a variety
of insulating Quids have been under way for many years
[1]. Recently, a great deal of effort has been devoted to
this subject from a numerical point of view, especially in
simple fluids, such as, for example, heavy rare gases (ar-
gon, krypton, and xenon) and simple hydrocarbons
(methane) [2,3]. One important feature of excess elec-
trons in these simple fluids is the variation of the
conduction-band energy minimum Vo (relative to vacu-
um) with density n As the. fiuid goes from the gas phase
to the liquid near the triple point, Vo(n) is found to ex-
hibit a minimum at a density that approximately coin-
cides with the density at which one observes a maximum
of the electron mobility [1]. The only exact result, estab-
lished by Fermi [4], concerns the limiting behavior of Vo

at very low densities and is expressed, in atomic units, as

Vo(n) =2nan,

where a is the electron scattering length for a single atom
of the Quid.

Fermi's limiting law [Eq. (1)] has been consistently
used at low densities to interpret experimental results of
the shift of the vertical ionization potential of a molecu-
lar impurity doped into a number of nonpolar gases as a
function of the host density [5—7]. As shown in a recent
investigation performed in low-density argon doped with
CH3I, this law, when extrapolated to higher densities, ac-
counts for a remarkable fraction of the measured Vo
value even at densities close to the critical point [5].
Moreover, in Ref. [2], it has been proven, using path-
integral molecular-dynamics simulations of the electron-
argon system, that Vo is only weakly sensitive to the

structure and the coordination number of the Quid. Such
observations suggest that including structure and
multiple-scattering effects to the lowest order in density
in addition to Fermi's leading contribution could provide
a good estimate of the overall conduction-band energy
curve and eventually afford an explanation of the ex-
istence of the Vo minimum in the liquid region near the
critical point.

This paper is organized as follows. In Sec. II we
present a theory of Vo(n) that is an extension of Fermi's
formula to all fluid densities and is based on the
multiple-scattering theory of Foldy [8] and Lax [9]. The
result is a hierarchy of equations that cannot be solved in
a closed form. Section III describes a random-phase ap-
proximation (RPA) that allows for an asymptotic expan-
sion of Vo(n) at low Quid densities. Taking the case of an
excess electron in fluid argon as an example, we show in
Sec. IV that, within the single-scattering approximation,
the departure from the ideal gas structure is responsible
for a correction of Vo that is quadratic in n. In contrast,
Sec. V suggests that, for an ideal gas, the departure from
the single-scattering approximation gives rise to a nonan-
alytic correction to Vo(n). A conclusion is given in Sec.
VI. We use atomic units in this paper unless otherwise
specified.

II. MULTIPLE-SCATTERING THEORY

We consider a monatomic Quid composed of a very
large number of atoms (N) with coordinates
R„R2, . . . , R~, in a volume 0, with density n =N/Q.
An excess electron at the bottom of the fluid's conduction
band is characterized by an extended (percolating) state
4' and the (lowest) energy Vo (relative to vacuum), such
that
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2 N

+ g V( r —R, ~
) .%(r) = Vo+(r), (2)2

where p is the conjugate momentum to the position of
the electron r and V is the potential describing the
electron's interaction with a single Quid atom. In relation
to large disordered systems [10],we make the central as-
sumption that Vo is a self-averaged quantity in the same
way as, for example, the electronic density of states. It is
then appropriate to carry out the average of Eq. (2) over
all Quid configurations. Since 4 is an extended state, its
average value is a nonvanishing constant and it is con-
venient to set this value equal to one. Under these condi-
tions, the average kinetic-energy term vanishes and we
get

Vo(n)=n f dr V(r)%&(r), (3)

where 4, is the configuration average of 4 keeping one
atom at the origin. It is easy to show that %', obeys the
inhomogeneous equation

+V(r) .%&(r)+n f dRgzV(~r —R~)+z(r, R)

+n f dRp+gp+, V(~r Rp+]~)% p+&(r)

= VOV~(r), (5)

where gp+ &
is the distribution function of the atom P + 1

when atoms 1, . . . , P are kept fixed. This hierarchy of
equations is familiar in multiple-scattering theory, but
here the emphasis is put on the determination of Vo. Be-
cause of the simple way by which the density enters Eqs.
(3)—(5), it seems natural to consider the inhomogeneous
terms as perturbations and consequently develop an
asymptotic density expansion of Vo about n =0. This
could be done, for instance, by assuming a power-series
expansion for Vo and the %~ (P = 1,2, . . . ) configuration
averages and by identifying the coe%cients of the same
power in n. In order to obtain 4& to order P in n, it
would be sufficient to truncate the hierarchy at the same
level P, that is, to neglect the inQuence of the Quid in Eq.
(5) so that %~ would have to be known only to zeroth or-
der in n and be given by

p2 P
+ g V(~r —R, ~) %~(r)=0. (6)

2

However, a closer look at the iterative equations would

= Vo+, (r), (4)

where g2 is the pair distribution function of the Quid and
%2 is the configuration average of %' keeping one atom at
the origin and a second atom at R.

Equation (4) is the first of a hierarchy of equations that
relate configuration averages of 4 with P and P+1
atoms in fixed positions ('P~ and 0 p+y respectively),
namely,

2 P
+ g V((r —R, ~) 4~(r)

2

show that this procedure is incorrect, because the terms
in the expansion of 4& would be secular and increasingly
divergent as r ~ ~ with increasing order. This behavior,
in turn, is symptomatic of a singular perturbation prob-
lem [11]and, consequently, of the nonanalytic character
of Vo at low densities.

The correct perturbative treatment of the complete
hierarchy is a formidable task that we do not intend to
undertake in this work. Instead, we present in the follow-
ing sections a RPA treatment of this system of equations,
which presents a similar singularity at low densities. The
resulting expansion is thus expected to share the same
analytical properties as the exact solution to the hierar-
chy and eventually very similar values for the coefficients
of the expansion. In particular, we will show that Quid-
structure effects lead to an analytic perturbation series,
while the correction due to multiple scattering is not ana-
lytic.

III. RANDOM-PHASE APPROXIMATION

The RPA is a low-density approximation appropriate
to the perturbative treatment we are seeking. In its sim-
plest form, the RPA two-center wave function +2(1,2) is
approximated by

ql~(1, 2) =q']( l )q'$(2), (7)

Substituting Eqs. (3) and (8) into Eq. (4) gives

H, (1)%,(1)=n%', (1)f d 2(1 —
g2 ) V(2)%,(2)

—n f d2gz V(2)5qlz(1, 2), (10)

where it is seen that the inhomogeneous term consists of
two very distinct contributions. The first one is called the
"excluded-volume" term because it vanishes for an ideal
gas (go= 1). The second one is the multiple-scattering
term, which goes beyond the RPA1 of Eq. (7).

Neglecting both terms on the right-hand side in Eq.
(10) corresponds to the single-scattering approximation,

where the numbers 1 and 2 in parentheses refer to the
coordinates R, and R2 of the atoms l and 2, respectively,
while the subscripts refer to the number of centers con-
sidered. For clarity of presentation, this sirnplified nota-
tion will be used in the following. It must be noted that
Eq. (7) is exact when atoms are infinitely remote.

Before studying this first-order random-phase approxi-
mation (RPA1), we describe the next level of approxima-
tion (RPA2), which we will consider below. We first in-
troduce a correction to Eq. (7), namely,

%~(1,2) =%,(l )%,(2)+5%~(1,2)

=ql, (1)%,(2) I 1+@(1,2)j,
and then apply the RPA to the three-center wave func-
tion

%3(1,2, 3)=%,(1)%)(2)W,(3)

X t 1+q)(1,2)+y(1,3)+q&(2, 3)] .
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a =2f V(r)+o(r)r dr . (12)

Fermi's result can then be deduced by a comparison of
Eqs. (3) and (12).

The second equation of the hierarchy of Eq. (5} gives
%2, according to

2
+ V(1}+V(2) .q(2(1, 2)

2

which leads to the Fermi relation of Eq. (1}. For the pur-
pose of the following discussion, we introduce the corre-
sponding solution %0 defined by

H, (1)%'0(1)=0,
which is related to the scattering length a by the relation
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(13}+n 3g3V 3 %'3 1,2, 3 = V0%'2 1,2

and terminates the hierarchy. Substituting Eqs. (3) and
(9) into Eq. (13) yields

Hz(1, 2)q(2(1,2) =n(I(2(1, 2)f d3(1 —g3 ) V(3)+i(3)

n~lli(1) f—d3g3 V(3)5%'z(2, 3)

—nq(, (2)f d3 g3 V(3)5%'z(1,3), (14)

IV. FIRST-ORDER RPA

In this approximation (RPA1), Eq. (10) reduces to

H (1i)I((1(i)=nq&(1()f d2(1 —g2)V(2)+i(2), (15)

which is a nonlinear, integro-differential equation for 4&.
%e have already presented, in the preceding section, the
solution (%'o) of Eq. (11),which corresponds to the simple
case of an ideal fluid (g2 = 1). Since we are interested in
the limit of low fluid densities (that is, when n ~0), it is
legitimate to take g2 as [12]

—PU(R) (16)

where P= I/(kz T), kz is Boltzmann's constant, T is the

temperature, and U is the interatomic potential. Equa-
tions (15) and (16) readily show the importance of the
temperature on 4& and hence on V0.

Let us assume the density expansion

%,=00+n5%, + (17)

Then, substituting Eq. (17) into Eq. (14) and retaining

where again the inhomogeneous term is seen to consist of
contributions from both excluded-volume and multiple-
scattering terms.

The system of Eqs. (10) and (14) is very difficult to
solve, partly because of the appearance of the unknown
distribution functions g2 and g3. This situation is not
much improved by using the Kirkwood superposition ap-
proximation [12] to connect these two distributions.
More simplifications are therefore needed in order to
proceed further.

FIG. 1. Plot of the averaged electron wave function V&(r) in
the hard-sphere fluid model, calculated from Eqs. (17) and (18)

22for three fluid argon densities, namely, n =0, 0.5X10, and
10 cm . For n =0, V&(r) reduces to %0(r), which corresponds
to the solution of Eq. (11)for the simple case of an ideal fluid.

A. Hard-sphere model

In the HSM, the low-density pair distribution function
is given by

(19)

where o is the hard-sphere diameter (o =6.437 a.u. for
argon [2]). Figure 1 shows the first-order averaged wave
function %,(r) calculated from Eqs. (17) and (18) for three
fiuid argon density values ranging from n =0 [in this lim-
it, 'P, lr) reduces to %'0(r)] to the liquid near the critical
point. Substituting Eq. (17) into Eq. (3) and using Eq.
(12), we derive the Vo expansion

Vo(n)=2mna+bn +. (20)

where b is independent of temperature in the present case
and is expressed from the solution 5q(, of Eq. (18) by

terms to first order in n, we get

H, (1)5%',(1)'=(po(1)f d2(1 —g2)V(2)(I'O(2) . (18)

In contrast to Eq. (15), Eq. (18) is now an ordinary
differential equation for 6%&.

We now consider, as an example, the case of an excess
electron injected in Quid argon. To represent the
electron-argon interaction, we use the pseudopotential
V(r) of Li, Broughton, and Allen [13], which has been
successfully used in the path-integral molecular-dynamics
V (n) calculations of Ref. [2]. (Iio(r) is shown in Fig. 10
and the corresponding electron scattering length, calcu-
lated from Eq. (12), is a = —1.428 a.u. , in good agree-
ment with experimental results [14]. Two Quid models,
namely, the hard-sphere model (HSM) and the Lennard-
Jones model (LJM), are successively examined below.
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b=4m f V(r)6+i(r)r dr .
0

(21)

5Vo(n) =2mnu(1 f„)/rws— (22)

where a is the atomic polarizability (a = 10.56 a.u. for ar-
gon [13]),rws is the Wigner-Seitz radius defined by

Using the pseudopotential V(r) of Li, Broughton, and
Allen [13] in Eq. (21) yields the value b =956 a.u. To ap-
preciate the scope of this result, it is instructive to com-
pare the Vo(n) expansion of Eq. (20) with the experimen-
tally measured values of V0. Before doing that, however,
we must bear in mind that the whole procedure presented
here assumes a density-independent pair potential to de-
scribe the electron-ffuid interaction. In Ref. [2], it has
been shown that the many-body screening of the long-
range electron-atom polarization potential plays an im-
portant role in accounting for a large fraction of the total
Vo(n) curve in the argon system. The correction 5V&(n)
to the "unscreened" V0 values can be calculated analyti-
cally as [2]

calculated from Eq. (25), is presented as the solid line in
Fig. 2, along with experimental data [5,15] and with the
Vo(n) simulation results of Ref. [2]. As we can see, the
agreement is remarkable within the whole range of densi-
ties up to the triple point. Considering that these results
have not been At to experiment in any way, such an
agreement suggests that Eq. (25) contains most of the
physical factors intervening in the determination of V0.
However, the reason for Eq. (25) to be all that accurate
over a large density range is not clear at present and fur-
ther analysis is necessary to investigate the roots of its
success.

At this point, it is interesting to Inention a previous
calculation of the coefficient b of the n term in Eq. (25)
due to Foldy and Walecka [17]. Using an optical-
potential approximation, these authors obtained the
analytical expression bFw =(2m.ao ), which yields, for ar-
gon, bFw =3335 a.u. (instead of our value b =956 a.u. ).
Clearly, bFw overestimates the curvature of the Vo(n)
curve observed experimentally.

4m 3 1
wsr (23) B. Lennard-Jones model

and f is the Lorentz screening factor at infinite
electron-atom separation

1

In the LJM, the interatomic potential is given by
'12 '6

U(R) =4e (26)

(24)

Combining Eqs. (22) and (20) thus gives

Vo( n ) =2nna +bn. + [2n n a( 1 f )Ir ws ]—. (25)

Note that, in contrast to Eq. (20), Eq. (25) is no longer an
exact asymptotic expansion, but only gives an approxi-
mate analytical expression for Vo(n). A plot of Vo(n),

where, for argon, E =3.796 X 10 a.u. (that is,
e/k~ =119.8 K) [2] and o has the same value as in the
HSM.

The pair distribution function g2 is now dependent on
the temperature and so are the density expansions of 4&
and Vo(n). We thus reexpress Eqs. (17) and (25) as

(27)

and

0.0 Vo(n) =2vrna+b (T)n + [2~na(1 f„)/rws] . —(28)
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FIG. 2. Comparison of the present results of Vo(n) calculat-

ed from Eq. (25) (solid line) with the experimental data of Ref.
[5] (open circles) and Ref. [15] (open squares). Also shown are
the results of path-integral molecular-dynamics calculations of
Ref. [2] (solid circles). The densities of argon at the critical and
triple points are n& =0.80 X 10 cm (150.7 K) and
nr=2. 13X10 cm '(83.8 K) [16].

Figure 3 shows the erst-order derivative function
5%,(r) calculated from Eq. (18) at three different values
of T for the LJM, along with the corresponding function
for the HSM. As we can see, the 5%& perturbation of the
LJM is generally more important than that of the HSM
and is progressively closer to this latter as the tempera-
ture increases.

Table I presents values of b for a set of selected temper-
atures ranging from 50 to 1000 K. It is seen that b is
strongly dependent on the temperature since even its sign
may change with T. As noted above for 5%',(T), the
coefficient b (T) of the LJM approaches that of the HSM
as T increases. In contrast to what we did for Eq. (25),
here it is not worth plotting Eq. (28) in order to compare
Vo(n) against experimental data. In fact, the HSM is
clearly closer to the experimental data than the LJM
(with E/k~ = 119.8 K). This result may appear somewhat
surprising since one expects the Lennard-Jones potential
to provide a more realistic description of the Auid than
the hard-sphere potential. There is an argument, howev-
er, in favor of the HSM, based upon the fact that the ex-
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Comparing the right-hand sides of Eqs. (29) and (30), Eq.
(30) can be rewritten in the form

H'2(1, 2)%'2(1,2) =Vi(1)H i (2)+i(2)+Vi(2)Hi (1)+i(I ) .

(31)
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FIG. 3. Plot of the first-order derivative function 6%&(r) cal-
culated from Eq. (18) at three different temperatures (namely,
119.8, 200, and 1000 K) for the Lennard-Jones Quid model
(LJM), along with the corresponding function for the hard-
sphere Quid model (HSM).

perimental Vo(n) data shown in Fig. 2 correspond to
measurements performed along the liquid-vapor coex-
istence line rather than along isotherms. Under these
conditions, one can in fact observe [2] that the function
g2 calculated from Eq. (16) for the HSM gives a better
description of the low-density pair distribution function
of the Quid than that calculated for the LJM, even if the
interatomic potential is not as good. Clearly, Eq. (28) is
not appropriate to make comparisons with existing ex-
perimental data, but the strong sensitivity of b with
respect to temperature is an incentive to carry out Vo(n)
measurements along isotherms.

Upon substituting Eq. (8) into Eq. (31) and grouping with
Eq. (29), we then get the system of equations

H, (1)%',( I ) = n —f d2 V(2)5+2(1,2), (32a)

H2(1, 2)542(1,2) = —p+, (1) p+, (2), (32b)

with the boundary conditions 4,—+1 and 6+2—+0 when
p'~ oo,

In the remainder of this section, we will be concerned
with the asymptotic analysis of Eqs. (32a) and (32b) as
n —+0. For the sake of simplicity of the foregoing
mathematical development, we will assume that the
electron-atom potential V(r) is truncated, that is, van-
ishes after some cutoff radius, which may be chosen arbi-
trarily large. Under this assumption, our asymptotic
analysis will remain essentially the same provided that
the "real" interaction potential falls off sufficiently rapid-
ly with r. This is the case for the present polarization po-
tential, which decays as r [2,13], but would not be the
case for a dipolar interaction.

Before proceeding with the analysis, it is interesting to
note that the actual RPA2 system of equations exhibits
the same mathematical singularity as the complete
hierarchy of Eq. (5). To see that Eqs. (32a) and (32b)
represent a singular perturbation problem, let us consider
an iterative construction of the solution 6+2. We start
with the estimate 4'&=%'o, which we substitute into Eq.
(32b). As R~~, in the neighborhood of atom 2, Eq.
(32b) may be rewritten as

V. SECOND-ORDER RPA
H, (2)5+&(1,2) =Co(1)+o(2)cos(0,2), (33)

H2(1, 2)+z(1,2) = —n+, (1)f d3 V(3)5%'z(2, 3)

n+ ( i)2—f d3 V(3)5+2(1,3) . (30)

The preceding section was devoted to the investigation
of fiuid structure on the low-density dependence of Vo(n),
neglecting multiple-scattering effects. Here we make the
opposite assumptions, that is, we neglect Quid-structure
effects and concentrate on multiple scattering. In this ap-
proximation (RPA2), we have g2 =g3 =1 and hence Eqs.
(10) and (14) simplify to

H, (1)%,(1)= n f d2 V(2)5%2(1,2—)

and

where 0&2 is the angle between the vectors r and r —R
and VIi(1) is of the order of 1/R so that 5+& is also of
order 1/R . Looking now at Eq. (32a) when r~oo, we
see that the only contribution to the integral on the
right-hand side comes from atoms in the neighborhood of
r [we recall that the potential V(r) is of finite range], that
is, from atoms with R —+~. This implies that the in-
tegral itself behaves as I /r . As a consequence, the next
estimate of 0'i behaves as In(r), which is actually a secu-
lar behavior (grows with increasing r). It is not difficult
to see, by the same kind of argument, that the next itera-
tion will give rise to secular terms of order r In(r) and
that the situation will get worse as we continue the itera-
tive procedure. Clearly, this behavior is similar to that
presented by the complete hierarchy of Eq. (5) and indi-

TABLE I. Variation of the coefficient b (in a.u. ) of the n term in the density expansion of Vo(n) for
Quid argon at selected temperatures, within the RPAl [Eqs. (25) and (28)]. The results concern the
Lennard-Jones (LJM) and hard-sphere (HSM) Quid models.

LJM HSM

T (K)
b(T)

50
—4466

119.8
—509.4

200
141.2

300
417.1

400
538.2

1000
728.7 956.0
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cates that the correct asymptotic expansion of Vo(n) in
the present RPA2 will certainly be of the same nature as
that of the "exact" problem.

To pursue now with the correct perturbative analysis
of Eqs. (32a} and (32b), we use the boundary-layer theory
[11]. From the previous analysis, we know that there is a
boundary layer at r = ~. As a first step, let us concen-
trate on the inner solution by looking at the asymptotic
behavior of Eqs. (32a) and (32b) as r~~. By analogy
with the above analysis, when R ~~, we have

n 1n(n). We should note here that the existence of loga-
rithmic terms has already been predicted in the low-
density expansions for the mobility of excess electrons in
helium gas [18] and for the ground-state energies of
many-boson and many-fermion interacting systems of
hard spheres [19]. This result is important because it
suggests that multiple scattering gives rise to a nonana-
lytic expansion of Vo(n) at very low fiuid densities, which
would dominate over excluded-volume effects (we recall
that the latter are of order n only).

5+z(1,2) =4)(R)y(2), (34) VI. CONCLUSION

where we have introduced the function g defined by

H
&
(2)g(1,2)=%0(2)cos(0&2) . (35)

Substituting Eq. (34) into Eq. (32a) gives, when r ~ ~,
p %&=nk%&,

where A, is given by

A, = —2f d2 V(2)y .

(36)

(37)

With the restriction that A, &0, the solution of Eq. (36)
that satisfies the boundary condition 0', ( &n )= 1 is

%,=1+C r', e
r

oo y
(38)

where C is a constant of interaction to be determined
later by asymptotic matching. The remarkable point
about Eq. (38) is the exponential behavior of the electron
wave function, which contrasts with the usual 1/r
behavior of a single atom scattering wave function. The
effect of the Quid is thus to destroy the long-range corre-
lation of the electron wave function. It is clear that, far
from the central atom, the behavior of the wave function
must be entirely determined by the surrounding Quid,
whatever the density. The type of exponential decay
found here for %&(r) is obviously due to the introduction
of a cutoff radius in V(r); it would be different (a power
law, in fact) for the real polarization potential, but our
conclusions would remain essentially the same.

As a second step, we examine the outer solution. Near
the origin, at zero density, this solution is

(39)

+&=+0+a f "dr' (e " "'—1) .r

oo y'2 (40)

Unfortunately, this approximation is only of zeroth order
in n, the error being of order n ln(n), and introduces an
artificial r ln(r) behavior near the origin. Going beyond
this approximation is considerably more difficult. At this
time, the result may only be "guessed, " giving an asymp-
totic expansion to Vo(n) that is likely of the form

Finally, by matching the inner and outer solutions of
Eqs. (38) and (39) in the limiting conditions r~oo,
nr ~0, and n ~0, we obtain C =a (the scattering length)
and hence the uniform asymptotic approximation to
%,(r)

In this paper, we have developed a general formalism
to study the density dependence of the conduction-band
energy minimum Vo(n} of excess electrons in simple
Quids within the framework of the multiple-scattering
theory. This theory only assumes a density-independent
pair potential to describe the electron-Quid interaction.
The complete treatment of the problem is extremely
difficult and it has been shown that a random-phase ap-
proximation may be useful to study the asymptotic
behavior of Vo(n) at low fiuid densities. In its simplest
form, the RPA1 treatment has been remarkably success-
ful in the description of the experimental Vo(n) data in
Quid argon, although its reliability rests on the evaluation
of the importance of multiple-scattering effects. We have
presented arguments indicating that these effects enter
through nonanalytic terms in the density expansion of
Vo(n) about n =0. This point still remains to be investi-
gated in more detail. As a preliminary remark on that
point, let us note the following peculiarity presented by
argon. In fact, we have stressed that, for the argon sys-
tem, Fermi's linear law remarkably describes the varia-
tion of Vo(n) in a wide range of densities. This is note
the case, however, for many other fiuids (for example,
this is particularly untrue for the case of xenon). We
have noted that the dimensionless parameter controlling
Vo is given by na and is indeed very different in argon
and xenon [20]. This distinct behavior, which illustrates
the strength of the electron-atom potential, should be ac-
counted for by inclusion of multiple-scattering effects, but
in that case, we have also shown, through a higher-order
RPA treatment (RPA2), that a nonanalytic correction to
Vo( n ) is then expected.

Recently, Meyer and Reininger [5] have reported accu-
rate data for Vo from the shift of the vertical ionization
potential of a molecular impurity (CH3I) doped into fiuid
argon. This experimental accuracy, however, does not
seem sufficient to convincingly analyze the low-density
Vo(n) data in the spirit of the present work. Moreover,
the question of the analyticity of Vo at low Quid densities
must be addressed by means of measurements performed
along isotherms rather than along the liquid-vapor coex-
istence line. It is our opinion that such measurements
would be very useful for providing significant information
on the electron-atom interaction, as well as on the intera-
tomic potential through the pair distribution function. In
particular, the strong sensitivity of the n term in the
low-density expansion of Vo(n) with respect to tempera-
ture should allow for an easy experimental observation.
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