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Approximately conserved quantity in the Henon-Heiles problem
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A possible relation between an approximately conserved quantity in the Henon-Heiles problem
and the integrals of the Toda lattice is investigated. A relation good to fifth order exactly and
seventh order when averaged is proposed. A form of averaging appears to be signi6cant in the
successful construction of approximately conserved quantities.
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I. INTRODUCTION

The Henon-Heiles problem [1] represents the third or-
der truncation of all three-particle systems interacting
with a next-neighbor central potential. The Toda lattice
[2] is an n-particle, next-neighbor interacting system and
is completely integrable [3]. It has been shown that start-
ing &om the third order truncation of the three-particle
Toda lattice, the Henon-Heiles problem, its truncations
are not integrable [4]. However, the Henon-Heiles prob-
lem (henceforth referred to as the HH problem) shows
near-regular behavior for a relatively large range of val-
ues of the Hamiltonian, 0 & H & 0.11, and hence admits
a second approximately conserved quantity. Gustavson
[5] developed a power series for such a quantity through
normal form transformations. Recently, Finkler et al.
[6] have constructed a power series for a quasiconserved
quantity K in the HH problem. This series (hereafter
referred to as the FJS series) shows approximate con-
servation for H & 0.11, but behaves as an asymptotic
series and possesses possible convergence problems, as
discussed in Ref. [6]. Contopoulos and Polymilis [7] have
numerically studied the integrability of various trunca-
tions of the three-particle Toda lattice. This and the
work of Yoshida et al. [4] imply that although the trunca-
tions are not integrable, a seemingly integrable behavior
for a considerable range of the values of the Hamiltonian
can be observed.

The aim of this work is to understand the mechanism
by which an approximately conserved quantity can ex-
ist for the HH problem. For this reason, the Liapunov
spectrum for both the integrable Toda lattice and the
nonintegrable HH problem has been calculated. The re-
sults confirm the Poincare surface of section analysis that
for 0 & H & 0.11 the system shows an orderly transition
to chaotic behavior in accordance with the Kolmogorov-
Arnold-Maser (KAM) theorem. The frequency spectrum
of the HH system has been studied, and a two-period
spectrum is observed for 0 & H & 0.11.

Since the HH problem is the third order truncation of
the three-particle Toda problem, it is worthwhile to inves-
tigate a possible connection between the approximately
conserved infinite series proposed by Finkler et al. and
truncations of the third integral of the Toda problem. We

have observed that this third integral or its truncations
do not exactly coincide with the FJS series. Truncations
of the third Toda integral function as an HH integral for
up to the fourth order in the dynamical variables of the
problem. It can also be shown that linear combinations
of the square of the third integral and the Toda Hamil-
tonian give the FJS series up to and including the fifth
order. Higher order terms of the FJS series do not co-
incide with any combination of the two integrals of the
Toda problem (the Hamiltonian and the third integral).

The fact that, in the range 0 & H & 0.11, an approx-
imately conserved quantity can be constructed makes it
worthwhile to study the averaged version of the HH sys-
tem over its larger &equency. Under these conditions,
it is shown that the FJS series (with the exception of
the fourth order term) average to zero. A combination of
the Toda Hamiltonian and the Toda third integral agrees
with the FJS series up to and including the seventh order
when averaged.

In Sec. II, we present our numerical results concerning
the Liapunov spectra and the periodicity. Section III is
devoted to the details of the calculations involving the
relations between the FJS series and Toda integrals. A
discussion and interpretation of the results are presented
in Sec. IV.

II. LIAPUNOV AND FREQUENCY SPECTRA OF
THE HENON-HEILES SYSTEM

with the three integrals

I1 —P1 +@2 + P3

I2 ——HZ,

(2.2)
(2.3)

(2.4)

The three-particle Toda system has the following
Hamiltonian:

2+ 2+ 2
~1 ~2 &3 —(q& —q2) —(q2 —q3) —(q3 —m )+e +e

2

(2.1)
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If one switches to a new coordinate system by letting

2~6 2~3
&cm + &+ 2g&3 3

2~6 4~3
g2 = &cm &)

3 3
2~6 2~3

q3 —— Xcm + X —2y
3 3

(2.5)

(2.6)

(2.7)

IIT = 2(J'. +P„')

(
(2y+2~3m) + (2y —2vsx) + —4y) (2 8)

1
24' 8

A third order truncation of Hz gives the HH Hamilto-
nian

Ii is trivially satisfied. With the scaling dr = ddt and
II -+ H/24, one gets

Looking at the results of Fig. 1, we can say that any A

value below 0.03 should be considered as zero. Keeping
this in mind, we could say that the Liapunov spectrum
of the HH system (Fig. 2) consists of zeros for II ( 0.11.
This spectrum is an indication that a nearly conserved
quantity for H ( 0.11, where all Liapunov exponents are
compatible with zero as specified above, should exist.

Next, we consider the frequency spectrum of the HH
system for various 0 values (Fig. 3). We can identify
a two-periodicity for the system when the value of its
Hamiltonian is less than 0.11, though as we approach
this upper limit, deformation of this nature gradually
begins; for H ) 0.11, the spectrum becomes continuous,
which is yet another indication that we should expect
a nearly conserved quantity other than its Hamiltonian,
for H ( 0.11. We observe that the relative position of
the larger frequency is stable, while that of the smaller
frequency shifts slowly, and new frequencies emerge as
the value of the Hamiltonian increases.

(
2 + 2) + (

2 + 2) + 2 3/3 (2.9)

It has been observed that the Wiesel [8] procedure gives
the most reliable performance in the calculation of Lia-
punov exponents for the two systems (Toda and HH)
that we have studied. The derivation of the equations
Rom the dynamical system has been automated by the
use of the GENTRAN and scoPE [9] packages in REDUCE

[10]. Numerical integrations have been carried out using
a Bulirsch-Stoer type integrator.

We first consider the Liapunov spectrum of the Toda
lattice. Since this is a Hamiltonian system, the Liapunov
exponents should add up to zero. Furthermore, it is a
completely integrable system, which tells us that it does
not have any chaotic behavior; hence it does not have
any positive Liapunov exponent. Thus we are faced with
the fact that all four Liapunov exponents of the system
are exactly zero. Bearing this in mind, we examined our
result concerning the spectrum. The result is presented
in Fig. 1 for different ranges of the value of the Hamilto-
nian, where we see the four Liapunov exponents versus
the value of the Hamiltonian of the system.

It is apparent that, when such an iterative calculation
is made using computer simulations, the definition of zero
should be revised, basically because

(i) Liapunov exponents that are close to zero are dif-
ficult to calculate, as the local behavior of the system
dominates the overall performance.

(ii) The floating point truncation error during the cal-
culations adds numerical noise.

(iii) The numerical integration procedure involves an
effective series truncation through both the discretization
in the numerical integrator and the handling of the Hoat-
ing point by the computer. Since any truncation of the
Toda lattice above the second order is nonintegrable, we
have not been able to observe an appreciable improve-
ment in the departure of the Liapunov exponents from
zero, neither through increase of Aoating point precision,
nor by the use of higher order integrals.
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FIG. l. (a) Liapunov spectrum of the Toda system vs the
value of the Hamiltonian. Deviation of the numerical values
from the theoretical values of zero re8ects the numerical sen-
sitivity of the computation. (b) A closer look at the interval

[0, 0.12].
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Since the HH problem is the third order truncation
of the exactly integrable three-particle Toda lattice, it is
natural to expect a relation between the approximately
conserved FJS series and the Toda integrals. The sim-
plest ansatz of seeking a relation connecting the FJS se-
ries directly to the series expansion of the third integral
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FIG. 2. (a) Liapunov spectrum of the HH system vs the
vaue o el f the Hamiltonian. There is a clear passage from a reg-
ular characteristic to a chaotic one near the value H
(b) A closer look at the interval [0, 0.12]. Comparing it with
Fig 1, one can say that the spectrum consists of zeros on the

~ ~ ~ ~interval [0, 0.11) vaguely. Units in this figure are in pixels.
The pixel/mm ratio is indicated in the text.

is impossible, since the FJS series starts with fourth order
~ ~terms in the dynamical variables, whereas it is apparent

from (3.1) that the series expansion of Is starts with sec-
ond order terms. It can be immediately verified that
the FJS series, which has a power series expansion start-
ing &om fourth order terms, is not also the same as the
square of the third integral. However, it is worth noting
here that the time derivative of I3 can be shown to start
with fifth order terms, so that it is a good integral up to
and including the fourth order, in spite of the fact that
the HH problem is a third order truncation of the Toda
problem.

Another candidate for an approximate integral is the
Toda Hamiltonian (2.1), which also expands to a power
series starting with second order terms, and possesses
a fourth order time derivative as expected. Since the
second order terms in the series expansions of HT and I3
are linearly independent, a linear combination of the two
cannot be annihilated even to achieve a series starting
&om the third order. The fact that HT and I3 start with
the second order terms is a motivation for trying a linear
combination of the squares of these two in order to form
an expression agreeing with the FJS series in its fourth
order term. The combination

N4s ——nHT, + PIs (3 2)

400—

300—

200—

I

l(~(
I

~il,

I) i(

, I',

I'
) ),

H=0. 05
H=0. OB
H=0, 11
H=0. 1 4

with a = —5/12 and P = 7/12, when expanded to fifth
order, agrees with the FJS series not only in the fourth
but also in the fifth order terms. Nevertheless, it is
not possible to push this agreement to higher powers by
adding higher powers of HT and I3, or cross terms in-
volving the two to %45.

The two-period property of the HH problem, as well as
the fact that the higher angular &equency is nearly 1 for
H ( 0.11, suggest averaging over this &equency. Thus
we introduce
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(3.3)
(3.4)

and perform a first order averaging. One o tains, using
the seventh order truncations, with ( ) denoting averag-

ing)
FIG. 3. Frequency spectrum of the HH dynamics for vari-

ous values of the Hamiltonian. There is a 6xed peak at about
tu = 17, and new harmonics are generated whue the lower
peak slides to higher frequencies as the value of the Hami to-
nian increases.

(K) = (K4),
(I )2 (

2 +u2+U2+ 2)2
(3.5)
(3.6)
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(N4s) = cr(HT ) + P(Is)2,
(3 7)

(3.8)

IV. CONCLUSION

and agreement between the averaged forms of the FJS
series and the linear combination of (HT) and (Is) is
thus maintained up to and including the seventh order
terms.

It is actually possible to show that the averages of all
terms in the FJS series are zero, with the exception of
K4, i.e. , (3.5) holds for the infinite series K.

To this end, we apply (3.3) and (3.4) to the generator
operator Do Di of Finkler et aL, which is used to obtain
K„+i &om K„, where

. t' 8 . 8 -0 —, cl )
Do = i

I p~p + p'
~p. + p~p + p*

~p. I,

(p*+ p*)'~ + (p+ p)'~ .—(p-+ p)'~ .I(. . .a,a, a

(3 9)

(p*+ p—')'~0
(3.10)

and
p = (x + iy) + i(x + iy),

p* = (x —iy) + i(x —iy),
p = (x + iy) —i(x + iy),

p* = (x —iy) —i(x —iy),

(3.11)
(3.12)
(3.13)
(3.14)

S = ) (a cosnt+ b sinnt),
nyO

(3.15)

which is the most general form with (S) = 0, where a„
and b~ are polynomials in u, u» v» and vy& and apply
the operator Dq. A direct calculation shows

Dq S = ) (a„cosnt + b„sin nt),
7&0

(3.16)

a~ and b~ again being polynomials in u~, u» v~, and. v»
and thus (DqS) = 0.

Finally, noting that (Ks) = 0 permits us to write it in
the form given by S, we conclude that

(Z„) = 0, Vn & 5. (3.17)

as described in [6]. Note that the operator Do does not
change the order of the polynomial terms it is applied to.

Now, consider the series

Our study of the Henon-Heiles problem reveals that,
although it is the third order truncation of the three-
particle Toda problem, the third integral of Toda is a
quasi-conserved quantity of the HH system up to the Gfth
order.

In the regime where the FJS series stays more or less
constant, the HH system shows a two-period behavior.
Thus, making an averaging over the higher &equency is
expected to increase the agreement between the FJS se-
ries and %45. Indeed the agreement is pushed up by two
orders, &om the fifth to the seventh.

The fourth and the fifth order terms of the FJS se-
ries can be written in terms of series truncations of Toda
integrals. The fifth and higher order terms average to
zero. These two observations make clear the reason why
the FJS series works so well. In the argument presented
by Yoshida et al. [4], the existence of a nearly conserved
quantity can be explained by the approach of the Henon-
Heiles system to the integrable harmonic oscillator form
in the low energy limit. This limit corresponds to aver-
aging in a first approximation.

The averaged system possesses two derived quantities,
(H7) and (Is) as given by Eqs. (3.6) and (3.7), respec-
tively, in which we can describe both of the average in-
tegrals. This shows that averaging is an important con-
sideration in the successful construction of an approxi-
mately conserved quantity in the Henon-Heiles problem.
However, the elementary averaging that has been em-
ployed here ignores the slow &equency shift in the lower
&equency as well as higher harmonic generation as the
value of the Hamiltonian increases. This is consistent
with the slowly varying function assumption inherent in
averaging. Further work on taking into account the possi-
ble effects of this assumption and the efFects of the choice
of integrator, step size, and reorthonormalization interval
on the accuracy of the result is in progress.
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