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The flip-flop process of the Lorenz system is described as a symbolic dynamical system, studied in
the presence of noise, and quantified with a specific complexity measure. For small noise amplitudes
the perturbation results in a generation of structure within the space of symbol sequences (discretized
trajectories), corresponding to a stabilization of the flip-flop process. This noise-induced stabilization
effect is investigated for different noise amplitudes, particularly in the case where noise is added

locally.

PACS number(s): 05.40.+j, 05.45.+b

INTRODUCTION

The behavior of nonlinear dynamical systems in the
presence of small perturbations and noise has been the
object of numerous and extensive studies since it has be-
come c¢lear that nonlinear dynamical systems no longer
exhibit a simple relation between “cause and effect.” In
particular, the dynamics of chaotic systems depends sen-
sitively on tiny perturbations of the initial values. Small
perturbations can result in a variety of system behavior,
which can be more but also less ordered than the unper-
turbed one. Perturbations can be added in a controlled
(control theory) as well as uncontrolled way as is the case
in the presence of noise (noise-induced chaos, stochastic
resonance).

The Ott-Grebogi-Yorke (OGY) control mechanism
[1,2] uses the fact that chaotic systems entail an infinite
number of unstable periodic orbits, which can be used to
stabilize the system. A control law specifies the time de-
pendence of a system parameter required to stabilize an
unstable periodic orbit in a chaotic system. In a similar
way the sensitivity of chaotic systems to small perturba-
tions can be used to direct chaotic trajectories rapidly
to a desired state. For the Lorenz system the trajectory
comes close to the origin (stationary state) in approxi-
mately one in 101° orbits around each of the lobes of the
attractor. By adding small perturbations to the model
equations, this can be changed to the order of one in 10
orbits [3]. If a neighborhood of the stable manifold of the
target state is reached, then the flow will automatically
go to the desired target region along the stable manifold.

Not only control but also noise can change the sys-
tem behavior in different ways. For systems possessing a
periodic attractor and being close to a saddle-node bifur-
cation, a transition to intermittent chaos can be induced
by small amounts of external noise [4]. Noise can tran-
siently drive the system away from its stable periodic
orbit towards neighboring unstable orbits, which it then
follows briefly before returning again. The size of the
largest Liapunov exponent as a function of noise inten-
sity demonstrates that the system exhibits noise-induced
chaos. 1t is found for several dynamical systems (logistic
map [4], Lorenz model [5]). For the Lorenz model it has
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also been demonstrated [6] that intrinsic fluctuations can
be chaotically amplified.

Stochastic resonance is a further remarkable nonlin-
ear phenomenon, in which the signal-to-noise ratio of a
periodically modulated, usually bistable system can be
amplified by the addition of external noise [7]. Nonlinear
cooperative effects between periodic and random pertur-
bations can imply that incoherent noise leads to a coher-
ent output signal (e.g., in ring lasers [8]).

A suppression of the sensitive dependence on initial
states can result, if Gaussian white noise is added to
a system (e.g., the logistic map [9]). Strange but non-
chaotic attractors have been found for some ranges of
amplitude of the external perturbation [9].

In general, the effects of perturbations can be quite
difficult to predict; nevertheless, dramatic changes in the
dynamics of chaotic systems have been found. For ex-
ample, periodic and nearly periodic behavior can some-
times be produced in originally chaotic dynamical sys-
tems. In the present paper the influence of noise on
the flip-flop process associated with the Lorenz system
(0 =10,b= %, and r = 28), which is described as a sym-
bolic dynamical system, is studied and characterized by
a specific complexity measure (fluctuation complexity).
For small noise levels the perturbation results in a sta-
bilization of the flip-flop process in the sense that the
number of successive rotations of a trajectory on the same
lobe is significantly increased. It turns out that this sta-
bilization effect is dominated by the influence of noise on
those parts of the attractor where the maximum diver-
gence rate is positive.

THE NOISY LORENZ SYSTEM

The Lorenz system [10] is a three-dimensional contin-
uous dynamical system [R® — R3,x — F(x)], which ex-
hibits chaotic dynamics for certain parameter values:

Ty = —0oxy +0x2 ,
T =TT — T2 — T1Z3 , (1)
.’i}3 = —biL‘g + T1T2 .
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For the parameter set 0 = 10, b = %, and r = 28, which
is considered in this paper, the corresponding dynamics
is characterized by a strange attractor with two unsta-
ble fixed points in addition to the origin [10,11]. A typ-
ical trajectory circulates away from the unstable fixed
point on one lobe and switches to the other lobe after
an apparently random number of rotations. The process
corresponding to the change of lobes is called a flip-flop
process [12].

This flip-flop process can be described as a symbolic
dynamical system. The three-dimensional state space is
partitioned according to the two lobes, which are repre-
sented by the symbols 0 and 1. Then each trajectory can
be mapped to a unique symbol sequence S = {s;}52,,
such that a symbol 0 (1) is assigned to the symbol se-
quence if the trajectory circulates around the unstable
fixed point z; < 0 (z; > 0). In other words, if a local
maximum in the z3 component corresponds to z; < 0,
then s; = 0, otherwise s; = 1.

The corresponding symbolic dynamical system F' is de-
fined as [13]

EF—)ZF, SI—)&F(S)=S’ , (2)
such that each symbol in the sequence S = {s;}32, satis-
fies the condition s;41 = s} = 6r(s;). F is the space of
all admissible symbol sequences. Admissible sequences
are sequences that are induced by the dynamics of the
system F (Lorenz system) for all initial states xo on
the attractor at time step i = 0. The operator 6F is
called the shift operator on ¥ r, and describes the dy-
namics generated by F' in the space of symbol sequences
Y. The length L of a symbol sequence S is defined by
S = {s,-}{‘:—ol. In principle, the theory of symbolic dy-
namical systems deals with sequences of infinite length
(L = o0). For practical purposes, however, L is often
regarded as a finite number.

The space of admissible symbol sequences X of the
symbolic dynamical system is partitioned. The so-called
n-cylinder-induced partition P, = {A;,}}, consists of
all (N) words of length n, which appear in the sequence
S. A word A, , of length n is a subsequence of S, such
that A;, € {SkSk+1- " Sk+n—1|k =0,1,...,L —n}. The
set of admissible words P, represents the set of all trajec-
tories or sequences which coincide in the first n succes-
sive symbols. For the Lorenz system and the considered
word length n = 1,2,...,9 all words of length n which
can be generated from a binary alphabet appear in the
corresponding symbol sequences. All possible words are
admissible; the number of words IV increases with n as
2™. A word A;, is also called a state, and 7 is called the
order of refinement of the partition P,.

Because the system dynamics is characterized by a
complexity measure related to the concept of informa-
tion, a number of probabilistic quantities used to char-
acterize the given states A;, are required. The state
probability p; is the probability that a given word A; , of
length n appears in the symbol sequence S. The joint
probability p;; describes the probability that the system
goes from A;, to A;, in two successive time steps. Us-
ing the joint probability p;; the transition probabilities
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Pi—; are defined as conditional probabilities for the tran-
sition from a given state A;, to a successive state A;,:
Disj = Pij/Pi-

The dynamics of the flip-flop process is quantified by
the fluctuation in net information gain (fluctuation com-
plexity) o2, which has been introduced as a complexity
measure by Bates and Shepard [14]. In [15,16] it has been
found that o2 is a sensitive measure to particular types
of dynamical behavior.

The net information gain I';; of the system state
A; is defined as the difference of information gain
gij = —log, pi,; and information loss l;; = — log, pij,
whereby p;; = p;;j/p;j. Information gain represents the
information required to select a state A;, if its preceding
state A; is given. Information loss determines the infor-
mation a system has lost about a preceding state A; after
it has entered the successive state A;. During the time
evolution of a dynamical system the net information gain
vanishes on average, Zij I';; = 0. However, the system
can locally generate or store information. Therefore the
net information gain may fluctuate about its mean value
and yield a nonvanishing mean square deviation oZ.

of = (%) —(I)* = lZPij’ (10g2 Ip)—;)z : 3)

The quantity is denoted as the fluctuation complex-
ity. It vanishes for purely regular behavior as well as
for purely stochastic behavior, because in both cases the
distribution of state probabilities is homogeneous. o2 is
positive in between.

External noise

The Lorenz equations (o = 10, b = %, r = 28) are inte-
grated for 19630 time units. This corresponds to about
26 300 rotations of the trajectory around the two lobes,
or to 26 300 local maxima in the z3 time series. Thus
a typical trajectory is assigned to a symbol sequence of
length L = 26 300, which is based on the binary alphabet
described above.

In the following the fluctuation complexity o2 of this
symbol sequence is compared to the fluctuation complex-
ity o2 of symbol sequences which are derived from the
noisy Lorenz system. The Lorenz equations (1) are per-
turbed by an amplitude-dependent noise term &, which
is added in the first component, 1 — x; + £, where £ is
defined in the following way:

§=V|z1|z' (4)

¢, is arandom number, equally distributed in the interval
&, € [—&o,&0], and & is called the noise amplitude.

In order to relate the magnitude of the noise term £ to
the amplitude of the unperturbed signal, the signal-to-
noise ratio (SNR) is defined as

_ (lz1l)eo=o _ _ (@1ldeo=o
RoNR = eDe, ~ 0560(y/IerDeocs (5)
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where (|z;|)¢, is the average of the absolute value of the
signal z; for a given noise amplitude &;. Large (small)
values of (SNR) correspond to a small (large) pertur-
bation of the signal. A vanishing perturbation leads to
an infinite (SNR). For the considered parameter set one
gets (}:cll)gozg =6.4 and (4/|z1|)¢o=0 = 2.3, such that
Rsnr = %

Throughout this paper the Lorenz system is con-
sidered for different noise amplitudes & € {0,0.5,1,
2,3,5,10}, e.g., different signal-to-noise ratios Rsnr €
{00,11.2,5.6,2.8,1.9,0.6}. Figures 1(a)-1(d) show how
the structure of the unperturbed attractor gets more
and more smeared out with increasing noise amplitude,
corresponding to a decreasing signal-to-noise ratio. For
& = 10, respectively, Rsnr = 0.6 [Fig. 1(d)], the aver-
aged noise signal is already larger than the unperturbed
signal and dominates the structure of the corresponding
attractor.

Figure 2 shows the influence of noise on the Lorenz
system, which is reflected in the corresponding symbol
sequences as quantified by fluctuation complexity (o2).
In Fig. 2(a) fluctuation complexity is plotted versus the
word length n for different noise amplitudes. (Concerning
the convergence properties of o, see [16].) The graphs
for the unperturbed and the perturbed system differ dras-
tically.

(i) For n = 1 all graphs coincide independently of the
noise amplitude &g, and o2 = 0. This reflects that both
symbols 0 and 1 appear with equal probability in the
symbol sequence. This is caused by the symmetry of
the attractor (Lorenz equations), and does not indicate
a purely stochastic flip-flop process.

(ii) 0% increases with increasing n for all considered
&o except £ = 10. This reflects the inhomogeneity of
the distribution of state probabilities for n > 1 and indi-
cates that the flip-flop process is not a totally stochastic
independent process.

(iii) For a large noise amplitude &, = 10 (small signal-
to-noise ratio) the values of o2 are nearly vanishing inde-
pendent of n, because in this case the dynamics is domi-

50 50

40F 40

30 30F

X3
X3

20 20

10 10

0 0 L
-30 -20 -10 © 10 20 30 -30 -20 -10 O 10 20 30
X, X,

50

50 )

40f 40¢

30F 30
20 20E

10 10F

0 0 :
-30 =20 -10 O 10 20 30 -30 -20 =10 O 10 20 30
X, %,

FIG. 1. The attractor of the Lorenz system for different
noise amplitudes; the trajectory is plotted in time steps of
0.1. (a) Eo = 0.5, (b) 50 = 1, (C) 60 = 3, and (d) §o = 10.
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FIG. 2. (a) Fluctuation complexity o as a function of
word length n for different noise amplitudes . The indices
1,2,...,7 correspond to the values & =0,0.5,1,2,3,5,10.
(b) 0% as a function of noise level & for n = 6.

nated by noise.

(iv) For a given n, n > 1, the complexity o first in-
creases with increasing noise amplitude until it decreases
for £o > 2. For n = 6 this behavior is plotted in Fig. 2(b).
The reason is that for £, < 2 the distribution of state
probabilities becomes more inhomogeneous with increas-
ing noise level. Otherwise for £ > 2 the distribution
of state probabilities becomes more homogeneous again.
In this sense, the degree of inhomogeneity indicates the
generation of structure in the Lorenz system by noise.

In order to investigate whether the increasing inhomo-
geneity in the distribution of state probabilities is caused
by an enhancement or by a reduction of the switching of
a trajectory between the two lobes, the distribution of
state probabilities for different n has to be studied. For
this purpose each state A;, (word of length =) of the
partition P, is assigned to a number v according to the
binary number representation

SkSk+1" " Sk4n—1 > V =Sk X 2" 4 skt
X2"2 4o spyno1 x 20

(6)

v is normalized by v +— 57%5 on the unit interval in
order to compare words of different length n with regard
to their state probability. Then, for instance, the word
111 as well as 1111 is assigned to v = 1. In Fig. 3 the
frequency N; ., of each word A, , is plotted versus v for a
given n, n = 1,5, 9 for different noise amplitudes (a) £ =
0 and (b) £0 =1.

(i) In both cases (a) and (b) the distribution of state
probabilities gets more inhomogeneous with increasing
word length n, and the number of words increases with
n as 2. This reflects the rules (the grammar), which
are inherent in the Lorenz system and the corresponding
symbol sequences, respectively.

(ii) The symmetry of all curves relative to the axis
v = 0.5 exhibits the symmetry of the flip-flop process
relative to the two lobes as mentioned above.

(iii) The most interesting feature with respect to
the generation of structure is that the curves for
n > 1 show maximum values for » = 0,1,0.50,0.25, .. ..
For n = 5 these maxima correspond to the words
00000,11111, 10000, 01000, .. ., e.g., to words with many
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FIG. 3. Frequency distribution N; . of states A;, for dif-
ferent refinements n (n = 1,5,9 from top to bottom), where
the states A;, are characterized by their normalized binary
representation v: (a) & = 0 and (b) £, = 1.

equal successive symbols. For §, = 1 [Fig. 3(b)] the max-
imum values are large compared to the unperturbed case
&o = 0 [Fig. 3(a)], which again reflects the generation of
structure by the influence of noise. Simultaneously this
demonstrates that the generated structure corresponds to
a stabilization of the flip-flop process, because a typical
trajectory stays longer on the same lobe of the attractor.
The switching between the two lobes under the influ-
ence of noise happens less frequently. This is indicated
in Fig. 3(b) by a minimum value for n = 9 at v = 0.33,
e.g., for the word 010101010.

Local external noise

In addition to the previous section, where noise is
added homogeneously after each integration step on the
entire attractor, the influence of local noise (§o = 1) on
the Lorenz system has been studied. For this purpose
the phase space is divided into two regions, A; and A,
[Fig. 4(a)]. A; contains that part of the phase space
from which the transitions between the two lobes take
place. It is limited by the lines g: z3 = —10z,/3 + 10
and h:z3 = 10z1/3 + 10, and defined by the set A; =
{z3|rs > g Az3 > h}. A, is the complement of A; rela-
tive to the entire phase space.

Ao contains that part of the attractor for which the
maximum local divergence rate is positive [17], e.g., for
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FIG. 4. (a) The two regions A; und Az of the phase space
where the influence of local noise on the flip-flop process is
investigated. (b) Fluctuation complexity 0% as a function
of word length n, where the Lorenz system is perturbed by
local external noise with amplitude £o = 1. The four cases
indicated by 0,1, 2,3 are described in the text.

which nearby trajectories diverge locally. The maximum
local divergence rate is negative for the complementary
subset (A;) of the attractor.

The following four cases can be distinguished: (0)
Lorenz system without noise, (1) Lorenz system per-
turbed by local noise (§ = 1) in the region A, (2)
Lorenz system perturbed by local noise ({9 = 1) in the
region Az, and (3) Lorenz system perturbed globally. For
each case the fluctuation complexity o2 is calculated as
a function of word length n. The result is plotted in
Fig. 4(b).

The graphs of g2 for which noise is added only on
a partial region on the attractor (cases 1 and 2), are
“between” the graphs of the unperturbed system (case 0)
and the globally perturbed system (case 3). The curves
corresponding to cases 2 and 3 are fairly close to each
other indicating that the stabilizing effect of noise on
the dynamics of the flip-flop process is dominated by the
behavior in region Aj.

The number of constant words of length n = 8
(00000000 and 11111111) of the corresponding symbol
sequences relative to the unperturbed case is enlarged by
a factor of 1.6 for case 1, 3.6 for case 2, and 3.8 for case
3. This again shows the dominating effect of region A,
for noise-induced stabilization.

Words with an alternating sequence of symbols (n =
8, 01010101 and 10101010) appear comparatively rarely
in all considered symbol sequences. Their frequencies
relative to the unperturbed case are given by a factor of
0.8 for case 1, 0.4 for case 2, and 0.6 for case 3. This
means that noise leads to a reduction of the switching
frequency between the two lobes in all cases. In case 1,
where the perturbations take place in Ay, the switching
between the two lobes happens more often than in cases
2 and 3.

In A, the maximum local divergence rate is positive
[17], which implies that the forecasting of the system dy-
namics is restricted. The stabilizing effect of noise can be
interpreted such that by the perturbation £ the trajec-
tory is mapped onto an orbit, which moves again around
the same unstable fixed point.

The maximum local divergence rate is negative in Aj,
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which implies that small perturbations of the system are
damped out. Switching processes are observed less fre-
quently in cases 2 and 3 than in case 1.

In this context it is remarkable that for nonlinear ordi-
nary differential equations the difference between numer-
ically and algebraically (approximated) calculated limit
cycles is reduced, where the maximum local divergence
rate of the system is positive [18].

SUMMARY

In conclusion it is demonstrated that the influence of
noise on the flip-flop process of the Lorenz system, which
is characterized by two unstable fixed points, leads to a
more inhomogeneous distribution of words (discretized
orbits of finite length) for small noise amplitudes. As a
(somewhat counterintuitive) consequence noise generates
structure and stabilizes the flip-flop process, because the
number of successive rotations around the same unstable
fixed point is enlarged. Furthermore there is some indica-
tion that the described stabilization effect of noise on the
flip-flop process is dominated by the influence of noise on
those subsets of the attractor where the maximum local
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divergence rate is positive.

In contrast to OGY stabilization, noise-induced sta-
bilization does not lead to a definite final target state,
but influences a trajectory qualitatively by an increas-
ing number of successive circulations on the same lobe.
Besides stochastic resonance [7] and other noise-driven
phenomena [4,9], noise-induced stabilization is a further
example for the variety of dynamical behavior inherent
in perturbed complex systems.

It might be interesting to look for experimental ver-
ifications of noise-induced stabilization. Good candi-
dates are single-mode lasers, whose instabilities can be
described by the Lorenz model. Another possibility is
the instability between two alternative perceptual states
in continuous observation of ambiguous patterns like the
Necker cube [12], one of the original motivations to study
flip-flop processes of the Lorenz system.
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