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Predictive Poincare control: A control theory for chaotic systems
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One of the most interesting features of chaotic systems is the large number of unstable orbits embed-

ded in a chaotic attractor. In this work, we propose a global chaos-control technique called predictive
Poincare control (PPC) that permits stabilization of a predefined solution, using only smalI control
pulses. We prove this result for a large class of n-dimensional chaotic systems. The predefined solution
can be a periodic or nonperiodic oscillation, expressed by a periodic or nonperiodic symbolic sequence [S.
Hayes, C. Grebogi, and E. Ott, Phys. Rev. Lett. 70, 3031 (1993)]. We apply the general PPC scheme to
the well known Lorenz model and study its robustness with respect to parasitic effects.

PACS number(s): 05.45.+b

I. INTRODUCTION

While chaotic phenomena have been observed and ana-
lyzed in various scientific disciplines for almost 30 years,
physicists and engineers have only recently begun to syn-
thesize systems that exploit the nature of chaos. For ex-
ample, the possibility of synchronizing two identical
chaotic systems has prompted developments in spread
spectrum and secure communications [2—6]. Chaos con
trol represents another application domain exploiting the
large number of steady-state solutions of chaotic systems
(a chaotic attractor is close to an infinite number of un-
stable orbits) and high sensitivity to initial conditions.
Chaos control is concerned with stabilizing certain
predefined orbits. It turns out that only small control
signals or parameter perturbations are required in order
to force a chaotic system to exhibit a prescribed solution.

Ott, Grebogi, and Yorke state [7] that the advantage of
having chaotic motion in a system is that one can change
the overall system behavior with small parameter varia-
tions. Thus a "multiuse" system is available that might
be accommodated without changing the overall system
configuration.

In the past three years, unstable orbits have been stabi-
lized in chemical chaos [8], electronic circuits [9], laser
physics [10],and higher-dimensional mechanical systems
[11]. For an overview on chaos control in engineering,
see [12].

In recent years, three main control techniques have
been proposed for chaotic systems.

(i) The method introduced by Ott, Grebogi, and Yorke
[7] is designed to stabilize the unstable periodic orbit I' of
the autonomous chaotic system x= f(x,p), where p is a
control parameter. Based on the linearization
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Bx*(p)/Bp
~ o in the vicinity of x', which is a fixed point

of I, a closed orbit can be stabilized by varying p. The
Ott-Grebogi-Yorke method is therefore a local control
scheme that operates correctly only if the trajectory
x(t, xo) passes close to x* [13].

(ii) The more traditional global control techniques
developed by Singer, Wang, and Bau [14] and Chen and
Dong [15] use error feedback to stabilize a point x [14] or
a predefined, explicitly known trajectory X(t) [15]. In this
case, the feedback signal is proportional to x(t) —X(t),
where I is the state of the system to be controlled.
Another interesting approach was suggested by Pyrgas
[16], where the feedback is proportional to
x(t) —x(t —T) The feed.back control approach has been
proven to work for some systems where a Lyapunov
function can be found (see, for example, [15]).

(iii) More recently, a qualitatively diff'erent approach to
controlling chaos has emerged. In the method described
by Hayes, Grebogi, and Ott, a system may be forced to
follow a prescribed symbolic sequence by applying small
control pulses each time the trajectory passes through a
Poincare section [1]. Using this scheme, periodic and
nonperiodic symbolic control sequences result in periodic
and nonperiodic system behavior, respectively. This tech-
nique has been applied to simulation to Chua's circuit in
order to modulate information onto a chaotic carrier sig-
nal [1]. In this work, we develop the idea of using sym-
bolic sequences for chaos control; we describe in detail a
general global control theory for n-dimensional chaotic
systems.

The different features of our scheme are (i) global con-
trol, in contrast with the local scheme described by Ott,
Grebogi, and Yorke [7], (ii) reduced computation com-
plexity of the controller compared with [1], and (iii)
guaranteed sma/l control pulses.

In the following section, we give an overview of predic-
tive Poincare control (PPC) by explaining how it can be
used to control the output of a simple discrete-time sys-
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tern: the Bernoulli shift. In Secs. III and IV we develop
the mathematical foundations of PPC for continuous-
time dynamical systems. We describe in detail the im-
plementation of PPC in the I.orenz system in Sec. V.

II. MOTIVATIONAL EXAMPLE

Consider the first-order discrete-time dynamical system
described by

z(k+1)=2z(k) mod 1,
1 if z(k) ~0. 5

(k)= Oifz(k)(0. 5,
where z H [0, 1) is called the state and s is the output sym-
bol. The next state is obtained from the present state
z(k) by multiplying z(k) by 2 and keeping just the frac-
tional part, e.g. , 0.654 321 is mapped on to 0.308 642.

Note that the state space has effectively been parti-
tioned into two distinct regions Ho = [0,0.5) and
H, =[0.5, 1), in each of which the function 2z(k) modl
increases monotonically. The symbol s ( k) indicates
whether z (k) is in Ho or H, .

The operation of the dynamics is perhaps clearer if we
represent the state z (k) as a binary expansion

z (k) =0.bkbk+ ibk+2bi, +3. . . = g 2 ' "bq,
j=k

where each digit b is either 0 or 1. The next state
z(k +1) is derived from the present state by shifting the
digits to the left and setting the leftmost digit to zero:
hence the name Bernoulli shift. Thus

into the (m +1)st (rightmost) position, which may or
may not correspond to the output that we wish to pro-
duce m steps forward in time. If it does not, the bit is
corrected by adding a control signal u (k) to the current
state z(k), such that z(k+1)=2[z(k)+u(k)] modl.
Note that u (k) is no more than 2 ~ +" in magnitude.
Thus an arbitrary output sequence may be generated by
using a prediction length m and a control signal of mag-
nitude 2 ™+I)

Figure 1(a) shows the first 12 digits of the binary ex-
pansion of m/4. The dark squares denote the desired out-
put symbols s(k) as system (1) evolves. To produce this
sequence of 12 bits, one must set the initial condition to
any value in the interval [0.785 278 320 312,
0.785400390624) and let the system run for 12 steps.
Equivalently, the initial condition must be specified to 12
bits.

Alternatively, by using a prediction length of 4, the
system can be started from any value of z (0) in the inter-
val [0.781 25,0.8125) if we are willing to apply a correc-
tion pulse of magnitude less than 0.031 25 at each step to
modify the rightmost bit; this is illustrated in Fig. 1(b).

While we have described predictive control for a sim-
ple discrete-time system, it may also be applied to a
continuous-time dynamical system of the form x=f(x),
x&IR" by using a Poincare map to define the equivalent
discrete-time dynamics.

The essential components of a continuous-time predic-

1 0 0 1 0 0 1 0 0 0 0

z ( k + 1)=0.bk+, b„+2b„+3b„+4.. . ,

with output s(k+1)=bk+i. Notice that (1) produces a
sequence of output symbols s (k) =bo, b„b2,b3, . . . when
started from initial state z(0)=O. bobib2b3. . . , where
this sequence of binary digits bk is simply the binary ex-
pansion of z(0).

To each initial condition corresponds a unique binary
sequence. En order to generate a prescribed sequence (for
example, if one wished to transmit binary information),
one could in principle set the initial state z(0) of (1) to
the binary expansion of the message and transmit the
output sequence [s (k)

~
k =0, 1, . . . I. The method is

predictiue in the sense that by setting the initial state now,
we are predicting future outputs.

There are two major drawbacks to this idea. First, to
generate a sequence of length X, the initial condition
must be specified with precision of order 2 . Second, in
a practical implementation of the system, random noise
that perturbs the state by an amount greater than 2
will show up as an error in the output sequence because
the "insignificant" rightmost bits of the state eventually
shift into the most significant leftmost position.

Both of these limitations can be overcome by using a
prediction length shorter than that of the message. For
example, if the noise level is less than 2 ™~1),a se-
quence of length X may be generated by setting only the
next m bits at a time. At each iterate, a new bit is shifted

'. 0 0 1 0 0 1 . 0 0 0 0

k=2 :":"':'-"": 0 1 0 0 1 0 0 0 0

k=3 ::.:&9"';,: 1 0 0 1 0 0 0 0

(a)

XXXXXXX

k=2

k=3

: 0 0 1 0

0 1 0 0

1 0 0

(b)

FIG. l. Evolution of (1). The dark squares denote the output
symbols s(k). (a) To produce the sequence of N bits, the initial
condition must be set with N-bit resolution. (b) With a predic-
tion length m =4, the initial state can be set with five-bit resolu-
tion if a control signal of magnitude 2 is applied to correct the
rightmost bit at each step.
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tion Poincare controller are a sensor to measure the state
x(tk ) of the system as it crosses the Poincare section at
time tk, a prediction register to keep track of the next m
desired outputs, a map from the prediction register to the
state x (tk), which is known to generate the desired
subsequence [s(k+i), i =0, 1,2, . . . , m], and a trans-
ducer to apply the required correction
u(tk)=x„(tk)—x(tk) to the state in order to produce the
prescribed sequence. In Secs. III and IV we lay the
mathematical foundations of predictive Poincare control
for continuous-time dynamical systems, showing how to
define the Poincare map, the symbolic dynamics, and the
map from the prediction register to the state.

III. THEORY OF PREDICTIVE
POINCARE CONTROL

The predictive Poincare control technique can be used
to force a general n-dimensional chaotic continuous-time
dynamical system described by the state equations
x=f(x), xCE" to follow a predefined trajectory, ex-
pressed by the symbolic sequence w = [ w (i ),

'

i =0, 1, . . . , i E N ], where symbol w ( i) E- N+. Small con-
trol pulses are applied to the system by means of a con-
trol vector uE IR"

x= f(x)+u(t) . (2)

Before discussing a detailed implementation of PPC in
the Lorenz system, we define the Poincare map g from a
Poincare section to itself and the maps v and v ', which
translate between the continuous-time dynamics and the
discrete-time dynamics of the Poincare map. We define a
partition of the state space in the Poincare map by identi-
fying the monotone branches g; of g and define the sym-
bolic dynamics in terms of iterates of g and this partition.
For a more detailed introduction to nonlinear and sym-
bolic dynamics, see f17—20].

A. Poincare map

We use a I'oincare map to transform the dynamics of
the n-dimensional autonomous continuous-time dynami-
cal system x=f(x), x&E", to the (n —1)-dimensional
discrete-time system z(k+1)=g(z(k)), kEN,
ze R'"

The Poincare map g: R" '~IR" ' is generated in the
following way. First, the Poincare section X must be
defined as an (n —1)-dimensional hyperplane of the n

dimensional state space of system x=f(x). We note
x(tI, ) at each time t =tk the trajectory x(t, xo) passes
through Poincare section X. The coordinate system [z;,
i =1, . . . , (n —1)], z;HE parametrizes X and v:
IR" '~IR" maps each zEIR'" " to a x*EXCR".There
also exists a unique inverse of map v that transforms each
point x" on X to the (n —1)-dimensional coordinate sys-
tem z such that v ': IR"~IR" ', x~ ~z*. Since
x(tk ) H XVk, we can define z(k) =v '(x(tk ) ).

The maps v ' and v allow us to move from the original
continuous-time dynamics to a discrete-time Poincare
map z(k+1)=g(z(k)) and back. Assuming that the
Poincare map g has been determined, we can predict

x(tk+,. ) by transforming x(tk ) into z space, evaluating the
ith iterate of map g, and transforming back to the origi-
nal coordinate system. Thus

z(i) =v '(x(tk ) ),
z(k+i) =g'(z(k)),

x(tk+, )=v(z(k+i)) .

(3)

B. Symbolic dynamics

where j,j'H [0, 1, . . . , p]; and for all j =0, 1, . . . , p

g: H ~H.*CA,
where g (the restriction of g to H )is a one-to-o. ne map-
ping. Following [18],we call g. the monotone branches of
map g. The hypersectors H can be further divided into
subsectors H; as follows.

Definition 2. The subsectors H, , i =0, 1, . . . , p, are
defined such that each H-; is compact and connected,
H, provides

i=p
UH;=Hi=0

H; AH;. =0 V i%i', i, i'H [0, 1, . . . , p],
and for each j and i the maps

gJ ~ HJ HJ

are continuous and in a one-to-one correspondence.
Let the sequence [z(k +i), i =0, 1, . . . , m ] be the evo-

lution of the discrete system z(k + 1)=g(z(k)),
zEACE'" ", then s (k)= [s(k+i), i =0, . . . , m ]= [s, , i =0, . . . , m] is the symbolic sequence of length
(m + 1) starting at z(i) with s; =j if z(k +i) HH . In
other words, the system x= f(x) produces the symbol
s; =j at time tk +; if v '(x( tk +;~ ) EHJ C A.

Symbolic dynamics can be described as a "coarse-
grained description" of an evolutionary process f18]. In
the Bernoulli shift example, s (i) indicates whether
z(k) is less than or greater than 0.5, i.e., z(k)&Ho
or z(k) HH, . More generally, the invariant set A
(A= [zEE'" "~zEA, g(z)EA] ) of a Poincare map g is
partitioned into (p+ 1) so-called "hypersectors"
HO, Hi, H2, . . . , H and symbol s(k)=j if z(i)EH
Knowing x(tk) and the maps v ', v, and g, we can use
(3)—(5) to predict the future crossings of the Poincare sec-
tion x(tk+; ) and thus the sequence of hypersectors visited
by a trajectory of the system. We partition A into hyper-
sectors so that the map g restricted to H (denoted g ) is a
one-to-one mapping from each H to its image H*.

Definition I Let A .be the invariant set of the discrete
system z(k+1)=g(z(k)); then H, j=0, 1, . . . , p, are
defined such that each H is compact and connected; H.
provides

J=P
UH, =A, H, AH'=0 VjWj',
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In terms of symbolic sequences, we first partition A
into hypersectors so that the map g restricted to H,

0

(denoted g, ) is in a one-to-one correspondence with each

H, to its image H,'. We further refine the partition H,
0 0 0

into the subsectors H, =H, , using the more gen-

eral notation g, to indicate the part of g that maps H,
m m

toH,* .
m

In this way, we generate a set of subsectors H, CA
m

such that the system z(k+1)=g(z(k)) produces the
symbolic sequence s (k) if z(k) HH, . Recalling our ex-

m

ample of the Bernoulli shift map, the output sequence
will be s4= [ 1, 1,0,0, 1 I if the state begins from subsector
H, = [0.781 25, 0.8125 ).

The continuous-time system x= f(x) can be forced to
follow any desired symbolic sequence w (k)= [tU(k+i),
i =0, 1, . . . , m }, tU (k +i)=j if z(k +i ) EH, by applying
a control pulse u at time t/, that drives the state z(k) into
subsector H . The control pulse is defined explicitly by

m

Z2)E,

Z2&k

H) ',

u( t) = [x (t/, )
—x(t/, ) ]5(t t/, )—

where

v '(x„(tk)) EH

In Sec. IV we propose a numerical method for deter-
mining the point z =v (x (tk)) in H . First, we will

m

prove that the control required to predict m steps ahead
is smaller than that required to predict (m —1) steps
ahead. Z2)4

Z

(b)

C. Relationship between magnitude of control signal and m

Assuming that H, =H, , is compact, connected,
m 0''''' m

and a subset H, , then, after a transient, the control
energy of u is small compared to that of the states x,' one
can imagine that z(k) is in H, (k) and that the symbol

to be generated m steps ahead is s . We then have to
steer the system from a point somewhere in H, (k) to

m —1

inside H, (k). The correction to be made will be small if
m

H, (k) is small and H, (k) lies inside H, (k). This
m 1 lit m —1

means that the "size" of subsector H, decreases as the

prediction length I increases. Subsector H, should also

be connected in order to avoid multiple control targets.
If the control pulse at time tk &

was applied successfully,
then the state z(k —1) is inside H, (k —1) [and hence

inside H, (k)] at time tk. The ideal transient behavior
m —1

(for a control pulse of finite height) lasts from tk, to t/,

Note that s (k —1)=[s(k —1+i), i =0, . . . , m I ands,(k)=[(k+i), i =0, . . . , m —1].
Theorem 1. If the hypersectors H, and subsectors

0

H. . . so, s& =0, . . . , p, are defined according to
Definitions 1 and 2, then H, is compact, connected, and

m

a subset of H,
m —1

01,0,0

1,0, I

+S,i,o

H

Hr 2O

,2, 1

Zg

(c)
FIG. 2. Hypersectors H, , s0 =0, 1,2, are shown schematical-

0

ly for a two-dimensional map g. The subsectors H. . . are0' 1' 2

generated successively by forward mapping, splitting, and in-
verse mapping. (a) In the case shown, all subsectors H, 0' 1

s0,s1=0, 1,2, exist; (b) shows the forward mapping for a fixed
s0=1. g1, maps the subsectors H1, to H1*, for each s1.
Then each H 1*, is divided in H,*, , Note that H10 2 does not

exist because H1 0 A H0 1 =0. Therefore all sequences

{1,0,2, s3,s4, . . . ) are inadmissible. (c} The new subsectors
H1*, , are mapped backward into H1, by the inverse map

g1,' . The newly generated subsector H1, , are all inside

H1s ~

1



52 PREDICTIVE POINCARE CONTROL: A CONTROL THEORY. . . 4869

IV. IMPI.EMENTATION OF PPC

In this section we describe how PPC theory can be
used to realize a chaos control scheme for a general n-
dimensional chaotic system. As outlined in Sec. II, the
essential components of a predictive Poincare controller
are a sensor to measure the state of the system as it
crosses the Poincare section X, a prediction register to
keep track of the current output and next m desired out-
puts w, a control function that identifies a target state
x with the desired sequence, and a transducer to apply
the required correction to the state. In this section, we
describe each of these functional units.

The application of PPC to the autonomous system
x= f(x) as shown in Fig. 3 requires knowledge of all n

states. [One might use a derivative or delay coordinates
to generate the state(s) that cannot be measured. ] In gen-

w(k+m+1)

PPC

m-bit shift register (~

w(k) = t'w(k+0), ..., w(k+m )J

Pulse-
generator

GP(X)

I

e

I
~

I

oo up a e
gk)

Qw) ~ +(gk)

zJk)

x (k)

+(X

~~& MUX

1/'p

0
Sample k,

Hold

I

I

I X
I

I

Q

X=@X)+u

I

I

I

I

I

I

I
X

I

I

I

I

I

FICx. 3. Block diagram of PPC scheme.

For the proof of this theorem see the Appendix and Fig.
2.

Note that H, can result in an empty set for some s
m

If we assume that the empty set can also be divided into
(p+ 1) empty sets, we have no loss of generality. Howev-
er, if a particular H, is an empty set, the sequence s is

rn

nonadmissible. In practice, nonadmissible sequences will
never be generated by a free-running chaotic system. The
reason for this is that no initial value z(0) can be found
such that the system z(k+1)=g(z(k)) will produce a
nonadmissible sequence.

In the special case that H,* =A V so, we are dealing

with fully developed chaos and all sequences s are ad-
missible [18]. Usually in real chaotic systems H,* CA

0

and we introduce the term constrained fully developed
chaos: if all H, are nonempty sets for m ~ p for a finite

m

p, we call this constrained fully developed chaos of de-
gree p. The average surface of H, will then shrink as

m

1/(p+1)' +" since m ~p. Recall the Bernoulli shift
map example where p = 1 and m =4; in this case,
m»[l ~ (k) I ] (2-'=0.03125.

eral we also need access to some states of the system in
order to apply the control pulses via control vector u.

The principle of the PPC setup in Fig. 3 is to find the
x (tk) in (6) to which the system must be controlled in
order to produce the desired symbolic output sequence
w (k). We must construct a control function 4 that
identifies an analog target state x in the Poincare section
with a discrete symbolic sequence w

In the following, we propose a constructive design al-
gorithm that allows us to determine all unknown func-
tions (v ', v, and g) of a general PPC setup just by
analyzing the sampled data I x( tz ), k =0, 1, . . . , g I.

A. Sensor

In the sensor, the sampled data Ix(tk ), k =0, 1, . . . , gI
must be transformed into the coordinate system of the
Poincare section X by the function v ': z(k)
=v '(x(tk)). For experimental reasons, it is often useful
to identify z directly with ( n —1 ) states of vector x. Thus

z, (k) x, (tk )

zj, (k)

z)(k)
xj,(tk )

=v '(x) .
xj+1(tk )

z„ i(k) x„(tk)

Sampling takes place at each time tk when x (t) crosse. s a
specified threshold c. For simplicity, we choose c to be
the jth coordinate of an equilibrium point x of system
x = f(x). If enough data are sampled, the Poincare map
g(z(k))=z(k+1) can be determined approximately, and
if necessary interpolated, to make g su%ciently smooth
[21].

B. Partition

C. Control function

In the Bernoulli shift example, we saw that an initial
state lying in the interval z(0)&[0.78125,0.8125) pro-
duced the output sequence s= I 1, 1,0, 0, 1]. The control

In order to find the hypersectors H, we first determine
0

the sectors H; in which g is connected, continuous, and a
one-to-one-mapping. [One can compute H; by determin-
ing the regions where the sign of Bg (z)/Bz. is constant
for i =1 . (n —1) and for all zEH;. ] Each sector H;
could serve directly as one of the hypersectors H, . Al-

0

ternatively, some monotone branches, say, H; and H,',
could be combined to form one hypersector H =H; UH;
if g:H ~H is a one-to-one mapping. The motivation for
connecting these monotone branches is that there will be
fewer empty sets in the subsectors and we will therefore
expect a higher number of admissible symbolic sequences.
The conditions of Definition 1 are not violated by con-
necting H; and H,-.. %'ith the procedure described above
we obtain (p+ 1) distinct hypersectors H, , so =0, . . . , p.

0
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function associates an initial condition with each desired
sequence. Here we can associate an integer r with each
sequence by considering it as a binary number (e.g.,
1X2+1X2+1X2=25) and define a function
[r=0, 1, . . . , 31]~[0,1) such that %(25)K[0.78125,
0.8125).

In general, we write a symbolic sequence s as an in-
teger as

After the control pulse has been applied, the falling
edge of the signal c (t) causes a leftshift of symbols
through the shift register. At the same time, the new
symbol w(k+m+1), which represents the symbol to be
performed (m+1) steps ahead, is inserted on the right-
most side.

V. IMPLEMENTATION OF PPC
WITH THK LORENZ MODEL

r=B(s )=ps;(p+1)
i=p

(8) To give an example of the design procedure, we apply
the PPC scheme to the well known Lorenz model:

D. Actuator

In a real system, a 5-function-impulse as given in (6)
cannot be implemented, but may be approximated by a
signal with a nonzero pulse length w:

[2 if cz(t)=1
U(r)= '

0 if c (t)=0. (10)

The signal c (t) is a sequence of pulses of length r, trig-
gered by the pulse generator G~(x) each time t& the tra-
jectory x(t) crosses through the Poincare section X:

T

1 if tk & t &t„+~
c~(t)=G (x)=. (11)0 otherwise .

The choice of ~ is not critical, but ~ must be
significantly less than the natural frequency of the sys-
tem. Finally, the constant 6 must satisfy the equation

f," ~Ddt=(x (tk) —x(tk)). Thus

', =(x (tk) —x(tk))/r (12)

The constant b may be realized by means of a sample-
and-hold circuit, which holds the value of
(x (tk) —x(tk)) while c~(t) = 1, followed by a multiplica-
tion by the constant 1 / ~&. The switch between 5 and 0 in
Eq. (10) may be performed by an analog multiplexer.

For convenience, subsectors H, can be denoted
m

equivalently by H„. To find a z for each r, we first
determine H„. To do so we evaluate the symbolic se-
quence s and the corresponding value r for each mea-
sured or interpolated point z using the relation s; =j if
g'(z)~HJ, where g'is the ith iterate ofmap g and H are.
the hypersectors found in Sec. IVB. Subsectors H, are
those regions of X where r is constant. It is again a nu-
merical problem to find a z inside each H, . In practice
one finds a z that is in the "rniddle" of H„and stores it
together with r in a lookup table.

Hence we define the lookup table%' such that %(r)=z
and call it the control function Depen. ding on the predic-
tion length m, the lookup table in Fig. 3 has (p+1)
entries. In reality, one can imagine that r represents an
address and 4() a memory containing analog values z

Let w (k) be the desired symbolic sequence at time tk
for the next m steps. Then the system must be controlled
tox (tk) withr(k)=6(w (k)) and

x (t„)=v(%(r(k))).

o(X2 —x, )

x, = ax, —x, —x'x, =f(x).
X(X2 Px3

(13)

Solving f(x)=0 for x we obtain the two unstable equilib-
rium points x&=( —~P(a —1)—~P(a —1),a —1) and
xz=(V'P(a —1),~I'(a —1),a —1) . For all simulations,
we used the parameter set (o,a,P)=(10,34, 8,3). In the
following design process, we determine step by step all
the parameters that are required to implement PPC in
this system.

A. PPC design process for the Lorenz model

where x,. is the jth element of the ith equilibrium point.
J

To compute the Poincare map, we take cz —1 as the
threshold for state x3. Thus the transformations v ' and
v are defined by

x, (tk)
v '(x(tk))=

x~(tk)

z, (k)

v(z(k))= z2(k)

where

z(k) =
(k) x, (tk)

(k) y x(, ) — X2(t/, )

x3(tk)

The two-dimensional Poincare map

gl(z&~z2)
g(z)= 2(z„z2)

(see Fig. 4) is separated into two regions. Each region is
divided by a discontinuity at about the middle. The maps
g, , are continuous and in a one-to-one correspondence0' 1

in each of the four regions Hpp Hp j H] p and H, „as

As proposed in the literature [18] we choose the Poin-
care section

&= [xlx3=a 1)x' &xz &x2»' &x' &x2 ]
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FIG. 5. Integer r evaluated for each z with a prediction

length of m =3. The maximum value of r is therefore
(p+1) +' —1=15. The gray levels in this figure indicate the
value of r. One can observe the regions where r is constant.
Clearly, these regions are the subsectors H„.

4-

0-

-2-

Figure 5 also indicates the subsectors H„,where r is
constant. Picking a suitable z in the middle of each sub-
sector K„,we obtain the function z =%'(r). Further-
more, up to a prediction length of m =6, a/l subsectors
H„,r =0, 1, . . . , 127, can be identified. We conclude that
for this special parameter set the Lorenz model exhibits
constrained fully developed chaos of order 6.

B. Simulation results

-8 -6 0

XI

(b)

I

2 8
Before controlling the Lorenz model to certain period-

ic and nonperiodic orbits, we observe the symbolic se-

FIG. 4. Two-dimensional Poincare map g(z) of the Lorenz
model. The map was generated from (=800 measured data
points (indicated by the black dots). For reasons of better visual-
ization, the map is highlighted in the area around the measured
points. The values of g& and g2 are proportional to the gray lev-
el; black indicates the minimum value (= —9) and white the
maximum value (=+9). (a) The component of g in the z&

direction g&(z&, z2). (b) The component of g in the z2 direction
g2(z&, z2). Note that in this case z& =x

&
and z2 =x2.

01111 1 100 1000 01 10 01 100 0111 1 01 0
30-

I
1 )I . )l I:

required for H; in Sec. IV. These four branches are then
joined such that the two patches in Fig. 4 represent the
two sectors Ho and H&. In this way, we obtain a two-
letter symbolic dynamics for the Lorenz model, giving
p=1.

Since the sectors Ho and H& are known, the symbolic
sequence s of length m for each measured point z(k),
k H I 0, 1, . . . I can be evaluated. With r =e(s ) as
defined by (8), each s corresponds to an integer r. Final-
ly, Fig. 5 shows r evaluated for each z(k) with a predic-
tion length of m =3.

l

I-10-"'( '

-20-

1 I I 5 I I I

8 10 12 14 16 18 20

g (sec)
FIG. 6. Symbolic sequence of the uncontrolled Lorenz mod-

el, using the parameter set (o., a,P)=(10,34, 8/3) and starting
with the initial conditions x(t =0)=(0.2, 0. 1,25) . The two-
letter symbolic sequence is displayed on the top of the figure.
Below are the states x &(t) (solid) and x2(t) (dashed).
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FIG. 7. Lorenz model, controlled to the period-7 orbit
w =

I 0, 1, 1,0, 1,0,0,0, 1, 1,0, 1,0,0, . . . j using a prediction lengthI =6. (a) Symbolic sequence and the time evolution of states
x&(t) (solid) and x~(t) (dashed) below. (b) The size of the con-
trol pulses is Ib, (t„)I= Ix (t„)—x(t„)l.

(b)
FIG. 8. Lorenz model, controlled to the pseudorandom se-

quence w= I0, 1, 1, 1, 1, 1,0,0, 1, 1, 1, 1,0, 1, 1,0,0,0, 1, . . . I using a

prediction length of m =6. (a) Symbolic sequence and the time

evolution of states x&(t) (solid) and x2(t) (dashed) below. (b)

The size of the control pulses is
I
b, (tk ) I

=
I
x ( tk ) —x( t„)I.

quence of the uncontrolled system (Fig. 6). All simula-
tions were performed with a third-order Runge Kutta in-
tegrator and a step size of 0.001.

The Lorenz model is first controlled to a period-7 orbit.
As mentioned in Sec. V A, all symbolic sequences are ad-
missible up to a length of m =6. The control function
z =4(r) is therefore a table of 128 discrete inputs and
for each of the 128 different values of r there are two ana-
log outputs z and z . We choose ~ =0. 1 sec as the

1 2

length of control pulses. The time evolution of states
x&(t) and x2(t) as well as the size of the applied control
pulses are shown in Fig. 7. Note that after an initial
transient, the average of the control size
Ef Ih(tk)I j =EI Ix(tk) —x (tk)I j =0. 1 while the peak-
to-peak value x~~=x,„—x;„ofx& and x2 is about 50.

This means that the average size of the control pulses is
only 0.2% of x . The size of control pulses can also be
compared to the average size of the vector field
E t I f(x(t) )

I j = 110. The ratio obtained is
EI Ih(t, )I j IEI If(x(t))I j =o.oo4.

Next, we wish to control the Lorenz model to a pseu-
dorandom symbolic sequence. The time evolution of
states x, (t) and x2(t) as well as the sizes of the applied
control pulses are shown in Fig. 8.

If the prediction length is reduced to m =5, the num-
ber of subsectors H, is only 64 and therefore sectors H,

5 5

are larger on average than sectors H, . Note that the
6

average pulse amplitude increases as the prediction
length m is reduced. Indeed, Fig. 9 confirms that the
control pulses are larger than predicting with m =5 com-



PREDICTIVE PQINCARE CONTROL: A CONTROL THEORY. . .

01111 10 0111 1 01 10001 01 100 10001

O.B-"

0.7."
—OB-" "

0.5 -"

OA-

0

L2-" "

0.

0 2 B 10 12 14 1B 1B 20

t (sec)
FIG. 9. The size of the control pulses is

I&(tk ) I

= I*.(tk) —*(t, ) I while the Lorenz model is
controlled to the pseudo random sequence
iv = [0, 1, 1, 1, 1, 1,0,0, 1, 1, 1, 1,0, 1, 1,0,0,0, 1,. . . I using a re
duped prediction length m =5.
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pared with the case m =6. A comparison of Figs. 8(b)
and 7(b) illustrates the independence of the average size
of control pulses and the desired symbolic sequence w.

C. Lorenx model controlled by one state

OA-

0.3-

02- .

0,1"

0 i. I . . i . . il
2 4 B 10 12 14 1B 18 20

The first component in Eq. (10) is thus

b, , if c (t)=1
0 if c„(t)=0,

L

(15)

Since the control vector b, given in (12) has com-
ponents in the x, and x2 directions Ithe third component
of 6 equals 0 for all times because
x =v3(z )=a —1 =x3(tk)j, the first and second states

are required to control the Lorenz model. In this section,
we propose a method where just the state x

&
must be ac-

cessible in order to control the system. In this case, the
control vector u in Eq. (6) has the form u=(u i (t), 0,0) .

As shown in Fig. 4, a11 section crossings are arranged
on two curves that are approximately the intersection of
the unstable two-dimensional manifolds 8'" of each equi-
librium point with the Poincare section X. Notice that
trajectories in the Lorenz model are damped onto 8'"
along the stable component of the eigenspace. We know
that x must lie on 8'" and therefore we can exploit the
system's stable dynamics to replace one component of the
control vector. Making the rough assumption that the
trajectory x(t) near W" is damped almost perpendicularly
onto 8'", we obtain a simple solution for u &. A geometri-
cal approach then gives

~i+ (14)1 1

t (sec)
(b)

FIG. 10. Lorenz model, controlled to the pseudorandom se-
quence w= I0„1,1, 1, 1, 1,0,0, 1, 1, 1, 1,0, 1, 1,0,0,0, 1, . . . ] using a
prediction length m =6. The control pulses were added to the
first state only. (a) Symbolic sequence and the time evolution of
states x&(t) (solid) and x2(t) (dashed) below. (b) The size of the
control pulses is I E, I.

where bi=x„(tk) xi(4) and ~z=x ( k) x2(4).
Solutions for certain systems with nonperpendicular
damping can also be found, but a generalization for n-
dimensional systems is rather difficult. However, if the
pulses u, (t) are limited to an acceptable size (this must be
done since 5, can vanish and b. , becomes infinite) we can
again achieve reasonably small control pulses, as demon-
strated in Fig. 10.

When correcting just one state, the control pulses are
larger on average than if both states are simultaneously
corrected; compare, for example, the control pulses in
Fig. 10(b) with those of Figs. 8(b) and 7(b). Nevertheless,
even these pulses are small compared to the peak-to-peak
value of states x i and x 2 and compared to the magnitude
of the vector 6eld.
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D. Robustness of PPC

In real applications, there will be stochastic and quant-
ization noise in the measurement instruments or the sys-
tem parameters may change slightly after the approxi-
mate Poincare map has been determined. Even in simu-
lations, the effect of a nonideal integrator disturbs the
control process. Thus we should discuss how these
parasitic effects influence the size of the control pulse
l el = lx.(r„)—x(r, ) l.

In the ideal noise-free case, the trajectory through
x(t&) next crosses the Poincare section at the predicted
point x(tk+, ). Assume that, due to parasitic effects, the
first return crossing is not at x(tk+, ) but at
x(tk+, )+x~(t&+, ). For the correction at time tk+, we
obtain

I
~

I

= lx. (&k+ i) —x(&1, + i) —x, (~k+ i) I,
where the component x (tk+, ) is caused by parasitic
effects during the interval tk to tk+, .

It appears from simulations that if the prediction
length m is sufficiently large, then x (tk+, )

—x(tk+, ) be-
comes small and the main task of the control pulse is to
compensate for the component x~(tk+, ). Parasitic effects
with offset, such as parameter variations, generally pro-
duce a larger x~(tk+, ) and therefore stronger control
pulses are required.

In order to simulate realistic conditions, a —50-dB
noise source [by a —50-dB noise source we mean that
10log,o(P„/Pf( )

)= —50 dB, where P f( )
and P„arethe

mean powers of f(x) and n(t), respectively] n(t) was add-
ed to the state equations in (13) and all system parameters
were changed by 1% after the control function ~11 had
been determined. Furthermore, we assume that only the
first state is accessible and so use the method in Sec. V C.
Figure 11(b) shows the size of the control pulses for this
situation. Even though the control pulse are larger than
in the noise-free case, the correct symbolic sequence is
still produced, as predicted.

2.5-

2-

VI. CONCLUSIONS

Predictive Poincare control [22] is a global control
theory that permits one to stabilize a predefined solution
of a dynamical system using only small control pulses.
This has been proven for n-dimensional chaotic systems,
provided that certain states of the system are accessible.
The predefined solution can be a periodic or nonperiodic
trajectory, expressed by a periodic or nonperiodic sym-
bolic sequence. We have applied the general PPC scheme
to the well-known Lorenz model and have shown that the
method is robust in the presence of parasitic effects.

Because of strong damping along the unstable mani-
fold, it is possible to control the Lorenz model with just
one state; we conjecture that, in general, the number of
states required for predictive Poincare control is propor-
tional to the dimensions of the unstable manifolds 8'" of
the system. PPC provides a method for controlling
chaotic systems with large time constants even if only
small amounts of control energy are available. Alterna-
tively, PPC could be employed in environments where
only small control energy is desired, for example, in med-
ical applications.

The technique suggests that greater flexibility may be
achieved in a dynamical system by first introducing con-
strained fully developed chaos and then controlling it by
means of PPC. Our technique also offers a direct means
of modulating digital information onto a chaotic carrier
signal for spread spectrum applications; for further de-
tails, see [22—24].
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APPENDIX: PROOF OF THEOREM 1

Definition 1 suggests an inductive proof of Theorem 1 ~

The proof itself, together with Fig. 2, which illustrates
the first two induction steps, gives a deeper insight into
the functioning of PPC.

Proof: m=1. To prove the first induction step we use
the definition of H .. The induction process can be divid-
ed into three steps: a forward mapping, a splitting, and a
backward or inverse mapping.

(i) Forward mapping:

g, , :H, , ~H,
Oi 1 0~ 1 0' 1

(Al)

0.5-

, I(. ) I I i (I
0 5 10 15 20 25 30 35 40

Maps g, , are in a one-to-one correspondence and con-

tinuous, H,*, are compact, connected, and H,', CH, ,0' 1 1' 1 1

as given in Definition 1.
(ii) Splitting New subsectors .H,*, , are created by

0~ 1' 2

splitting up H,*, so that

(A2)

FICx. 11. Simulated control pulses when the process is dis-
turbed by parasitic effects.

According to Definition 1, H, , is compact and connect-
1~ 2

ed and therefore H,*, , is compact and connected too
Oi li 2
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because H. . . C H, , It is also clear that0' 1' 2 17 2

(iii) Inverse mapping .To complete the procedure for
m =1, the sectors H,*, , are mapped back:

H,' "*C H, , is compact, connected, and with

g, , it follows from Definition 1 that H,' "*CH,
m —1' m m m

(ii) Splitting:

(A3)
Hm+ =Hm+ QH

m+1 m m' m+1
(A7)

Since g, ', is a one-to-one map and continuous

(Definition 1), we obtain the sectors H. . . which are0' 1' 2

also compact, connected, disjoint, and U, ' OH,
2 0) 1P 2

=H, , ; therefore H. . . CH,
For m ) 1, we now use the following abbreviation for

the forward maps:

g[S,. ] 'gs, , s,. +1 g$1,$2 gSP&$1

and for the inverse maps
—1 . —1 ~

—1 o . . . ~
—1

i 0' 1 1' 2 i' i+1

(A4)

(A5)

Recalling some results from topology [25,26], we know
that g[, ] and g[, '] are continuous and in a one-to-one

correspondence if each g- ' is a continuous and one-to-
one map for all j,j'=0, . . . , p. We now proceed with the
three induction steps for the general case.

(i) Forward mapping. The map g(, )
from the previ-

ous induction step is used to generate H',

H(m —1)e
[S 2] Sm

Then the continuous map g, , is applied to H,'

H, * is compact and connected,m+1
=H, ' and all H, ' are disjoint.

m+1 m+1 m m+1
(iii) Inverse mapping T.he inverse mapping follows in

two steps. First g, ', is applied:

—1 . Hme H(m —1)e
S S ' S Sm —1' m m+1 m+1

(A8)

Therefore

—1 . H(m —1)e
[ m-2]' m+1 'm+1 '

where H, is compact, connected, disjoint, andm+1

oH, =H, . Hence, H, is a subset of Hm+1 m+1 m m+1 Sm

and Theorem 1 is proven.
The inverse maps g, ', and g[,

'
] can be combined

to the new one-to-one and continuous map g[,', using[Sm —1]'
the convention of (A5):

where subsectors H,' "* are compact, connected, dis-
m+1

i t ndf/m+1'™ l ~~H™I l

+1 +1 m

H,' '" is a subset of H,'m+1 m

In the second step, H,' "* is mapped back bym+1—1
g[S 2]

. H(m —i)* Hm*&$1~$ '
Q 8 (A6)

—1 . me
g[, ]H, H,
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