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Scaling of energy barriers for fiux lines and other random systems
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Using a combination of analytic arguments and numerical simulations, we determine lower and
upper bounds for the energy barriers to the motion of a defect line in a random potential at low
temperatures. We study the cases of magnetic Qux lines in high-T superconductors in two and
three dimensions, and of domain walls in two-dimensional random-field Ising models. The results
show that, under fairly general conditions, energy barriers have the same scaling as the fiuctuations
in free energy, except for possible logarithmic factors. This holds not only for barriers between
optimal configurations of the line, but also for barriers separating any metastable configuration
from a con6guration of minimal energy. Similar arguments may be applicable to other elastic media
with impurities, such as bunches of Aux lines.

PACS number(s): 05.40.+j, 74.60.Ge, 05.70.Ln

I. INTRODUCTION

Directed paths in random media (DPRM) [1] are sim-
ple realizations of glassy systems [2,3]. Some examples
are pinned flux lines (FL) in high-T, superconductors,
and domain walls in random-Geld and random-bond. Ising
models. In thermal equilibrium, a magnetic FL is pinned
by defects (oxygen impurities, grain boundaries, etc.) in
the superconductor that lower its energy [4]. The re-
sulting elastic distortions are limited by the line tension,
which opposes the bending of the line. This competi-
tion leads to a free-energy landscape for the FL, which
is rather complicated and has many local minima, i.e. ,
metastable states [5]. When an electric current flows
through the system, the FL feels a Lorentz force per-
pendicular to its orientation and to the current direc-
tion. As long as the current is not strong enough to
overcome the pinning forces, the line moves by thermally
activated jumps of line segments between metastable con-
figurations [6—8]. The length of these line segments is
estimated by the condition that the free-energy barrier
for a jump should be of the same order as the gain in
free energy due to that jump. These dynamics are be-
lieved to be the reason for the nonlinear voltage-current
characteristics found in experiments [4].

Randomly placed impurities in Ising ferromagnets may
generate either a random magnetic field or random ex-
change couplings [9]. The &ee-energy landscape for do-
main walls in these systems is determined by the com-
petition between the pinning energy and the energy cost
(per unit length or area) for creating the wall. When the
system is quenched to a low temperature, the magnetic
domains grow. As for the flux line, the free-energy gain
due to the motion of a domain wall segment is expected
to be of the same order as the free-energy barrier that
has to be overcome.

Since energy barriers play an important role in the dy-
namics of glassy systems, it is essential to know their
properties. The scale of these barriers should grow with
observation size L like a power law L~. Usually, it is as-

sumed that the only energy scale in the system is set by
the fluctuations in free energy that increase as L, and
that therefore g = 8 [8,9]. However, it is also quite pos-
sible that the heights of the ridges in the random energy
landscape scale difI'erently from those of the valleys that
they separate, with @ ) 0. Yet another scenario is that
transport occurs mainly along a percolating channel of
exceptionally low-energy valleys with g ( 0.

An attempt to clarify this situation was made in
Ref. [10], where g = 8 was established for a FL mov-
ing in two dimensions. Using a combination of analytic
arguments and numerical simulations, lower and upper
bounds to the barrier were found. This argument was
then extended to a FL in three dimensions [ll], yielding
again g = 0. In this paper, we present in more detail
the arguments discussed briefly in these earlier papers,
including also systems with long-range correlated ran-
domness (random-field Ising models) in two dimensions.
We obtain in all cases lower and upper bounds to the
barrier that scale as L, except for possible logarithmic
factors, leading to @ = 9. Furthermore, it is argued
that the result g = 0 holds also in higher dimensions, as
long as the distribution of minimal energies decays ex-
ponentially. In all cases, the line can move through the
system by encountering energy fluctuations of only order
L around the mean minimal energy. We also show that
a line that initially has a larger energy can reach this re-
gion of minimal energies by crossing barriers of order L
(or smaller).

The outline of the paper is as follows: In Sec. II, we
determine the energy barrier for a FL moving in two di-
mensions. In Sec. III, we apply the same algorithm to
determine the energy barrier to the motion of domain
walls in two-dimensional random-field Ising systems. In
Sec. IV, we study energy barriers for a FL in three di-
mensions and discuss also the behavior in higher dimen-
sions. In Sec. V, we take a general look at the energy
landscape and show that a line can move from any initial
configuration to a minimal configuration by going over
no barrier higher than L . In Sec. VI, we try to put the
definition of energy barriers on a more solid foundation,
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and Sec. VII argues that the results of the paper can be
generalized to other elastic media with impurities.

II. ENERGY BARRIERS FOR FLUX LINES
IN TWO DIMENSIONS

In two dimensions, we represent a DPRM by the fol-
lowing model: The line is discretized to lie on the bonds
of a square lattice, directed along its diagonal. Each
segment of the line can proceed along one of two direc-
tions, leading to a total of 2 configurations after t steps.
These configurations are labeled by the set of integers
(z(v.)) for r = 0, 1, . . . , t, giving the transverse coordi-
nate of the line at each step [clearly constrained such
that x(~+ 1) = x(v ) + 1]. To each bond on the lattice is
assigned a (quenched) random energy equally distributed
between 0 and 1. The energy of each configuration is the
sum of all random-bond energies on the line. Without
loss of generality, we set x(0) = 0.

Some exact results are known for this model [1]: The
fIuctuations in the &ee energy at finite temperature scale
as t // . The meanderings of the transverse coordinate
of the line scale as t~, where g = 2/3 is the roughness
exponent. The scaling behavior of the pinned FL is gov-
erned by a zero-temperature fixed point [9] where energy
fluctuations scale in the same way. A FL at low tem-
peratures, and in thermal equilibrium, is likely to spend
most of the time in configurations of minimal energy. For
each end point (t, x) with x = t, t+ 2, .—. . ,

—t, there is
a configuration of minimal energy E;„(x[t)that can be
obtained numerically in a time of order t . It is known
that for ~x~ & x, (x t ~, the function E;„(z~t)behaves
as a random walk and is thus asymptotically Gaussian
distributed [1,12]. Since beyond the interval [—x„x,]
the energy of minimal paths is systematically larger, we
consider in this paper only the region [

—x„x,]. Figure
1 shows minimal paths of length t = 256 to end points
between x = —96 and. 2 = +96.

We want to find the energy barrier that has to be over-
come when the line is moved from an initial minimal en-
ergy configuration (z;(v)) between (0, 0) and (t, —zt') to
a final configuration (xt'(w)) between (0, 0) and (t, +xf),
with xt' = zf(t) & z, . The only elementary move al-
lowed is flipping a kink along the line from one side to
the other (except at the end point). Thus the point (w, x)
can be shifted to (7, x +2). Each route from the initial to
the final configuration is obtained. by a sequence of such
elementary moves. For each sequence, there is an inter-
mediate configuration of maximum energy, and a barrier
that is the difference between this maximum and the ini-
tial energy. In a system at temperature T, the probability
that the FL chooses a sequence that crosses a barrier of
height E~ is proportional to exp( —E~/T), multiplied by
the number of such sequences. We assume that, as is the
case for the equilibrium DPRM, the "entropic" factor of
the number of paths does not modify scaling behavior.
Thus at sufIiciently low temperatures, the FX chooses the
optimal sequence that has to overcome the least energy,
and the overall barrier is the minimum of barrier energies
of all sequences.

I' IG. 1. Minimal paths of length t = 256 for a FL in two
dimensions to end points between x = —96 and x = +96
(solid), and the barrier paths between them (dotted)

Since the number of elementary moves scales roughly
as the area between the initial and. final lines, the num-
ber of possible sequences grows as t . This exponential
growth makes it practically impossible to find the barrier
by examining all possible sequences, hampering a system-
atic examination of barrier energies. Rather than finding
the true barrier energy, we proceed by placing upper and
lower bounds on it.

The lower bound was given in Ref. [13], and is ob-
tained as follows: The end point of the path has to visit
all sites (t, x) with [x~ & xf, and the energy of any
path ending at (t, x) is at least as large as E;„(x~t).
Therefore the barrier energy cannot be smaller than
max[E; (x~t) —E; (—xf ~t)] for x C [

—xf, zy]. When
xy is sufIiciently small, the probability distribution of
this lower bound is identical to that of the maximal de-
viation of a random walk of length xt' [l4]. The latter is
a Gaussian distribution with a mean value proportional
to v'xt', and a variance scaling as xt'. This growth sat-
urates for xf of the order of t ~, leading to the scaling
behaviors,

~[/(g*)) gl 3f(/)(~/g2/3)

var(E "
) = t'~ y("s( /tx'~ )s
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FIG. 2. Scaling functions fi" (y), fs" (y), gi" (y), and
g2" (y) [see Eqs. (1), (4), and (5)] for the mean and variance
of the lower and upper bounds; averaged over 2000 realiza-
tions of randomness, for t = 256 (solid), 512 (dotted), 1024
(dashed), 2048 (long-dashed), and 4096 (dot-dashed).

for the lower bound and its variance. The functions
fi(")(y) and f2(")(y) are proportional to ~y and y for
small y, respectively, and go to a constant for y = O(1).
Our simulation results for systems with t = 256, 512,
1024, 2048, and 4096 confirm this expectation. Figure 2

shows the scaling functions fi" (y) and f2" (y) for dif-
ferent t, and the collapse is quite satisfactory. However,
the initial growth proportional to +zan is not clearly seen
at these sizes.

To obtain an upper bound for the barrier, we specify
an explicit algorithm for moving the line from its initial
to its final configuration. This is achieved by finding a se-
quence of intermediate steps. It is certainly advantageous
to keep the intermediate paths as close to minimal config-
urations as possible. We therefore proceed in the follow-
ing way: We first find the minimal paths connecting (0, 0)
to the points (t —1, z) with z;(t —1) & z & zf(t —1), and
we add a last step to the left [&om (t—1, x) to (t, x—1)]. If
x;(t —1) & z;(t) = —zf, we then move the point (t, —zf)
to (t, —zf + 2). Now the path has the same end point as
the first intermediate minimal path. We then move the
path to this first intermediate configuration (the precise
prescription will be given below), and then we move again
the end point. This procedure is repeated, until the path
reaches its final configuration. At each step, we obtain
a local barrier path that separates two neighboring min-
imal configurations. The overall barrier is of course the
one with the highest energy. While it may occasionally
be possible to go to the next intermediate configuration
in a single elementary move (as defined above), this is
generally not the case. Intermediate minimal paths with
the same end point may be quite far apart at coordinates
w ( t. The reason is simple: suppose the random poten-
tial has a large positive fluctuation, a "mountain. " The

minimal energy paths will then circumvent this region by
going to its right or left. The last path going to the left
and the first one going to the right have almost the same
energy. They form a loop that can be quite large and is
likely to enclose the barrier when both paths separate al-
ready at small r. Such loops have been conjectured [7,8]
to play an important role in the low-temperature dynam-
ics of the DPRM. Since the transverse fluctuations of a
minimal path of length t grow as t /, we expect the lat-
eral size of these loops to also be of this order.

The algorithm for moving a line of length t = 2
from an intermediate configuration (zi(v)) to another
one (z2 (w) ), with x2 (t) = xi (t) is as follows: If x2 (w) &
zi (r)+2 for all w, we can choose a sequence of elementary
moves such that at most two bonds of the line are not
on one or the other minimal path, leading to a barrier of
order 1 between the two. If z2(r) ) zi(w) + 2 for some
v, the two paths enclose a loop. We then consider the
points (t/2 —1,x) with xi(t/2 —1) & x & x2(t/2 —1).
For each of these points, we find a minimal segment
of length t/2 —1, connecting the point (t/2 —1, x) to
(0, 0) by a minimal path, and we take a final step to
the left &om (t/2 —1, x) to (t/2, x —1). In the same
way, we connect the points (t/2+ 1,x) with xi(t/2 + 1)
& z & x2(t/2 + 1) to zi(t) via minimal paths and add a
first step to the right from (t/2, x —1) to (t/2, x). Two
such segments form together an almost minimal path of
length t, constrained to go through intermediate points
at t/2 and t/2 6 1. We next move the line (zi(r) ) step-
wise through this sequence of almost minimal paths. If
x;(t/2 —1) = x;(t/2) —1, we first move the upper seg-
ment. If x;(t/2) = x;(t/2+1)+1, we then move the lower
segment. Then we move the middle point. We continue
by repeatedly moving the upper segment, the lower seg-
ment, and the middle point, until the final configuration
(z2(w)) is reached. (If the length of the line is different
from 2", we might have to choose the upper segment to
be larger by 1 than the lower segment, or vice versa. )

The prescription for moving the segments of length t/2
is exactly the same as for paths of length t: If the dis-
tance between two consecutive configurations is larger
than 2 for some w E [0, t/2], we consider the points at
(t/4+ 1,x) in between the two, and find minimal paths
of length t/4 —1 connecting them to the initial and final
points, and add a step to the middle points. Next we
attempt to move segments of length t/2 by repeatedly
moving line portions of length t/4. In some cases, when
the energy barrier is large, it is necessary to proceed with
this construction until the cutoff scale of t/2" = 2 is
reached. Thus, at each intermediate configuration, the
line is composed of one segment of length t/2, one of
length t/4, etc. ; ending with two smallest pieces of length
t/2 (equal to 2 in the worst case). The barrier path is
the intermediate configuration with highest energy. Fig-
ure 1 shows the barrier paths.

We now estimate the barrier energy resulting &om
the above construction. Each intermediate path is com-
posed of segments of minimal paths with constrained end
points, and we would like to find the probability distribu-
tion for the highest energy. Constraining the end points
of a minimal path of length w typically increases its en-
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ergy by E (T) oc 7 i~s .A subset of these intermediate
paths (those that cross the largest mountains) have con-
straints imposed on segments of length t, t/2, t/4, and all
the way down to unity. The number of paths in this sub-
set (henceforth referred to as candidate barriers) grows
as N, (t) oc t, with 1 ( n ( 1 + 2/3. The lower limit
comes from noting that for each loop of size 2 there
exist at least two loops of size 2, one in the upper
and one in the lower half of the parent loop, thus N & t.

The upper limit comes from the total number of inter-
mediate configurations that grows as txy. The energy
of each candidate barrier path is obtained in a manner
similar to that of the lower bound: Instead of finding the
maximum of a random walk of length zy oc t ~, we now
have to examine the sum of the maxima for a sequence of
shorter and shorter random walks added together. The
mean value of this sum is related to the convergent series,

E~"~t = E" t +2E t 2 +2E t 4 + +Aint
E" (t) 1+2(2 i +2 ~ +. .) +Al n(t)+B

1+2 ] —2 +gin t + jr=869. . E" t +Pin

The correction term A in(t), is explained as follows: Each
segment of length 2 is composed of a minimal path of
length 2 —1 and one step that has a random energy
(the final or initial step, depending on whether the seg-
ment lies in the upper or lower half of a loop). So the
energy of the segment is equal to the energy E "

(2 ) of
a minimal path of length 2, plus a constant of order 1.
Since a candidate barrier has n = ln(t)/in(2) segments,
these constants add up to A in(t), with 2 of the order of
unity. The constant B in Eq. (2) accounts for the break-
down of the scaling form of the energy increase for small
loops. The mean angle of the smallest loops (of size 2)
approaches the 45 limit, their mean energy growing as
0.5t . For the larger loops, the angle t /t is small and2/3

the energy is 0.23t . A finite value of m acts as a cutofF
separating the two limits. The energy difference per unit
length between small and large paths then leads to the
additive constant B (of the order of unity) in Eq. (2).

The barrier energy is the maximum of the N, (t) ener-
gies of all candidate barriers. To find its characteristics,
we need the whole probability distribution for the en-
ergy E," (t). Since E," is the sum of energies coming
from its minimal segments, the simplest assumption is
to regard the segment energies as independent, approx-
imately Gaussian, random variables. We then conclude
that E," (t) is also Gaussian distributed with a variance,

E+' z t = E~" x t + 2lnNvarE" x t

1+ ~"~ lnt t'~'g,"' x t'~',

and its variance,

var E~"l(x, t)

2 ln N(»)
t2/3

g'"'(*/t'~').
lnt (5)

has to be multiplied by n = log2(t). Since our numerical
results show no evidence for such a logarithmic factor,
we shall not consider it any further.

It can be checked easily that (for large N), the max-
imum of N independent Gaussian variables of mean c
and variance 0 2, is a Gaussian of mean a + 0 g2 ln N and
variance 0'2/(2 ln N) [15]. Since the N, (t) candidate bar-
riers have large segments in common, their energies are
not independent. We can approximately take this into
account by assuming a subset of them as independent,
leading to N oc t for some o.' ( o.. We thus obtain the
following estimates for the mean upper bound in barrier
energy,

var E" (t) = var E" (t) +2 var E" (t/2)

+ 0 ~ ~

4.40 x var E (t) oct ~ . (3)

Since the difFerent segments are in fact constructed
through a specific recursive procedure, their indepen-
dence cannot be justified. In the worst case that they
are completely dependent, the right-hand side of Eq. (3)

The functions gi" (y) and g2" (y) are proportional to ~y
and y, respectively, for small y, constant at large y, and
in general difFerent from those of the lower bound.

Our numerical simulations indeed confirm the above
scaling forms. The scaling functions gi~"l(y) and g2" (y)
are plotted in Fig. 2 for difFerent values of t, after aver-
aging over 2000 realizations of randomness. The gin(t)
factors are essential, as a comparable collapse is not ob-
tained without them. In fact, the best fit to (E+' (t))
is obtained by including the correction to scaling term
oc (E "

(t)), and with P~"l = 1. The numerics therefore
support the neglect of correlations, and the assumption
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of a Gaussian distributed Ei"l (t). As in the lower bound,
the initial scaling proportional to gzf is not clearly seen
for the sizes studied. Since the leading power for the
scaling of the lower and upper bounds is identical, we
conclude that the barrier energies also grow as t / . (It
remains to be seen if the logarithmic factors are truly
present, or merely an artifact of our algorithm. )

III. ENERGY BARRIERS FOR DOMAIN WALLS
IN TWO-DIMENSIONAL RANDOM-FIELD

ISING SYSTEMS

1 /x —i/2+i/2

/2K

N —1

) r,'
++i/2+1/2 )

In the previous section, we considered random-bond
energies that were uncorrelated. The analytic argument
for the upper bound relied on the random-walk behavior
of E;„(z~t)in this situation. Thus, the proof for @ = 0
cannot be directly extended to other situations, where
the distribution of lower bound energies is not known.
An important example is the case of domain walls in two-
dimensional random-field Ising magnets. The energy for
creating a domain wall is equal to the cost of flipping all
spins on one side of the interface, in turn proportional to
the sum of all random fields on the flipped spins. There
are consequently long-range correlations in the domain
wall energy in the direction perpendicular to the orien-
tation of the wall [16].

We describe the configurations of the domain wall by
essentially the same model as the FL, but assigning to
each bond a random energy with long-range correla-
tions in the x direction. These correlations are gener-
ated by first selecting for each time t, random numbers

between —1 and 1, where N is (at least) as large as the
largest time occurring in the simulations. To each bond
connecting (t, x) to (t+1,z+1) we then assign the energy

FIG. 3. Minimal paths of lengt;h t = 128 to end points
between z = t and z —= +t (solid), and the barrier paths
between them (dotted), in the random-field Ising model.

As in the previous section, we move the line from
an initial minimal energy configuration {x;(w)) between
(0, 0) and (t, —zt), to a final configuration {zf(v)) be-
tween (0, 0) and (t, zy). Since the end point of the path
has to visit all sites (t, x) with ~z~ ( zf, and since the
energy of any path ending at (t, x) is at least as large
as E;„(z~t),the barrier energy cannot be smaller than
max[E;„(z]t)—E;„(—zf ~t)], for x ranging in the inter-
val [ zf zf]. Since th—e distribution of minimal energies
decays exponentially and has no power-law tails, we can
expect that the lower bound scales in the same way as
the fluctuation of the minimal energy, leading to

Figure 3 shows minimal paths of length t = 128. Due
to the correlations, neighboring bonds have almost the
same energy, and therefore minimal paths tend to have
large parallel portions. Figure 4 shows the minimal en-
ergy as a function of the end-point position for a given
realization of randomness, and for t = 1024. This curve
is much smoother and has longer correlations than the
corresponding curve in the case of short-range correlated
randomness, where the minimal energy performs a ran-
dom walk.

The fluctuations in free energy of a line are known to
scale as t, and the roughness exponent is ( = 1 [17].
We determined numerically the distribution function for
the minimal energy shown in Fig. 5. It is very close to
a Gaussian, with no apparent power-law tails. We will
show that, due to this property of the minimal energy
distribution, the lower and upper bounds to the barrier
scale in the same way as the fluctuations in minimal en-
ergy.

var(E-"') = t'f2" (z/t)

for the lower bound and its variance. Our simulation re-
sults for systems with t = 256, 512, 1024, and 2048 con-
Grm this expectation. Figure 6 shows the scaling func-

tions fi
'

(y) and f2
'

(y) for different t, and the collapse
is quite satisfactory. However, the initial growth propor-
tional to xf is not clearly seen at these sizes. Figure 7
shows the distribution of lower bound energies. It is very
close to a (half) Gaussian of width proportional to t

An upper bound can be obtained by exactly the same
algorithm as before. The analytic argument made in the
previous section, however, cannot be directly repeated,
since the function E;„(x~t)is no longer a random walk in
x, and since we do not have analytic results for the lower
bound. We can, however, combine analytic arguments
with the numerical results for the lower bound to predict
the scaling behavior of the upper bound. Since the line
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tion of the end point position x for t = 1024
and (a) long-range correlated randomness,
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is always composed of minimal segments, the energy of a
candidate barrier that has segments of all lengths down
to the cutoK is given by

E('~ t = E ' t + 2 E(' t 2 + E ' t 4

order of the length of the path, leading to only few inde-
pendent candidate barriers. As in the previous section,
we find that the maximum of these candidate barriers,
which is the upper bound to the barrier energy, scales in
the same way as the lower bound, i.e.,

+ 0 ~ ~

3 E ' t +A'lnt +a'. and its variance scales as

The origin of the terms A' ln(t)+R' has been explained in
the previous section [see paragraph after Eq. (2)]. Since
the energy distribution of the lower bound is approxi-
mately (half) Gaussian, the energy distribution of the
candidate barriers decays also like a Gaussian. The up-
per bound to the barrier energy is the maximum of the
energies of all candidate barriers. In our simulations, we
find no evidence for logarithmic factors, indicating that
the number of candidate barriers increases either very
slowly, or not at all, with t. Prom Fig. 3 we can see that
there is essentially one large loop over a distance of the

var E+' (z, t) = var E, ' (x, t) /21 Nn'
(*/t).

Figure 6 shows the scaling functions f2 and g2
(1r) (lr)

To summanze the results so far, we have established
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Fjc. 5. The distribution P(E;„)of minimal energies for
t = 1024 and long-range correlated randomness. The solid
line is a Gaussian distribution; deviations from it indicate a
third cumulant.

FIG. 6. Scaling functions f~
'

(y), f2
'

(y), gI (y),
g2

'
(y) [see Eqs. (6), (8), and (9)] for the mean and variance

af the lower and upper bounds; averaged over 1000 realiza-
tions of randomness, for t = 256 (solid), 512 (dotted), 1024
(dashed), and 2048 (long dashed). The straight line has slope
1.
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the relation @ = 8 for lines in two-dimensional systems
with short- and long-range correlated randomness. Since
the considerations for both systems rely strongly on the
dimensionality, it is of importance to look also at a three-
dimensional system, which is physically more relevant.

IV. ENERGY BARRIERS FOR A FLUX LINE
IN THREE DIMENSIONS

In a two-dimensional system, the end point of the FL
has to move through all points (z, t) with z; ( z ( zf.

FIG. 7. Distribution of minimal energy for an Ising domain
wall in two dimensions with random fields. The symbols are
the same as in the previous figure.

This property was essential for the derivation of the lower
bound in the previous sections. A FL that moves in three
dimensions can avoid regions in space that are energeti-
cally unfavorable for some of its segments, and one may
therefore speculate that @ ( 0. In this section, we first
determine numerically a lower bound for the barrier en-
ergy that scales in the same way as the energy fluctua-
tions, thus ruling out @ ( 0. Further numerical results
predict that an upper bound scales in the same way, thus
leading to g = 0.

The line now lies on the bonds of a cubic lattice, start-
ing at the origin and directed along its (1,1,1) diagonal.
Each segment of the line can proceed in the positive di-
rection along one of the three axes, leading to a total of
3 configurations after t steps, with end points lying in
the plane that is spanned by the points (t, 0, 0), (0, t, 0),
and (0, 0, t). A given configuration of the FL is labeled
by vectors (z(v) ) for w = 0, 1, . . . , t, giving the transverse
coordinates of the FL at each step. The points (z(w)) lie
on the vertices of a triangular lattice. For a given value
of w, they lie on one of three alternating sublattices.

The minimal energy E;„(z~t)can be obtained numer-
ically in a time of order t . The fluctuations in minimal
energy are known to scale as t with 0 0.24, and the
roughness exponent for minimal paths is (, 0.62 [18,19].
The end points of the minimal paths with the lowest en-

ergy lie within a distance proportional to t~ from the
origin. Figure 8 shows the minimal energies of paths of
length t = 288 to end points z with ~z~ ( O(t~). The
highest energy in this region is represented in white, the
smallest energy in black. The minimal energies are corre-
lated over a distance of the order of t~. The distribution
of minimal energies is close to a Gaussian and is shown in
Fig. 9. Similar to a two-dimensional system [20] (see also

4h" ~ " '
Y V YqVoV%BY~~

Q..:.N"'."::
-0,' ~

FIG. 8. Minimal energies of
paths of length t = 288 in three
dimensions to end points x with
~z~ ( O(t~). The higher en-
ergies are indicated by white
shading, and the lower energies
by darker shades.
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FIG. 9. Probability distribution P(E;„)of minimal en-
ergies E;„(Ol144)in three dimensions, averaged over 50000
realizations of randomness. The solid line is a Gaussian dis-
tribution.

FIG. 10. Scaling functions f (y), f (y), and fo(y) de-
fined in Eqs. (10)—(12) for t = 72 (solid), 144 (dotted), 288
(dashed), 576 (long-dashed), and 1152 (dot-dashed), averaged
over 500 realizations of randomness. The straight line has
slope 8/( = 0.39.

Fig. 5), this distribution seems to have a third cumulant
since it is not completely symmetric.

A lower bound to the barrier energy is obtained as fol-
lows: While the line moves &om its initial to its Anal
con6guration, the transverse coordinates of its end point
move between nearest-neighbor positions on one of the
above-mentioned triangular sublattices. When the end

-point is at a position x, the energy of the line is at least
as large as the minimal energy E;„(zlt).The maximum
of all these minimal energies along the trajectory of the
end point, minus the energy of the initial configuration,
certainly bounds the barrier energy &om below. Since we
do not know the actual trajectory of the end point, we
have to look for the trajectory with the smallest maximal
energy. Only in this way can we be sure that we have
indeed found a lower bound. This situation is funda-
mentally different &om a two-dimensional system, where
there is only one possible trajectory for the end point.

Provided that the minimal energies E;„(xlt)are
known, this lower bound is determined in polynomial
time by using a transfer-matrix method: We start by as-
signing to the initial point x; a "barrier energy" B(x;) =
0, and to all other sites x 'on the same sublattice a barrier
energy B(x) = t, which is certainly larger than the lower
bound resulting &om the algorithm after many iterations.
At each step, the energy B of all sites x, except for the
initial site, is updated according to the following rule:
Look for the minimum of the energies B(x + e;) of the 6
neighbors. If this is smaller than B(x), replace B(x) by
this minimum, or by E;„(xlt)—E;„(x;lt),whichever
is larger. After a sufIiciently large number of iterations,
which is of the order of the size of the area of interest
(scaling as t2~), all possible trajectories to end points
within this area have been probed, and the barrier ener-
gies B(x) do not change any more. The energy B(xt) is
then identified as the lower bound. Figure 10 shows the
lower bound to the energy barrier for a line with the end
point moving &om the origin to sites within a distance of

the order of t~, for different values of t and averaged over
500 realizations of randomness. The distance lzf —z;l
has been scaled by t~, and the energy by t~. After this
rescaling, all the curves collapse, leading to the following
scaling behavior for the lower bound,

The function f(y) should be proportional to ys~~ for
small y. Again, for the simulated system sizes, this
asymptotic scaling is not clearly seen. For y ) 1, the
scaling form in Eq. (10) breaks down since the minimal
energy is then a function of the angle (lxlit). We con-
clude that the lower bound to the barrier scales in the
same way as the fIuctuations in minimal energy, and con-
sequently the energy barrier increases at least as t, lead-
ing to @ ) 8. The distribution P(E ) of the lower bound
energy for a fixed distance lxl oc t& is shown in Fig. 11.
It appears to be half Gaussian with width proportional
to t~.

The result @ ) 8 is not surprising if we note that an
even simpler lower bound is given by max(E;„(zylt)—
E;„(x;lt),0), which evidently scales as t since the dis-
tribution function of minimal energies decays exponen-
tially fast, i.e. , has no power-law tails (see Fig. 9). To
make sure that the scaling of the lower bound found
above is not dominated by the neighborhood of final con-
fIgurations with particularly high energies, we repeated
the above simulations by allowing only end points with
minimal energies smaller than the initial energy. This
corresponds to a situation where the end point of the
line only moves to positions that are energetically more
favorable. The results are shown in Fig. 10 and again
collapsed by the scaling form

E t, ~g —x; =t' xq —x; t~.
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FIG. 11. Probability distribution of E . The parameters
and symbols are the same as in Fig. 10.

As in the previous case, the asymptotic scaling f (y) oc

y /~ for small y cannot be clearly seen. The energy dis-
tribution of the lower bound is again a half Gaussian of
width proportional to t~ and looks similar to Fig. 11.

The same scaling behavior is also found when instead
of the optimal trajectory for the end point, the shortest
trajectory (a straight line) is chosen. In this case, the
mean of the barrier energy Eo has the scaling form

(E,(t, Ixy —*-;I)) = t'fp(l*x —*'I/t')

(see Fig. 10), again with a half-Gaussian distribution of
width proportional to t~. This, of course, does not rep-
resent a lower bound to the true barrier, but it will be
important for the determination of an upper bound be-
low, and is therefore included here.

The result E oc ts [Eq. (11)] can be explained from
the exponential tails of the distribution of minimal ener-
gies: If we asume that the end point of the line moves
only in valleys of particularly low energy, we can succes-
sively remove all sites with the largest minimal energy
&om the set of possible end points, until the connectiv-
ity over the distance t~ breaks down. The remaining
end points form percolation clusters, and their density is
given by the corresponding percolation threshold. (This
is analogous to random resistor networks describing the
hopping resistivity for strongly localized electrons. The
resistance of the whole sample is governed by the critical
resistor that makes the network percolate [21].) Since
the occupied sites are correlated over the distances con-
sidered, the value for the threshold is different from the
site percolation limit of 0.5 in an infinite triangular lat-
tice with no correlation between occupied sites. But for
the present purpose, it is sufIicient to know that this
threshold is finite, and that therefore a finite percentage
of all sites are below threshold. Since the distribution
of minimal energies decays rapidly, its tail cannot con-

(E, (t, t~)) (Ep(t, t~)) (1+2 (1/2) + (1/4) + .

= (Ep(t, t )) (—1+ 2/[1 —(1/2) ])
= 12.0 . . x (Ep(t, t~)). (13)

In principle, one should add correction terms similar to
those in Eqs. (2) and (7). However, these corrections are
subleading with respect to t and will be neglected.

As mentioned in Sec. III, we cannot rule out that
the energies of minimal segments are dependent of each
other. In the worst case, where they are completely de-
pendent, Eq. (13) has to be multiplied by glog2 t. This

may result in an additional factor proportional to Ql tn
in the upper bound, but does not otherwise affect any
of our conclusions. The number of independent candi-
date barriers increases with some power in t. Since their
energy distribution decays like a Gaussian, we can take
their maximum in the same way as before, and we finally
obtain the following estimate for the upper bound,

= (E.(l*t —*'I t)) + v'21nNvarE (lxy x'I t)

in& t'+ xy —x, t~. (14)

We have thus shown that the energy barrier encoun-

tain a finite percentage of all sites. We conclude that the
threshold is within a distance of t &om the peak, and
therefore that the energy Huctuation on the percolation
cluster, and consequently the lower bound for the barrier,
are proportional to t .

We now proceed to construct an upper bound to the
energy barrier. To this purpose, we specify a sequence
of elementary moves that take the line &om its initial to
final configuration. The only elementary move allowed is
flipping a kink along the line. Thus the point (w, x) can
be shifted to (w, x+e;), where +e; are the six vectors that
connect a vertex in the triangular lattice to its nearest
neighbors within the same sublattice. The algorithm is
similar to the one in two dimensions: First, we choose a
sequence of end points connecting the initial to the final
end point, which is as short as possible. Then, we draw
all the minimal paths leading to these end points, and
attempt to move the line through them sequentially. If
two consecutive minimal paths have nowhere a distance
larger than 1 (measured in units of Ie;I), we can choose
a sequence of elementary moves such that at most two
bonds of the line are not on one or the other minimal
path, leading to a barrier of order 1 between the two.
If the distance is larger than 1, we proceed essentially
in the same way as in two dimensions, i.e., we consider
the midway points (t/2, x;) that connect both lines via
the shortest possible trajectory x;(t/2) (if there are sev-
eral possibilities, we choose one at random). For each
of these points, we find two minimal segments of length
t/2 connecting on one side to (0, x) and on the other to
either (t, xq(t)) or (t, x2(t)). Then we move the line by
repeatedly moving segments of length t/2, etc.

The energy of a candidate barrier is then given by
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tered by a FL moving in a two- or three-dimensional ran-
dom medium has an upper and a lower bound that both
increase as t, except for logarithmic factors. It thus fol-
lows that the barrier itself scales as t, , confirming the
hypothesis g = 8. Since the arguments are mainly based
on the exponential tails of the minimal energy distribu-
tions, it is expected that the result g = 8 holds also
in higher dimensions. The only requirement is that the
tails in the distributions of minimal energies still decay
sufIiciently rapidly.

V. BARRIERS TO FAR FROM MINIMAL
CONFIGURATIONS

In the previous sections, we discussed energy barriers
that have to be overcome by a line moving between mini-
mal energy configurations. We showed that such lines can
stay in an energy interval (E;„)6 const x ts. However,
a line may initially have an energy that is much larger.
The initial configuration of a Fi penetrating the system
may be straight and parallel to the external magnetic
field. If a system is cooled down &om high temperatures,
configurations of the FL are random walks of roughness
exponent g = 1/2. An initial configuration with rough-
ness exponent ( = 1 is found for FL's driven close to a
depinning transition [22]. If the temperature is low (as
we always assume in this paper), the line then relaxes
to some metastable state. The FL will ultimately reach
a configuration of minimal energy, only if it is not sepa-
rated &om it by abnormally high barriers. We therefore
show in this section that the line can reach the minimal
energy region by going only over barriers that are not
larger than the order of t . We specify an algorithm for
moving a line of length t = 2 from any initial confi'gura
tion to one of minimal energy. The algorithm is similar
to that presented in the previous sections, and leads to
barriers of the order of t .

First, we assume that its initial roughness is not larger
than that of minimal energy paths. Let (z (r)) for
w = O, . . . , t be the initial configuration of the line, and
(zp(r)) a minimal energy configuration with x„(0)
xp(0) and x„(t)= xp(t). We then define a sequence of
paths (z (r)), m = 1, . . . , n 1, which are co—nstrained to
go through the points x„(kt/2 ) for k = 0, 1, . . . , 2 and
are composed of 2 minimal segments of length t/2
The energy of such a segment is smaller than the energy
of any other piece of a path with larger m that has the
same end points as the segment. We now move the line
successively through this sequence of configurations, go-
ing &om the largest to the smallest value of m. The con-
figurations (z +i(r)) and (z (r)) intersect each other
at the points r = kt/2, with k = 0, . . . , 2 . We there-
fore can move the line from the configuration (z +i(r))
to (z (r)) by successively moving segments of length
t/2 . In many cases, the segments have to overcome a
loop, and then we apply the algorithm defined previously.
In contrast to the previous sections, these loops do not
separate two minimal configurations, but one minimal
segment, and another constrained at its midpoint, a con-

stellation that occurred also in the previous sections as an
intermediate situation. Since we restricted the roughness
of the initial configuration to less than that of minimal
paths, the size of the loops does not exceed t~. The num-
ber of independent candidate barriers within a loop is
therefore smaller than, or equal to, X, oc (2 ) from
previous arguments, where the exponent o.' depends on
the model. The energy of each candidate path is smaller
than, or equal to, the energy E,(2 ), which was also
obtained in the previous sections. The total number of
loops is less than or equal to 1+2+ . .+ 2 & 2
and the energy of each candidate barrier is certainly over-
estimated if we assume that all loops are of size t. We
therefore find an upper bound to the barrier that is the

I I

maximum of t t = t + candidates chosen &om a dis-
tribution P(E,(t)) with (E,(t)) oc t, and with a Gaus-
sian tail. As we saw in Sec. III, such a maximum scales
as t pint. We therefore have shown that a line can move
from any configuration with roughness exponent less than
g to a minimal energy configuration by crossing barriers
that are not larger than the order of t, , provided that
the barriers between minimal configurations scale also as
gO

A similar result can be obtained for any initial con-
figuration of the line. To demonstrate this, let us look
at the configuration zi(r) = —r, which is as far as pos-
sible &om a minimal configuration. We then define a
sequence of paths (z (r)f, for m = t —2, t —4, . . . , 0,
with z (r) = —r for r ( m, and connecting the points
(m, —m) and (t, —m) by a minimal path. To go from one
configuration to the next one, the line has to overcome
a loop of size no bigger than (t —m) ( ts. There are

1consequently proportional to t + candidates for barrier
paths of length between 2 and t. We certainly find an
upper bound to the barrier by assuming that all these
candidates have the length t, and that their energies are
taken from a (half) Gaussian distribution of width pro-
portional to t . The upper bound consequently scales as
t'pint.

VI. MULTIPLE BARRIERS

So far, we tacitly assumed that the activation barrier is
given by the difFerence of the highest energy encountered
by the line and its initial energy, just as in thermally acti-
vated chemical reactions. This assumption, however, has
no solid foundation, since the line does not simply move
over an isolated maximum, but through a random energy
landscape. In addition, it is not at all clear how results
obtained for a pointlike particle in a one-dimensional en-
ergy landscape can be generalized to lines moving in two-
or three-dimensional systems. To shed some light at least
on the first of these points, we study in this section a par-
ticle in a one-dimensional energy landscape at low tem-
peratures. We tilt this landscape by a small angle to take
into account the e8'ect of an external driving force. Using
the Fokker-Planck equation, we calculate the stationary
particle current through this tilted energy landscape. We
find that it is not the difFerence between the maximal and
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initial energies, but the difference between the maximal
and the minimal energies, that determines the activation
barrier.

The Fokker-Planck equation for the probability density
P(x, t) of an overdamped particle in one dimension is

10

10

BP 0 ( 8 BV(x) )
Bt Ox ( Bx Bx )

10

Here, I' is the inverse of the product of the particle mass
and the friction coefficient. The potential V(x) is the
sum of the random potential V~(x) and a driving term
—Ex, where E is the constant driving force. Depend-
ing on the boundary conditions, this equation has dif-
ferent stationary solutions B&P = 0. If the boundary is
an infinitely high wall at both ends of the system, we
obtain the equilibrium solution P(x) oc exp[ —V(x)/kT],
and zero current

10
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FIG. 12. Scaling functions gi" (y) and gi' (y), similar to
gi" (y) in Eq. (4) and gi

'
(y) in Eq. (8), but with the barrier

definition of Sec. VI.

j =I'~ kT + ~P(x, t) =0.0 BV(x) i
Bx Bx )

We instead look for a solution where particles enter the
system at one end and leave it at the other end. This so-
lution is most readily found by assuming periodic bound-
ary conditions, P(L) = P(0) and V~(L) = V~(0). This
situation corresponds to a periodic energy landscape that
has been tilted, and where each section of length L con-
tains the same number of particles. Clearly, this leads to
a stationary How through the system, with particles en-
tering a section at one end and leaving it at the other. In
the limit of small driving force E, the stationary current
is found by considering only terms up to linear order in E
(order zero gives the equilibrium solution of the untilted
system), and is given by [23]

j = I'FL f
L L—Va /kT d~ +V& /kT d

0 0
(16)

In the limit T ~ 0, the integrals are dominated by the
neighborhoods of the maximum and the minimum of the
potential, leading to j oc exp[(V& " —V& '")/kT] This.
means that the particle mobility is determined by the
difFerence between the energy maximum and minimum.
This result is plausible since the particles explore all of
the energy landscape and therefore also go down to the
valleys and have to come up all the way again [24].

Generalizing the above arguments to a line in two di-
mensions is diKcult, and we did not succeed in solving
the corresponding Fokker-Planck equation analytically.
Evidently, the line can avoid configurations with partic-
ularly high energy, which seems to justify the assumption
that the barrier is the lowest possible that separates the
initial and the final configurations. In light of Eq. (16),
however, we may need to define the barrier energy as
the difference between the maximum and the minimum,
instead of the difference between the maximum and the
initial energy. If so, we should add to the barrier the dif-
ference between the initial energy and. that of the abso-
lute minimum along the trajectory of the line. We know,
however, that the distribution of minimal energies has

only exponental tails, and that therefore both types of
barriers scale in the same way. Consequently, our results
do not depend on the precise definition of the barrier. To
confirm this, we plot in Fig. 12 the scaling functions gi"
and gi' for the barrier to two-dimensional lines with
either short-range or long-range correlated randomness,
determining the difference between the maximal and min-
imal energy of all intermediate configurations of the line.
It can clearly be seen that the barrier energy still, satisfies
Eqs. (4) and (8).

VII. CONCLUSIONS

In this paper we considered various properties of the
energy landscape of one of the simplest realizations of
glassy systems. We showed that, under fairly general
conditions, the energy barriers encountered by a line de-
scending into the region of minimal energies, or moving
within this region, scale in the same way as the Quctua-
tions in minimal energy. This means, in particular, that
there exist no metastable configurations that cannot be
left by going over energy barriers smaller than, or equal
to, the Buctuations in minimal energy.

Similar arguments are applicable to interfaces in ran-
dom media, like domain walls in three-dimensional
random-bond and random-field Ising models. When the
interface moves &om an initial to a final configuration,
with part of its boundary fixed, a given boundary point
moves along a line. For each position of this boundary
point, there exists a configuration of minimal energy. The
maximum of these minimal energies certainly is a lower
bound to the barrier. If the distribution of minimal en-
ergies has no power-law tails, this lower bound scales in
the same way as the minimal energy Quctuations. An up-
per bound can be constructed using a similar algorithm
as for the line: Each time the interface (or a segment of
it) has to overcome a loop, we bisect it and repeatedly
move the upper and lower segment through a sequence of
minimal configurations. In this way, the interface is al-
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ways composed of minimal segments, and it should scale
in the same way as the lower bound (except for logarith-
mic factors, and provided that the lower bound energy
distribution has no power-law tails).

Given these results for lines and interfaces, it is likely
that they generally hold for elastic media with impurities,
e.g. , for a bunch of Bux lines. The latter situation is
certainly of much more physical relevance than a single
FL. Our results for a single FL, may thus have provided
a glimpse into the complexity of the energy landscape of
more complicated glassy systems.

Based on results for particles in one-dimensional en-
ergy landscapes, we also argue that the energy barrier
should not be defined with respect to the initial energy,
but to the minimal energy along the trajectory of the line.
It stills remains a challenge to generalize this argument
to lines in two- or higher-dimensional energy landscapes,
and to 6nd a more precise expression for the response

of the line to a driving force, starting &om the Fokker-
Planck equation.
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