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We investigate an antiferromagnetic triangular Ising model with anisotropic ferromagnetic inter-
actions between further neighbors, originally proposed by Kitatani and Oguchi [J. Phys. Soc. Jpn.
57, 1344 (1988)]. The phase diagram as a function of temperature and the ratio between first- and
second-neighbor interaction strengths is thoroughly examined. We search for a Kosterlitz-Thouless
transition to a state with algebraic decay of correlations, calculating the correlation lengths on strips
of width up to 15 sites by transfer-matrix methods. Phenomenological renormalization, conformal
invariance arguments, the Roomany-Wyld approximation, and a direct analysis of the scaled mass
gaps are used. Our results provide limited evidence that a Kosterlitz-Thouless phase is present.

Alternative scenarios are discussed.

PACS number(s): 05.50.+q, 75.30.Kz, 75.10.Hk

I. INTRODUCTION

Some spin systems display an intermediate critical
phase, which is characterized by algebraic decay of cor-
relations for a finite temperature range, and lies be-
tween the low-temperature ordered state and the high-
temperature paramagnetic regime. This was first re-
ported by Kosterlitz and Thouless (KT) [1] in their study
of the two-dimensional XY model, which exhibits long-
range order only at T = 0. The KT transition from the
paramagnetic to the critical phase is expected to involve
an exponential divergence of the correlation length [1].

Later it was found that some two-dimensional systems
with discrete spin symmetry could accommodate critical
phases as well. The first systems to be discovered in
this category were the Z(N) models with N > 4 [2,3].
José et al. [2] found that, for the XY model with sixth-
order anisotropy, the upper (71) and lower (T3) limits of
the KT phase are associated with the following values
for the decay-of-correlations exponent n(T'): n(T1) = 1/4
and n(T2) = 1/9. This result has been used [4-6] as a
criterion to establish the existence and limits of a KT
phase in other systems, including the one that concerns
us in the present work.

Another class of spin systems with discrete symmetry
displaying critical phases is obtained from models with
a macroscopically degenerate ground state, by adding
degeneracy-lifting fields or interactions. Such is the case
of the nearest-neighbor Ising antiferromagnet on the tri-
angular lattice. At T = 0, this model has a finite entropy
per spin [7], and algebraically decaying correlations [8].
The behavior of this system in a uniform magnetic field
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and with second-neighbor ferromagnetic interactions was
studied by Nienhuis et al. [9]. They predicted that when
the nearest-neighbor interaction, K, is set to —oco and
the reduced field H = B/T is small, the algebraic phase
persists, until it is destroyed at high fields. These pre-
dictions were verified subsequently [10,11]. Other predic-
tions, involving the addition of finite (reduced) second-
neighbor ferromagnetic interactions K,,, were made; it is
expected that for large enough K5, the algebraic phase
exists also off the K, = —oo line (i.e., for finite K,,);
when K, is increased further, however, a transition to
a phase with long-range order is expected. This is con-
sistent with other results [4,12] (see below).

The triangular Ising antiferromagnet with second-
neighbor ferromagnetic bonds was initially proposed to
model physical adsorption of gases on graphite [13]; al-
ternatively, it was used to describe the magnetic behav-
ior of CsCoCls and CsCoBrs [14]. The model was pre-
dicted [12] to be in the universality class of the XY model
with sixth-order anisotropy [2], and thus to exhibit a KT
phase. Monte Carlo results, together with the criterion
of José et al., provided numerical evidence for this [4].

A phenomenological renormalization-group (PRG)
analysis, however, produced clear signs of only one of
the two transition temperatures associated with the KT
phase [15]. This discrepancy was ascribed to the small
strip widths used, namely, three and six. In order to be
able to analyze larger strip widths, Kitatani and Oguchi
[5] introduced a slightly different model, which incorpo-
rates only four of the six second-neighbor interactions
per site. Each of the three second-neighbor sublattices
then forms a square lattice, instead of the original trian-
gular one. This introduces spatial anisotropy, with con-
sequences that we shall discuss in what follows. In the
original work of Ref. [5], the underlying hypothesis is that
since the two-dimensional character of the intrasublattice
links was preserved, the qualitative behavior ought to be
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in the same universality class of the model with all six
interactions per site. Those authors managed to study
strips of width up to 12 sites with periodic boundary
conditions (to which the Roomany-Wyld approximation
[16] for the B function [17] was applied), and 17 with
helical boundary conditions (for which the spin-spin cor-
relation functions were calculated directly and fitted to
the criterion of José et al.). While results from the former
approach were deemed inconclusive, the authors pointed
out that the latter provided evidence of a KT phase.
Subsequent Monte Carlo work was found to be consis-
tent with this [6] by means of a finite-size scaling and
renormalization-group analysis of the simulation data,
partly with help from the criterion of José et al. Very
recently, free energy and magnetization were calculated
for this model [18] by a combination of transfer-matrix
and mean-field ideas. The authors find an intermedi-
ate, incommensurate phase. The KT transition, in this
interpretation, would be commensurate-incommensurate
in character. An exact analysis of the ground state of the
model with second-neighbor bonds along only one direc-
tion also shows evidence of a critical phase [19]; when in-
teractions along a second direction are included, so as to
make the model identical with the present one, an exact
treatment is no longer possible, even for the ground state.
However, Monte Carlo and transfer-matrix data also
point towards a commensurate-incommensurate transi-
tion at zero temperature (i.e., when the first-neighbor
couplings are set at —oo) in this case, as the strength of
second-neighbor bonds varies [20]. The latter results are
not to be directly compared to ours, as they pertain to
the interacting domain-wall transitions, which take place
between ground-state configurations.

Here we study the model proposed by Kitatani and
Oguchi [5] on strips of width 3, 6, 9, 12, and 15 with pe-
riodic boundary conditions. The interpretation of PRG
results in a search for a KT phase is discussed, and these
are shown to be of limited usefulness when considered
on their own. The Roomany-Wyld (RW) approxima-
tion [16] for the 3 function [17] is implemented, for com-
parison with the corresponding results of Kitatani and
Oguchi; a direct analysis of the ratio between the cor-
relation lengths on strips of different widths (which, for
quantum systems, correspond to the scaled mass gaps)
[16,21,22] is given as well. We discuss the bearing of con-
formal invariance theory on the comparison of our results
to previous ones. Finally, we try to provide a consistent
framework for our findings.

II. PHASE DIAGRAM: SPECIFIC HEATS

The model is characterized by the nearest-neighbor
interaction J,, < 0 and the second-neighbor coupling
Jann > 0, or alternatively by the ratios of these to the
temperature, respectively, Knn, = Jpn/T and Kpypn =
Jann/T. A useful parameter is the ratio R = Jun/Jnnn-
Kitatani and Oguchi [5] restricted themselves to R =
—2.0, whereas Miyashita et al. [6] considered both R =
—2.0 and R = —5.0. We span the region —20.0 < R <
0.0.

A phase diagram, which, although not completely con-
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sistent with all our findings, appears to be quite plausible,
is presented in Fig. 1. Near the origin there is a high-
temperature paramagnetic phase. Above the solid line,
we predict the existence of a low-temperature phase with
long-range order. The shaded region in between is our
candidate for a critical (or massless) KT phase. Fixed-R
lines, along which detailed studies were carried out, are
also indicated.

An examination of specific heats along lines of fixed R
unveils a two-peak structure. This is especially appar-
ent for R = —2.0, as shown in Fig. 2 for L = 3,...,15,
for comparison with Fig. 3 of Ref. [5], where L = 9 is
the largest width used. However, when other values of
R < —2.0 are investigated, the high-temperature peaks
are displaced to ever higher temperatures and turn much
broader, although those at the low end remain sharp and
essentially unmoved. Figure 3 illustrates this, with data
for L = 15, and R = —2.0, —5.0, and —20.0. The spe-
cific heat peaks apparently do not diverge with increas-
ing L. Hence their positions do not identify transition
points. The double-peak structure can be used only as
a qualitative indicator of resemblance to Z(IN) models
with N > 4, which also exhibit such structure, and for
which an intermediate massless phase is known to exist
[2,3]. We shall not return to specific heats; instead, our
work is focused mainly on correlation lengths and quan-
tities derived therefrom, which will prove to be a safer
ground for analysis.
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FIG. 1. Qualitative phase diagram. Heavy line is extrap-
olated from PRG (see Fig. 4). Shaded area gives massless
phase, as obtained from scaled mass gaps. Constant-R lines
are shown, along which detailed studies were carried out. T
marks (conjectured) multicritical point (see the text).



4770

0.6 T T T T T T T T T

4

FIG. 2. Specific heat against temperature for R = —2.0.
Bottom to top: L = 3, 6,9, 12, and 15.

III. PHENOMENOLOGICAL
RENORMALIZATION

We begin by performing standard phenomenological
renormalization. The PRG procedure consists of search-
ing, for fixed R, for the fixed point {K} , KX .} of the
implicit recursion relation

EL'(KrlmiKtlmn) — £L(Knn;Knnn) (1)
L L ’

where &7, is the correlation length along a strip of width
L. Usually the best results are obtained for L'/L — 1;
as in the present case sublattice symmetry demands that

0.6 L B s T T T

|
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FIG. 3. Specific heat against temperature for L = 15 and
R = —2.0, —5.0, and —20.0.
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these be multiples of 3, we use L' = L — 3. The corre-
lation length is given by £ = 1/[( log(A1/|Az2|)], where
the geometric factor ¢ is [10,11] (2/v/3) for K, # 0
and v/2 forK,, = 0; A1,2 are the two largest eigenval-
ues (in absolute value) of the 2L x 2I transfer matrix
between adjacent columns of a strip of width L. As A;
is related to the strip free energy, it is always positive,
while A2 in the present case is one of a pair of complex
conjugate eigenvalues with arguments +27/3 (owing to
the three-sublattice structure). If all six second-neighbor
bonds were present [15], the transfer matrix would have
to take into account adjacent pairs of columns, raising
its dimension to 22X x 22, Omission of two out of the
six further-neighbor couplings is thus technically worth-
while. One should, however, bear in mind the fact that by
doing this, the sixfold symmetry of the problem has been
broken. Even though the model still has a sixfold degen-
erate ground state, the energies associated with domain
walls between these phases depend now on the orienta-
tion of the walls, and one has to work out the symmetry
of this new problem. It is quite clear that the criterion
n = 1/9 of José et al. [2] to locate the low-temperature
transition to a sixfold symmetric ordered phase should
not be naively used here.

For a system with a KT phase, one could expect Eq.
(1) to exhibit a line of fixed points along a finite tem-
perature interval, corresponding to the extent of the in-
termediate phase [17]. Finite systems should display a
precursor for such behavior, such as having more than
one solution to Eq. (1) at nearby points, in the region
where a KT phase is expected. This does not happen
in the present case, although the direct analysis of the
scaled mass gaps (to be discussed below) shows that there
are extensive temperature ranges along which other indi-
cators of a massless phase occur. For each given R and
L' /L, we find only one temperature as a fixed point of Eq.
(1). In Fig. 4, we display the approximate critical lines
given by the fixed points of Eq. (1) on the (Knn, Knnn)
plane, for the several values of L'/L. Points on the ex-
trapolated curve are obtained by keeping R constant and
plotting the respective fixed-point couplings (e.g., Knnn)
for L'/L =6/9, 9/12, and 12/15 against L~%, where ¢ is
chosen to give the best straightline fit through the three
points, and is an estimate of the corrections-to-scaling
exponent [23]. We find that ¢ falls roughly in the range
~ 1-3, wherever such extrapolation is applicable (see be-
low).

We have also applied domain-wall renormalization
group ideas [24] by reversing the sign of the interactions
that cross a line along the strip, which amounts to estab-
lishing antiperiodic boundary conditions [25]. The dif-
ference between the corresponding free energy and that
for a strip with standard periodic boundary conditions
gives the domain-wall free energy, which vanishes at crit-
icality [26] and is the quantity to be scaled. Again, only
one fixed point was found for each R. The extrapolated
phase diagram thus obtained (not shown here) is roughly
the same as that coming from correlation-length scal-
ing. Consequently, we did not pursue this line further.
It is worth noting, however, that the finite-L data ap-
proach the extrapolation from the high-temperature side
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FIG. 4. Phase diagram in Kpn-Knnn space, as given by the
fixed points of PRG. The heavy line is an extrapolation from
the 6/9, 9/12, and 12/15 curves. Some constant-R lines are
shown.

while those from standard PRG (see Fig. 4) come from
below. This is to be expected from well-known duality
relations between domain-wall energy and inverse corre-
lation length [26].

For isotropic systems, conformal invariance [27] allows
one to extract additional information from strip scal-
ing, via the relationship between correlation-length am-
plitudes on a strip of width L at criticality and 7, the
decay-of-correlations exponent:

n=L/n{(T.) . (2)

Here, anisotropy is introduced by the missing second-
neighbor bonds. Critical correlations are expected to de-
cay with different prefactors in different directions, al-
though with the same exponent. In some cases this can
be explicitly dealt with [28-30], leading to a modified
form for Eq. (2), which involves knowledge of correlation
lengths along two different directions [28]. Unfortunately,
this it out of reach in the present model, whose very in-
troduction was in order to enable one to build large-L
transfer matrices along the specific direction where the
bonds are missing. For K, = 0 or K, = 0, isotropy is
restored and Eq. (2) is valid, with results to be described
below.

Referring to Fig. 4, the following comments are in
order:

(1) On the vertical axis (Kp, = 0), one has three su-
perimposed, disjoint, square lattices; thus, the L aris-
ing in the conformal-invariance expression for 7 is one
third of the number of sites in the column. The cor-
responding critical quantities, extrapolated as above,
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are (exact values quoted in parentheses) K,,,(0) =
0.441 =+ 0.001 (0.4407...); yr = 1/v = 1.00 % 0.01 (1);
n = 0.250 % 0.001 (1/4).

(2) The extrapolated boundary leaves the vertical axis
tangentially with a crossover exponent ¢ ~ 1.55, where
[Kan| ~ [Kann(0) — Knnn]®. This can be compared with
the exact ¢ = 7/4 obtained by Slotte and Hemmer [31] for
the corresponding model with antiferromagnetic second-
neighbor interactions.

(3) In the region between R ~ —0.01 and R ~ —0.3,
the approximate critical lines become very close and cross
each other twice. Thus, an extrapolation similar to that
of Ref. [23] is not feasible.

(4) As R — —oo, the critical lines become horizontal;
the extrapolated value is Kpn, = 0.313 £ 0.001. Already
at R = —2.0 one is within less than 1% of that. Qual-
itatively, as |Kpnn| grows the only ratio that matters is
that between the two finite energies present, namely,
Jonn and T. Such quantity is analogous to the mag-
netic field-to-temperature ratio in the zero-temperature
nearest-neighbor triangular antiferromagnet [10,11]. In
order to check our results against those of Refs. [10,11],
we set Kpnn = 0 and make |Kyy| large. This must co-
incide with their zero-field limit. Indeed we obtain n =
0.4815, 0.4909, 0.4947, 0.4965, respectively, for L = 6, 9,
12, and 15, results that are in excellent visual agreement
with Fig. 2 of Ref. [10] and converging towards the exact
value [8] n =1/2.

The question remains of the interpretation of the crit-
ical line given by PRG in the context of KT transitions,
where two phase changes are expected to occur. Fol-
lowing previous work [5,6], we try to fit our results to
the criterion of José et al. [2]. To this end, we exam-
ine the exponent 7 on the critical line. Bearing in mind
the above remarks concerning anisotropy, the quantity
L/mw&(T.) does not, in general, correspond to 7; however,
for large |Knyn| and finite Ky, one has essentially a tri-
angular antiferromagnet with weak anisotropy induced
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FIG. 5. L/w{. along the critical curves of PRG. The heavy
line is an extrapolation from the 6/9, 9/12, and 12/15 curves.
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FIG. 6. L/m€; against temperature for R = —5.0. Hori-

zontal lines at 1/9 and 1/4 mark the values of n at the bound-
aries of the KT phase for the XY model with sixth-order
anisotropy.

by the square-lattice ferromagnetic bonds. In this region,
corresponding to the horizontal section of the critical line
in Fig. 4, Eq. (2) is expected to become asymptotically
true. Figure 5 shows L/7€(T.) as a function of Kp,. It
can be seen that for large |Kpny|, L/m€(T.) becomes con-
stant and extrapolates to 0.25 from below. On the basis
of this, one would tend to state that the critical line of
PRG marks the high-temperature boundary T; of the
KT phase, at least in the region where the antiferromag-
netic coupling is strong. This, however, is inconsistent
with previous findings [5,6] (see below). Furthermore, in-
spection of the £, /L versus T curves for large |R| shows
no evidence of nonmonotonic behavior; in particular, no
trend is found towards a second crossing close to tem-
peratures where conformal invariance would give 1 near
1/9. An example is shown in Fig. 6; for R = —5.0, at
the couplings for which L/7¢ = 1/9, we do not see any
tendency for the different-L lines to cross, or even to ap-
proach one another. We then consider other quantities,
in order to estimate bounds for a possible KT phase.

IV. ROOMANY-WYLD APPROXIMATION

To make contact with previous results, we investigate
the RW approximation [16] for the 8 function [17], as
done in Ref. [5] for R = —2.0. This is given by

log(€r/€r/)/log(L/L") — 1
{€1€n /(Lér)pr?

where £’ denotes a derivative of £ with respect to tem-
perature. Note that SR, = 0 at the fixed point of the
PRG transformation [Eq. (1)], and one would expect it
to remain at zero for an extended temperature interval
corresponding to a KT phase. This would be in contrast

BEL(T) =

®3)
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FIG. 7. Roomany-Wyld approximant 5{‘{‘1 against temper-

ature for R = —2.0, and L/L'=3/6, 6/9, 9/12, and 12/15.

with the monotonic behavior exhibited in systems with
an ordinary transition [17]. In Fig. 7, we display B85y,
against temperature for R = —2.0 and L'/L=3/6, 6/9,
9/12 (already obtained in Ref. [5]), and 12/15. Although
the 3/6 curve is almost featureless, a trend arises towards
flattening as L increases, especially when the 12/15 data
are considered. The range of temperatures for which one
would, from visual inspection, expect the L — oo curves

FIG. 8. Roomany-Wyld approximant 35y, against temper-
ature for L/L' = 12/15 and R = —0.5, —2.0, —5.0, and —20.0.



52 SEARCH FOR A KOSTERLITZ-THOULESS TRANSITIONIN A . ..

to touch the axis, is in broad agreement with the ap-
proximate boundaries of the KT phase as obtained by
previous authors [5,6].

Figure 8 shows BRY, against temperature for the largest
strip width L = 15 (L' = 12) and several values of
R. It becomes apparent that the trend towards flatten-
ing noticed earlier turns even weaker, on either side of
R = —2.0. As the RW approximation produces clear-cut
plateaus in other cases where a critical phase is present
(see e.g., Fig. 6 of Ref. [16]), one is led to concur with Ki-
tatani and Oguchi’s conclusion, by deeming the present
results inconclusive for general R.

V. SCALED MASS GAPS

We then consider the ratio
Q= [(T)/L]/[é(T)/L"]. (4)

This quantity was introduced in the study of the scaled
mass gaps of quantum systems [16,21], and was used in
Ref. [22] in the study of anisotropic Ising triangular anti-
ferromagnets in an external field, which exhibit features
similar to those under examination here. At the fixed
point of PRG, Q = 1 and one expects it to remain close
to this value for an extended temperature interval if a
critical phase is present. This is numerically verified to
a good extent in several cases [16,21,22]. In Figs. 9 and
10, we show Q, respectively, for R = —2.0 and —5.0, the
same values considered in Ref. [6], and several pairs of
strip widths. Figure 11 displays plots of Q against tem-
perature for L = 15 and L' = 12, and R = —0.5, —2.0,
—5.0, and —20.0.

Note that the fractional deviation of Q from one is
much smaller than the corresponding shift of ﬁ%{‘f from
zero in Fig. 8. As |R| grows, the extent of the flatten-

ing region increases. For R = —20.0 and L = 15, Q
1.15 T T ' L | L [ L l T T
B 3/6 ]
. K, /K -2.0 :
1.1 + —
L 6/9)
1.05 | g
N L 2/15
Lr ]
0.95 [ =
—l 1 1 | 1 L1 1 ‘ Il L1 1 I 1 1 1 L | 1 L l—‘
2 2.5 3.5 4
L/
FIG. 9. Q = [€L(T)/L]/[€r/(T)/L’] against temperature

for R=—2.0and L/L' = 3/6,6/9,9/12, and 12/15.
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FIG.10. Q = [£.(T)/L]/[€r(T)/L'] against temperature
for R = —5.0 and L/L’' = 3/6, 6/9, 9/12, and 12/15 .

rises quite steeply from 0.95 at 7T'/Jynn = 2.4 to 1.0 at
T/Jann =~ 2.96, the fixed point of PRG, and then remains
below 1.005 up to T'/Jyn, = 10.0.

The data from Q indicate that, at least for R < —2.0,
there is a signature consistent with the presence of a KT
phase at temperatures above that of the fixed point of
PRG. This would support the results of Refs. [5,6]. Vi-
sual extrapolation of the temperature range for which Q
approaches one for large L would give the upper limits
T1/Jonn ~ 4.0 and ~ 5.2, respectively, for R = —2.0 and
—5.0. These compare well with the corresponding Monte
Carlo results [6] T1/Junn =~ 3.8 and ~ 5.0. On the other
hand, our evidence strongly suggests that the lower limit

1.1

1.05

095 el ol N B
4
1/K

FIG.11. Q = [€L(T)/L)/[&L(T)/L'] against temperature
for L/L' = 12/15 and R = —0.5, —2.0, —5.0, and —20.0.
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T> must be the fixed point of PRG, whose extrapolated
location is at T2/Jpnn =~ 3.19, both for R = —2.0 and
—5.0. This value is definitely higher than those quoted
by Miyashita et al., respectively, ~ 2.6 and ~ 2.75.

For small |R|, the signature referred to above tends
to disappear. If the KT phase is present at all, it must
vanish as R — 0, since at R = 0 one has a simple struc-
ture of three independent, superimposed, ferromagnetic
square lattices. In this context, one cannot rule out the
possible existence of a multicritical point at some R; # 0,
such that for |R| < |R| there would be only an ordinary
transition. However, we have not investigated this aspect
in detail.

The trends arising from the examination of A&V and,
especially, Q are difficult to reconcile with the results for
1 coming from conformal invariance (although the latter
are, admittedly, valid only for large |R| when anisotropy
becomes weak). One would expect 1 ~ 1/4 at the high-
temperature end of the massless phase, and 7 < 1/4 at
low temperatures still within the critical phase. This,
however, is not seen in our results (recall, e.g., Fig. 6).

VI. DISCUSSION AND CONCLUSIONS

We have analyzed four quantities for a wide range
of values of the first-to-second-neighbor interaction ra-
tio R in the Kitatani-Oguchi model: (a) the location of
the fixed point of PRG; (b) the critical exponent 7, as
given by conformal invariance; (c) the 8 function in the
Roomany-Wyld approximation; (d) the scaled mass gap
Q. Overall, one can say that (c) does not provide con-
clusive evidence as regards the existence of a K'T phase.
On the other hand, the positions of the seemingly clear-
cut plateaus arising from (d), above the fixed point of
PRG given by (a), do indicate the existence of a mass-
less phase; however, the values of 1 obtained in this re-
gion, from (b), are inconsistent with the standard expec-
tations.

One possibility is that the model of Kitatani and
Oguchi does not display a KT phase at all, owing to
the fact (discussed above) that it is not sixfold symmet-
ric. In this scenario, the transformation of the second-
neighbor sublattices from triangular to square via the
deletion of the appropriate bonds would be relevant in
the renormalization-group sense. For example, the work
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of José et al. [2] indicates that for the XY model with
fourth-class anisotropy one has only one transition, with
n=1/4.

Although this is an appealing conjecture, we feel that
our data from (d) for large |R| definitely show a trend
towards the onset of a critical phase. Based on this, we
propose the approximate phase diagram shown in Fig.
1, where the boundaries of the shaded area are obtained
from extrapolation of the flat sections of the scaled mass
gap diagrams.

It is worth recalling that other generalizations of
the triangular Ising antiferromagnet also display critical
phases, without obeying the criterion of José et al. We
refer specifically to the model with second-neighbor ferro-
magnetic bonds along only one lattice direction [19], and
to one with continuous degrees of freedom superimposed
on the original Ising ones [32]. For the present model, we
recall the zero-temperature transitions between domain
states [20], and single out the Monte Carlo renormaliza-
tion group results of Miyashita et al., summarized in Fig.
6 of Ref. [6], which do point towards the existence of a
critical phase, and were obtained without recourse to the
criterion of José et al. It would seem that this latter
criterion is valid only for the model for which it was orig-
inally formulated [2] and its closest relatives [4] with full
sixfold symmetry.
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