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A method for the evaluation of the full Lyapunov spectrum of an externally driven system with
a hard-core interaction is presented. It is applied to the periodic Lorentz gas subjected to a homo-
geneous Geld and coupled to a Gaussian thermostat. The algorithm treats both the intercollisional
streaming and the hard-core collisions exactly and can be easily generalized to many-body systems
in nonequilibrium steady states interacting with hard-core potentials. From the Lyapunov spectrum
of the Lorentz gas, the information dimension and the associated dimensionality reduction of the
underlying fractal attractor were determined and compared to independent box-counting estimates
for the same quantities.

PACS number(s): 05.45.+b, 02.70.Ns, 05.20.—y

I. INTRODUCTION

The Lorentz gas is one of the simplest models for trans-
port phenomena in deterministic systems and has at-
tracted considerable attention as a paradigm in the past
decade [1—4]. It consists of a point particle moving in an
array of hard scatterers on which it is elastically reflected
and is a model for a noninteracting electron gas mov-
ing through a crystal. The transport properties of this
model have been studied both in equilibrium in terms
of Green-Kubo integrals and in nonequilibrium steady
states. In the latter case nonequiiibrium molecular dy-
namics methods have been applied: The system is exter-
nally perturbed, thus generating nonequilibrium fluxes
&om which transport coeKcients such as the electrical
conductivity [5—7] and the shear viscosity [8—10] can be
determined. Due to the absence of a dissipating mecha-
nism, the moving particle extracts energy from the Geld
and its kinetic energy grows without bound. To prevent
this divergence and to enforce a steady state, a heat bath
is coupled to the system. This may be accomplished
in different ways [11,12]. In this paper we follow the
Lorentz-gas tradition and add a Gaussian thermostat to
the equations of motion.

It has been shown that the phase space probability
distribution of a thermostatted nonequilibrium system
with time-reversible equations of motion has multikac-
tal properties, which can be characterized by the set of
Renyi dimensions or, equivalently, by the spectrum of sin-
gularities [13,14]. In equilibrium, where the model has
very strong hyperbolic properties [15,16], as well as in
most nonequilibrium steady states, the system turns out
to be chaotic with a positive maximum Lyapunov expo-

'Electronic address: dellagols. exp. univie. ac.at
tPresent address: Institut fur Mechanik, Technische Uni-

versitat Wien, Wiedner Hauptstrane 8-10/325, A-1040 Wien,
Austria. Electronic address: lglatzmch2ws2. tuwien. ac.at

~ Electronic address: poschols. exp. univie. ac.at

nent. This exponent describes the mean divergence rate
of neighboring trajectories in phase space and is a mea-
sure for the sensitivity of the system trajectory to small
perturbations of the initial conditions. There is an inti-
mate relationship between the transport properties of a
system and its Lyapunov spectrum both in equilibrium
[4,17,18] and in nonequilibrium steady states [5,13]. Fur-
thermore, the conjecture of Kaplan and Yorke permits
the determination of the information dimension D~ of
the underlying attractor in phase space &om the Lya-
punov spectrum. Especially for high-dimensional sys-
tems, for which the estimation of &actal dimensions with
box-counting methods becomes prohibitively expensive,
this represents the only practical way for the estimation
of attractor dimensions.

For the calculation of Lyapunov spectra of diKeren-
tiable dynamical systems, the algorithm proposed by
Benettin et al. [19,20] has become a well established and
classic method. However, it has been noted by various
authors [5,7] that the direct application of this method to
systems with singular potentials such as for the Lorentz
gas poses severe problems. Until recently the full Lya-
punov spectrum of the Lorentz gas has only been deter-
mined with approximate and not very powerful meth-
ods. (a) In the equilibrium case the maximum Lyapunov
exponent can be calculated by a method proposed by
Sinai, which is based on following the temporal evolution
of the curvature of a "wave front" propagating through
the system [18]. Although suitable for equilibrium sys-
tems, this method is not easily applicable to nonequi-
librium states and furthermore has the disadvantage of
yielding only the maximum exponent. (b) Another at-
tempt to overcome the problem caused by the singular
potential has been the replacement with a very steep but
smooth potential [7]. Also this approach requires con-
siderable computational eKort and furthermore requires
an extrapolation. (c) It is also possible to estimate the
Lyapunov spectrum of the nonequilibrium Lorentz gas by
taking the detour over the calculation of the information
dimension by means of a box-counting algorithm. The
Kaplan-Yorke conjecture for Dq and the relation of the
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spectrum with the relevant transport coeFicient provid. e
two independent equations for the determination of the
two nonvanishing exponents (see below). However, this
method is not very accurate and is computationally ex-
pensive. (d) Various authors have estimated Lyapunov
exponents with an expansion of the dynamics in terms of
unstable periodic orbits [21,22]. (e) Very recently Lloyd
et al. [23] extended this method and suggested an exact
scheme for the evaluation, of the Lyapunov spectrum of
the nonequilibrium Lorentz gas. It is based. on the con-
struction of a two-dimensional Poincare map of sections
for the phase How defined by the collisions of the moving
point particle with the scatterers and the subsequent sta-
bility analysis of this analytically derived transformation
mapping one collision onto the next.

In this paper we present a method for the evaluation of
the full Lyapunov spectrum of a nonequilibrium system
interacting with elastic hard-core potentials. It treats
both the streaming of the trajectory and the hard-core
collisions exactly and for the externally driven Lorentz
gas is equivalent to method (e) mentioned above. How-
ever, it does not require the analytical construction of
a Poincare map but treats the Bow in the whole phase
space. Only the equations of motion are needed as input.
The method is a simple generalization of an algorithm
devised for equilibrium systems by two of the present
authors [24]. Due to its simplicity, our method may be
easily adapted to the study of other transport phenomena
in externally driven systems with hard-core interactions
and/or many-body systems involving a high-dimensional
phase space [25].

In Sec. II the driven Lorentz gas is defined. It serves
as a test case for our algorithm and for our general ap-
proach to the problem of calculating Lyapunov spectra
for nonequilibrium hard-core systems in an exact man-
ner. Section III provides the necessary definitions and re-
lations of the Lyapunov spectrum with other observables.
The algorithm is derived in Sec. IV and the results for
the Lorentz gas are presented and discussed in Sec. V.
Section VI provides a short summary.

II. EXTERNALLY DRIVEN LORENTZ GAS

We consider a point particle with mass m, which moves
with constant velocity e on a plane covered with a reg-
ular arrangement of hard disks with radius B. Their
centers are located on the sites of a triangular lattice
with lattice constant a. When the particle, referred to
as the wanderer, collides with a scatterer it is elastically
reQected. For a given disk radius B the geometry of the
system is defined in terms of the density p = 1/A, where
A = ~3a /2 is the area of the hexagonal elementary cell
of the lattice. The geometry is shown in Fig. 1

The wanderer is subjected to a spatially homogeneous
and temporally constant field E acting on a positive unit
charge. Since the particle extracts energy from the field,
its kinetic energy increases proportionally to the distance
from the starting point in field direction. To prevent this
growth, a heat bath in the form of a Gaussian thermostat
is coupled to the system. This leads to the equations of
motion [5]

FIG. 1. The geometry of the periodic I orentz gas.

x pQ m)
= py/m,

p* = E* —(p*
py = Ey —Cpy,

= E.p/p'.

The thermostat terms on the right-hand side of the mo-
mentum equations contain the Huctuating thermostat
variable ( and dissipate the extra energy gained from the
field (() ) 0. Equations (1) conserve the kinetic energy.
In polar coordinates

2 2+ Iy)

0 = arctan
(2)

the equations of motion become

x = (p/m) cos0,
y = (p/m) sin 0,
0 = (E„cos0 —E sin 0) /p,
p = 0.

(3)

They can be solved analytically

x(t) = xp — cos(P) ln
i

p' f sin (0 —P) )
mE (sin 0p — )

s'n(~) (0 0 )

p' . f sin(0 —P) l
y(t) = yp — sin(P) ln

~mE g sin 0p—

+ cos P (0 —0p)

(0p —P') E
tt(t) = 2 arctaa (taa ~ ~

exP ——tt —te) ) + tt,

p(t) = pp,
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III. LYAPUNOV EXPONENTS

In a chaotic system two nearby phase space trajectories
separate on the average exponentially with time. For a
diQ'erentiable N-dimensional dynamical system defined
by

r(t) = F(r(t)), (5)

the temporal evolution of a tangent vector h(t) connect-
ing two diKerentially separated trajectories of the system
is the solution of the linearized equations of motion

(t) = 8(t).~ r=r(~)
(6)

r(t) is the reference trajectory in phase space, 8(t) will
be referred to as an offset vector, and D = OF jOF is the
N x N Jacobi matrix of the system. In the following a
trajectory displaced from the reference trajectory F(t) by
an offset vector b(t) is referred to as a satellite trajectory.

The matrix D depends on the instantaneous state vec-
tor r(t). As demonstrated by Oseledec [26], there exists
a set of N initial offset vectors hi(0), I = 1, . . . , K, such
that the numbers

1 l„I~i(t)I
I~ (o)I

(7)

where P is the angle between the field direction and the
positive x axis. The lower index 0 refers to the respective
quantity at initial time to.

The trajectory of the wanderer is smooth between the
collisions but changes noncontinuously during the colli-
sions with the scatterer. This necessity of switching re-
peatedly from a soft to a hard potential and back compli-
cates the problem. For the Geld-free case the location of
the collision point and the determination of the collision
parameters can be reduced to the solution of a quadratic
equation. In the presence of an external Geld and a ther-
mostat, the intercollisional segments of the trajectory are
not straight lines any longer and more refined methods
have to be applied in the simulation. We will return to
this point in the next section.

This sequence of smooth streaming segments and dis-
crete collisions must be taken into account also for the
calculation of the Lyapunov spectrum. For this purpose
we generalize the classic method of Benettin et al. [19,20].

E . (p)
m IEI

(8)

where () denotes a time average. Since the sum of the
Lyapunov exponents is equal to the phase space diver-
gence of the original phase flow [11,12]

N

) i, =(v, i)=—E. (p) (9)

one finds for the Lorentz gas

(A „+A;„)) 0. (»)
m fEf

Another quantity intimately related to the Lyapunov
spectrum is the information dimension Di of the under-
lying strange attractor typical for nonequilibrium steady
states of dissipative systems. In the case of the driven
Lorentz gas it was found that the HausdorK dimension Do
is equal to the dimension of the embedding phase space
[14], but that the information dimension Di is consid-
erably smaller. Kaplan and Yorke conjectured that the
dimension DKY derived from the Lyapunov spectrum

known as conjugate pairing [29]. In this case only the
positive branch of the spectrum needs to be calculated.
This symmetry is modified for externally driven and ther-
mostatted homogeneous systems [29] and is totally lost
for inhomogeneous systems [30]. Some of the Lyapunov
exponents vanish. In every autonomous dynamical sys-
tem there is at least one vanishing Lyapunov exponent,
which corresponds to nonexponential expansion and con-
traction properties in the direction of the Bow. Further-
more, possible constants of the motion cause additional
exponents to vanish. This is treated in detail in Ref. [25].

The phase space for the Lorentz gas is four dimensional
r(t) = (x, y, p, p„)and there are four Lyapunov expo-
nents. One of the exponents vanishes because of the non-
exponential behavior in the How direction as mentioned
above. A second exponent vanishes as a consequence of
the conserved kinetic energy (or the momentum norm)
of the wanderer particle and the full spectrum can be re-
duced to (A „,O, O, A;„).In the field-free case (E = 0)
one has A = —A;„,whereas for the driven system
&max + &min & 0.

One of the most interesting aspects of the Lyapunov
spectrum concerns its relation to the transport properties
of the system [27]. The conductivity K for the driven
Lorentz gas is defined by

exist. Furthermore, these so-called Lyapunov exponents
are independent of the metric, the coordinate system,
and the initial conditions. Usually they are ordered A1 &
A2 & - . & AN and the whole set is referred to as the
Lyapunov spectrum.

Lyapunov spectra for symplectic systems (such as
Hamiltonian systems in thermal equilibrium) exhibit a
pronounced symmetry [27] Ai = —%~+i i, which we re-
fer to as Smale pairing [28] (to acknowledge the con-
tributions of Smale in clarifying the role of expanding
and contracting motions in tangent space characteristic
of chaotic time-reversible dynamical systems) and is also

L=l
DKY = A+

I&-+i I

'

D1~DKY =3+
I&min]

' (12)

The information dimension D1 is only one of an inGnite

with n the largest integer for which g& i Ai ) 0, pro-
vides a good estimate for the information dimension D1.
In our four-dimensional phase space with two vanishing
exponents this gives
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set of Renyi dimensions D~ [31,32]

ln ) p',.

1
lim (»)1 —q ~~a ln~

where e is the sidelength of hypercubes covering the en-
tire attractor and p; is the probability of Gnding the
attractor in the ith box. Equivalently, the multi&actal
nature of the attractor can be characterized by the so-
called singularity spectrum f (a). Loosely speaking, this
quantity is the &actal dimension of the set of points for
which the probability distribution diverges with singu-
larity strength a, i.e. , p; oc e [33]. Chabra and Jensen
have devised a method for the calculation of Dz and f (a)
[34]. In this paper we apply this method and compute
D~ &om the singularity spectrum in order to compare it
with DK~ obtained &om the Lyapunov spectrum via the
Kaplan- Yorke conjecture.

Dq ——

IV. ALGORITHM

We now turn to the practical calculation of the Lya-
punov spectrum. Starting from definition (7) with an

I

arbitrary vector b&(0) one obtains the largest Lyapunov
exponent A~ of the system. Similarly, the growth rate
of a two-dimensional area element spanned by two ar-
bitrary offset vectors is given by A~ + A2 and the sum

i At is the growth rate of a k-dimensional volume
element. For the calculation of the full spectrum it is
necessary to follow the temporal evolution of a complete
set of linearly independent offset vectors (hi). Due to
the continuous stretching and folding, initially orthonor-
mal vectors tend to align in the direction of the vector
corresponding to the maximum exponent and, further-
more, diverge exponentially. This can be avoided by a
periodic reorthonormalization of the offset vectors. The
Lyapunov exponents are obtained &om the time average
of the normalization factors for the offset vectors [19,20].

To apply this algorithm to our system, the temporal
evolution of the offset vectors must be determined for
both the smooth intercollisional streaming segments and
the discrete elastic collisions with the scatterers. Between
the collisions the equations of motion for the offset vec-
tors are obtained by difFerentiating Eq. (1) with respect
to the independent variables

(14)

For simplicity we use in this paper a standard ordinary
differential equation integrator for the integration of the
reference trajectory and of the four offset vectors between
successive collisions. Of course, a collision-by-collision
approach would also be possible, but is more tedious to
program [5].

A totally different approach has to be used for the ef-
fect the collisions exert on the offset vectors 8. First we
note that the reference trajectory undergoes the noncon-
tinuous change

I
~0

second derivative with respect to s. Finally, ~ = ~k(s)
~

is
the curvature of the obstacle, which is 1/B in our case.

It was demonstrated in a recent paper [24] that the
transformation rule for bg is left unchanged by the curva-
ture, but an additional term must be taken into account
for the momentum-component transformation rule. Any
offset bg in conGguration space causes the collision point
of the satellite trajectory to be displaced by the arclength
bs &om the collision point of the reference trajectory as

p-+p.
Here and in the following expressions the prime denotes
a vector obtained by specular reflection on the surface of
the scatterer. In order to find the transformation rules
for the offset vectors, we start with the simplest case
of a collision on a flat surface in the absence of an ex-
ternal Geld. As is easily seen, both the position com-
ponents bq—:(8z, by) and the momentum components
b'p—:(8p, b'p& j of the off'set vector b are reflected on the
surface. This means that their component normal to the
surface changes its sign, whereas the component parallel
to the surface remains unchanged.

Next we proceed to the case of the collision with a
curved surface (Fig. 2) [24]. Here p is the momentum
of the particle immediately before the collision and p'
immediately after the collision. The vectors t and t' are
unit vectors perpendicular to p and p', respectively. h
is the principal normal vector given by h(s) = k(s)/v, ,
where k(s) is the surface of the scatterer parametrized
by the arclength s and the double overdot indicates the

FIG. 2. The geometry of a collision. The symbols are ex-
plained in the main text.



52 LYAPUNOV SPECTRUM OF THE DRIVEN LORENTZ GAS 4821

shown in Fig. 3. This leads to a change in the angle
of incidence of the satellite trajectory and consequently
an additional term bp" in the corresponding transforma-
tion rule. Due to the displacement bs both the angle
of incidence and the angle of reflection are altered by
hP = eb's = Ss/R and 8s is given by bs = hq . t/cosn.
We finally obtain

($p m Sp' —2hgpt',

with

bq t
Bcos o.

The first term on the right-hand side of (16) is simply the
reflection of h'p whereas the second term is a consequence
of the rotation of the outgoing momentum d.ue to the
curvature of the collision surface.

Finally, we have to take into account the action of the
field and of the thermostat on the offset vectors during
the collision. As before, the vector bq remains unafFected
by the additional complication and is simply reflected.
On the other hand, the transformation rule for bp must
be adapted to the new situation. Since for the evaluation
of the Lyapunov exponents only the linearized map relat-
ing (b'q, b'pj immediately before and after the collision is
needed, it suKces to treat the eKects of the curved sur-
face and of the field plus thermostat independently and
then add the results. Hence, without loss of generality we
consider a particle colliding with a Bat surface under the
influence of the original equations of motion (1) as shown
in Fig. 4. The full line represents the reference trajec-
tory whereas the broken line denotes the satellite trajec-
tory separated by hq immediately before the collision.
When the reference trajectory collides with the surface,
the satellite trajectory is at a distance bu &om its own
collision point. We note that this distance can be positive

P

FIG. 4. The effect of a collision with a Bat surface under the
in6uence of an external 6eld on the offset vectors in tangent
space.

as well as negative. This provokes an infinitesimal tem-
poral delay bt = bu/(p/m) between the two collisions.
During this short time interval the external field and the
thermostat continue to reorient the momentum vectors
both for the reference and for the offset trajectories, thus
contributing another term for the transformation rules
of the momentum components. To account for this efFect

we note from Fig. 4 that the distance hu, and hence the
time interval bt = bu/(p/m), may be expressed in terms
of bq according to

hu = hq t tan a —bq. p/p. (18)

It follows from the equation of motion (4) for 8 that dur-

ing the time interval ht any momentum vector reorients

by

h8 = bt sin(8——P—) . (»)
p

This equation applies to both the reference and the onset
trajectories. Since we have to take the rotation of both
trajectories into account, the di8'erence angle between the
outgoing momenta immediately after the collision due to
this eKect is finally given by

b8 = —hq . (t tan n —p/p)

x (sin (8;„—P) + sin (8 „t—P)), (20)
mE
p2

where 0;„and8 „qare the respective orientations of the
incoming and outgoing momenta of the reference trajec-
tory.

Adding all our results together we obtain the exact
linear transformation rules for the offset vectors h

(hq, hp) during a collision. :

bq + bq',
hp w hp' —(2hg + b8)pt', (21)

FIG. 3. The effect of a collision with a curved surface on
the offset vectors in tangent space.

where bP is given by Eq. (17) and b8 by Eq. (20). Thus
we have collected all the ingredients needed for the calcu-
lation of the full Lyapunov spectrum for the driven and
thermostatted Lorentz gas. The results of our numerical
calculations are presented in the following section.
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V. RESULTS

In all our numerical simulations we set the wanderer
mass m = 1, the wanderer speed v = Ji/m = 1, and the
radius of the scatterer R = 1. The unit of time is Rm/p
and all Lyapunov exponents are given in units of p/Rm.
We tabulate the field strength E in units of p /Bm and
the conductivity K in units of B/p. By identifying oppo-
site sides of the elementary cell (Fig. 1), periodic bound-
ary conditions are obtained. We choose the Geld to point
into the direction of the positive y axis, which means that
it is perpendicular to a row of nearest neighbors. The
densities p for all our calculations are well above the lim-
iting case of infinite horizon p = 4pp, where pp is the
close-packed density. Between collisions with the scat-
terer the equations of motion of both the reference tra-
jectory and the offset vectors were integrated by means of
a fourth-order lunge-Kutta algorithm with a time step
of 0.005Bm/p [35]. Whenever the wanderer happened to
intersect the surface of the scatterer or the boundary of
the simulation cell, the intersection point was determined
numerically with an accuracy of about 10 . Depending
on the nature of that point, either transformation rules or
boundary conditions were applied to the trajectory and
the offset vectors.

It turns out that the Lyapunov exponents converge
rather quickly towards their limiting values. In Fig. 5 all
nonvanishing Lyapunov exponents, normalized by their
final value, are shown as a function of simulation time
for the densities p = 0.8pp and p = 0.99pp and the Geld
strengths EBm/p = 0.0, 0.5, and 1.0. One can infer
&om this figure that the error for the Lyapunov expo-
nents listed in the tables below does not exceed 0.2%%uo.

1.010

1.008----

'1.006

1.004

1.002

1.000

0.998

0.996

0.994----

0.992---------

0.990
1 x 105 2 x 105

t p/Rm

3 x 105 4 x 10' 5 x 10'

FIG. 5. The convergence of the maximum and minimum
Lyapunov exponents for p = 0.8p0 and p = 0.99p0 and the
field strengths ERm/p = 0.0, 0.5, and 1.0 as a function of the
reduced simulation time tp/Rm. The Lyapunov exponents
are normalized by their final values. p0 is the close-packed
density.

Depending on the density, the number of collisions var-
ied between 800000 and 2 x 10 in all our simulations.

Our results are summarized in Tables I, II, and III for
the respective three densities p~ ——0.8pp, p2 = 0.88pp,
and p3 = 0.99pp. For each density we varied the Geld
from EBm/p2 = 0 to 2.5 in steps of 0.125. Figure 6
shows the maximum and minimum Lyapunov exponents
for the three densities mentioned above as a function of
the Geld strength. For each density the absolute value of
the exponents decreases with increasing E, which means

TABLE I. Summary of results for a density p = 0.8p0. r is the collision rate of the particle with
the scatterer. The conductivity tc is given in units of R/p and the Lyapunov exponents in units of
p/Rm.

EmR/p
0.000
0.125
0.250
0.375
0.500
0.625
0.750
0.875
1.000
1.125
1.250
1.375
1.500
1.625
1.750
1.875
2.000
2.125
2.250
2.375
2.500

1.682
1.682
1.688
1.694
1.699
1.698
1.703
1.716
1.726
1.754
1.774
1.779
1.779
1.769
1.764
1.723
1.698
1.650
1.597
1.599
1.582

0.191
0.169
0.175
0.185
0.187
0.177
0.161
0.154
0.147
0.143
0.149
0.146
0.146
0.150
0.145
0.130
0.125
0.117
0.110
0.114

Amax

1.961
1.958
1.947
1.931
1.900
1.862
1.817
1.775
1.724
1.680
1.632
1.563
1.500
1.425
1.343
1.266
1.229
1.204
1.196
1.160
1.052

AWCA
max

1.967

1.889

1.721

1.482

1.278

1.055

Amin

-1.961
-1.961
-1.958
-1.955
-1.946
-1.935
-1.917
-1.898
-1.879
-1.867
-1.856
-1.846
-1.829
-1.812
-1.804
-1.779
-1.752
-1.772
-1.791
-1.783
-1.769

AwcA
min

-1.966

-1.948

-1.889

-1.835

-1.825

-1.791

DKv
4.000 3.96
3.998
3.994
3.987
3.976 3.94
3.962
3.947
3.934
3.917 3.88
3.899
3.879
3.846
3.820 3.79
3.786
3.744
3.712
3.701 3.69
3.679
3.667
3.650
3.595 3.60

&DKv
0.0000
0.0015
0.0054
0.0126
0.0238
0.0378
0.0522
0.0652
0.0821
0.1001
0.1206
0.1531
0.1800
0.2134
0.2556
0.2880
0.2981
0.3203
0.3322
0.3493
0.4049

ADg
0.04

0.06

0.12

0.21

0.31

0.40
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TABLE II. Summary of results for a density p = 0.8821po. r is the collision rate of the particle
with the scatterer. The conductivity s, is given in units of R/p and the Lyapunov exponents in
units of p/Rm.

EmR/p
0.000
0.125
0.250
0.375
0.500
0.625
0.750
0.875
1.000
1.125
1.250
1.375
1.500
1.625
1.750
1.875
2.000
2.125
2.250
2.375
2.500

2.544
2.546
2.545
2.547
2.553
2.554
2.550
2.551
2.570
2.595
2.616
2.636
2.656
2.680
2.670
2.660
2.650
2.614
2.573
2.547
2.542

0.116
0.113
0.117
0.113
0.118
0.118
0.116
0.106
0.101
0.096
0.094
0.096
0.100
0.102
0.103
0.102
0.103
0.100
0.096
0.093

&max

2.466
2.463
2.451
2.434
2.411
2.377
2.336
2.287
2.238
2.182
2.131
2.068
2.009
1.949
1.886
1.837
1.822
1.785
1.726
1.675
1.618

AWCA
max

2.456

2.401

2.233

1.998

1.816

1.586

&min

-2.466
-2.465
-2.458
-2.451
-2.439
-2.423
-2.403
-2.377
-2.344
-2.311
-2.281
-2.247
-2.227
-2.214
-2.200
-2.200
-2.233
-2.252
-2.232
-2.220
-2.199

pWCA
min

-2.455

-2.432

-2.348

-2.240

-2.270

-2.208

Dj
3.96

3.96

3.92

DKY
4.000
3.999
3.997
3.993
3.988
3.980
3.972
3.962
3.954
3.944
3.934
3.920
3.902 3.88
3.880
3.857
3.835
3.816 3.81
3.792
3.773
3.754
3.735 3.72

&DKY
0.0000
0.0007
0.0029
0.0067
0.0116
0.0192
0.0278
0.0376
0.0454
0.0557
0.0659
0.0795
0.0978
0.1198
0.1424
0.1649
0.1839
0.2072
0.2267
0.2456
0.2643

ADi
0.04

0.04

0.08

0.12

0.19

0.28

that the Beld tends to make the trajectory of the particle
less chaotic. In fact, in the presence of a strong Beld the
momentum vector of the particle quickly turns into the
Beld direction after each collision, whereas in the equi-
librium case two decorrelated trajectories always remain
decorrelated. With a Bxed field strength the maximum
exponent increases with density due to an increase of the
collision rate.

We have already mentioned that for dissipative sys-
tems the phase space density collapses onto a strange at-
tractor with an information dimension Di smaller than
the dimension of the embedding phase space. As shown
in Fig. 7, this dimensional reduction LDK~ ——4 —DK~,
calculated with the Kaplan-Yorke conjecture (12) &orn
the Lyapunov spectrum, grows with increasing field
strength. This efFect is small for high densities, but be-

TABLE III. Summary of results for a density p = 0.9924po. r is the collision rate of the particle
with the scatterer. The conductivity r is given in units of R/p and the Lyapunov exponents in
units of p/Rm.

EmR/p'
0.000
0.125
0.250
0.375
0.500
0.625
0.750
0.875
1.000
1.125
1.250
1.375
1.500
1.625
1.750
1.875
2.000
2.125
2.250
2.375
2.500

5.725
5.731
5.731
5.742
5.753
5.761
5.781
5.800
5.813
5.844
5.859
5.896
5.889
5.883
5.864
5.868
5.869
5.906
5.929
5.929
5.906

0.011
0.012
0.012
0.012
0.013
0.012
0.013
0.013
0.012
0.011
0.010
0.009
0.008
0.008
0.008
0.007
0.007
0.007
0.008
0.006

&max

3.589
3.586
3.578
3.567
3.552
3.530
3.504
3.473
3.432
3.384
3.328
3.269
3.197
3.122
3.042
2.961
2.878
2.789
2.695
2.599
2.498

AWCA
max

3.423

3.395

3.280

3.085

2.805

2.466

&min

-3.589
-3.586
-3.578
-3.568
-3.555
-3.535
-3.512
-3.483
-3.445
-3.400
-3.346
-3.289
-3.218
-3.146
-3.067
-2.990
-2.909
-2.824
-2.733
-2.644
-2.539

AWCA
min

-3.420

-3.404

-3.318

-3.162

-2.918

-2.591

DKY
4.000
4.000
3.999
3.999
3.999
3.998
3.997
3.997
3.996
3.995
3.994
3.993
3.993
3.992
3.991
3.990
3.989
3.987
3.986
3.983
3.984

Di
3.96

3.96

3.96

3.96

3.94

ADKY
0.0000
0.0000
0.0002
0.0005
0.0009
0.0014
0.0021
0.0029
0.0038
0.0046
0.0055
0.0062
0.0067
0.0075
0.0083
0.0096
0.0106
0.0121
0.0139
0.0170
0.0160

ADg
0.04

0.04

0.04

0.04

0.05

0.06
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the momentum of the particle reorients into the Beld di-
rection within a short time after each collision. Thus the
particle spends most of its time traveling with constant
speed in the approximate Beld direction and cannot be
accelerated further by stronger fields. Only collisions can
offset the action of the field. It follows that the conduc-
tivity decreases with increasing density. For the limiting
case of very weak fields the nonlinear conductivity con-
verges towards the linear response value calculated from
the Green-Kubo relation in the absence of an external
field. These linear response results are denoted by the
error bars in Fig. 9 (for E = 0). All conductivities ob-
tained in this work agree also well with the results of
Moran and Hoover [5].

The conductivity K can be calculated also directly from
the Lyapunov spectrum according to Eq. (10). Within
the resolution of Fig. 9 these numbers are indistinguish-
able from those obtained &om the time-averaged current.

In the past Lyapunov spectra of systems with elastic
hard interactions have also been estimated by replacing
the singular potential with a very steep but nevertheless
smooth potential [7]. To test this procedure we perform
a series of simulations with a system, where the wanderer
and the scatterer interact according to [7]

'oo forr&R

(22)

are denoted by A „andA;„.For low densities the
results of both methods agree within 0.2 —1.5'Fg, whereas
at high densities they display discrepancies of the order
2 —5%. This may be attributed to the overlap of the
thin interaction layer at high densities.

VI. CONCLUSION

In this work an algorithm for the evaluation of the full
Lyapunov spectrum for the nonequilibrium Lorentz gas is
presented. It generalizes the classic method of Benettin
et al. to include elastic hard-core collisions in the pres-
ence of an external field and of a Gaussian thermostat.
Both the intercollisional and collisional contributions are
treated exactly. The algorithm does not require the con-
struction of Poincare plots and may be easily generalized
to the treatment of (a) random arrangement of scatter-
ers, (b) other types of hard systems in nonequilibrium
states such as the Lorentz gas with shearing boundary
conditions, and (c) hard many-body systems in two or
three dimensions, subjected to arbitrary external pertur-
bations. The method is also well suited to accurately
quantifying the shifts of conjugate pairs of Lyapunov ex-
ponents in nonequilibrium steady state systems [25] and
to determine the corrections expected for a finite number
of particles [36,25].

0 for R+2 ~ cr(r,
a generalization of the Weeks-Chandler-Anderson poten-
tial. The parameter 0 determines the thickness of the
interaction layer surrounding the scatterer. In this paper
we use cr = 0.1B and e = 0.5p /m. Since the potential
is very steep, a Runge-Kutta algorithm with adaptive
step size was used for the integration of the equations of
motion. The Lyapunov spectrum was determined with
the classic algorithm of Benettin et al. . The results of
these simulations are also included in Tables I—III and
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