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Stochastic resonance and the dithering effect in threshold physical systems

t.uca Gammaitoni*
Istituto Nazionale di I'isica Nucleare, Sezione di Perugia,

and Dipartimento di Eisica, Unieersita di Perugia, I-06200 Perugia, Italy
(Received 4 May 1995; revised manuscript received 18 August 1995)

There is a wide class of phenomena which can be interpreted by using a dynamical system with
a threshold as a model. Examples of these systems can be found in fields as diverse as digital
communication and neurobiology. In this paper we discuss the dynamical behavior of threshold
systems in the presence of noise. We show that both the dithering effect, well known to electronic
engineers since the 1950s, and the phenomenon of stochastic resonance in threshold systems, recently
introduced in the physical literature, can be described within the same scheme of noise activated
processes. For these phenomena, in the absence of any frequency matching condition, the use of
the term resonance is questionable and the notion of noise induced threshold crossings is more
appropriate.

PACS number(s): 05.40.+j, 02.50.—r

I. INTRODUCTION

Dynamical models which make use of threshold de-
vices have been employed, in recent years, in many fj.elds
of scientific research to describe a wide range of physical
phenomena. Examples of these systems can be found in
fields as diverse as digital communication (e.g. , analog
to digital conversion), neurobiology (e.g. , neuron firing),
natural events (e.g. , avalanches), laser systems (e.g. , laser
threshold), complex systems (e.g. , bifurcations), chemi-
cal systems (e.g. , activation threshold), and political sci-
ences (e.g. , electoral schemes). Typically, nothing hap-
pens in these systems as long as a certain control pa-
rameter remains below a threshold value. As soon as
the control parameter exceeds the threshold value, ev-
erything that happens does so (almost) instantaneously.

As an example let us consider the following simple
threshold system in which y is the output of a system
S to the input x:

step from 0 to 1 when x crosses the threshold value. Here,
this value has been placed at half the step magnitude but,
in general, x and y can have diferent domains.

Threshold systems can also be seen as a basic model
for the wider class of bistable dynamical systems. In
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Here the threshold value has been set equal to 1/2 and
0 ( x ( 1. We can represent the action of system S, in
short form, as y = Q[x]. The response characteristic of S
is illustrated in Fig. 1(a) (see Sec. II). For comparison,
a linear response characteristic is also shown. The linear
response output consists of a slowly changing ramp y =
2: going Rom one level (state 0) to the next (state 1)
continuously. Instead, the threshold system output y =
Q[z], corresponding to a quantized signal, switches in one
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FIG. 1. Threshold system output y vs x (solid liiie): (a)
in the absence of noise dither [for comparison we report also
the linear response characteristic y = x (dotted line)]; (b)
y with dither noise of intensity L = 0.1; (c) L = 0.5; and
(d) L = 1.0. The data presented in this paper have been
obtained via digital simulation. Noise intensity, system input
and output are expressed here in arbitrary units (a.u. ).
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these systems some of the peculiar phenomena observed
in the presence of bistability still survive. Among these
the stochastic resonance phenomenon (SR) [1,2] recently
gained some popularity. The SR was proposed more than
ten years ago as a possible nonlinear mechanism to en-
hance the effect of a small periodic force by adding to it
some external noise of a proper intensity. It was exper-
imentally observed [2] in a number of bistable physical
systems. Recently some attention has been devoted to
the study of SR in threshold systems [3—6], with the aim
being to realize signal processing oriented devices [6] op-
erating under the SR condition.

The effect of adding noise to the input signal on the re-
sponse characteristic of a threshold system is the subject
of the present paper, which is organized as follows.

In Sec. II, we start discussing a well known noise in-
duced phenomenon in threshold systems: the dithering
effect. In digital signal processing [7], an analog signal is

sampled at discrete times and converted into a sequence
of numbers. Since the register length is finite, the con-
version procedure, called signal quantization, results in
distortion and a loss of signal detail. In order to avoid
distortion and recover signal detail, it has become a com-
mon practice, since the 1950s, to add a small amount of
noise to the analog signal before quantization a tech-
nique called dithering. In this section we brieHy review
the dithering effect as developed in the digital signal pro-
cessing theory and propose a detailed description of the
optimal condition for the linearity of the response char-
acteristic.

The noise-induced threshold crossing, within the
framework of the stochastic resonance phenomenon, is
the subject of Sec. III. There, we show that, for the
class of threshold systems considered here, there is no
frequency dependence in the system response, and the in-
crease in the periodic output amplitude can be explained
without recourse to any synchronization condition, as a
special case of the dithering effect discussed in Sec. II.

In Sec. IV we conclude with a short comment on the
relation between dithering as a noise-induced threshold
crossing effect, and stochastic resonance as a frequency
matching condition.

II. THE DITHERING EFFECT

Digital signal processing is a widespread and power-
ful collection of techniques in signal analysis [7] that is
commonly used in many fields of scientific research and
human activity. When applied to the physical sciences,
the digital sequence to be processed is generally obtained
by sampling a band limited physical signal at discrete
intervals of time. The sequence of samples thus ob-
tained is usually stored, in a binary format, in finite word
length registers. Conversion from a continuous (analog)
signal to a digital one consists of two different opera-
tions: time discretization and amplitude quantization.
Time discretization, if properly applied, can be shown
to be error Bee. The effects of amplitude quantization
(finite word-length) are instead always present and man-
ifest themselves in a number of different ways. First, due

to the presence of a nonlinear response characteristic, sig-
nal quantization leads to an unavoidable distortion, i.e. ,
the presence of spurious signals in a &equency band dif-
ferent from the original one. There is also a loss of signal
detail that is small compared to the quantization step
(the dynamic range of a digital signal is finite). In the
following, we will refer to the simple and more common
case of uinform rounding quantization [as in Eq. (1)].

To deal with such effects, engineers have developed a
general scheme [8—16] in which the notion of quantization
error, g, plays a central role. g = y —2; represents the er-
ror introduced by the coarseness of the amplitude quan-
tization in the analog-to-digital conversion. It is clear
from this definition that if we had a linear response char-
acteristic (apart from amplification factors), g would be
zero. Usually g is treated as an additive noise whose sta-
tistical properties depend upon the input signal x [8,9].
It has been shown [10,11], however, that the minimum
loss of statistical data from the input x occurs when the
quantization error can be made independent of x. In the
search for a technique to realize such an independence
condition, it was proposed to use an added external sig-
nal (dither) before quantization. A number of studies
on the proper choices of dither signals were performed
in the last 30 years [8—16]. The main conclusions can
be suinmarized as follows: (i) the addition of a proper
dither signal can cause the independence and whitening
of the quantization error resulting in both a reduction of
signal distortion and an improvement of the system dy-
namic range; (ii) the best choice for the dither signal is
a random dither uniformly distributed within an interval
of amplitude equal to the quantization step.

In this paper we propose a different approach to the
study of the dithering effect. Instead of considering the
statistics of the quantization noise g, which depends on
the input signal x, we focus on the statistics of the dither
signal. Let us start by considering the system S intro-
duced before. In Fig. 1(b), a sample output y to a ramp
x with a small uniform noise added to it is shown. The
presence of the noise induces random jumps concentrated
in a small interval (jump region) centered around the
threshold value x = 0.5. When one increases the noise
intensity, the jump region extends symmetrically [Fig.
1(c)] up to cover the whole input interval [Fig. 1(d)].
Figure 2 reproduces the average output (y„),for differ-
ent noise values. As can be seen, the averaged system
response characteristic is a function of the noise and ap-
proaches the linear one as the noise intensity approaches
the quantization step. Figure 3 reproduces the averaged
output (y~) in the presence of a white Gaussian noise. In
this case, the averaged output (yg) differs qualitatively
from the uniform noise case. In order to quantitatively
compare the averaged system response characteristic in
the presence of either uniform or Gaussian noise with the
linear response, we introduce the quantity D:

D is a measure of the distance between (y) and the
linear response y = 2:. In Fig. 4, we plot D versus o
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as

1
f(()d( = 1 —I" ——x

2
(4)

for x( ———orx) —+—1 L 1 L
2 2 2 2

for ———&x & —+—1 L L
2 2 — —2 2

(5)

where the PDF has been defined. as

and zero elsewhere. For the Gaussian noise case, (4)
becomes

The integration interval in (3) has been reduced here to
the noise values which satisfy the condition x+ ( ) 1/2,
due to the action of the operator Q[x + (]. We note
that (y) is a function of x and 0 and coincides with the
transition probability of the process x + (.

For the uniform noise case, (4) becomes

tion step and has an amplitude equal to the quantization
step itself. The problem with Gaussian noise is that the
PDF is not uniform. With such a noise source, the better
performance, with respect to distortion, is reached in the
x range where the PDF is more uniform, i.e. , around the
origin or, for a fixed x interval, when u —+ oo. However
in that case the output range is dramatically reduced.

The simple case analyzed before also serves to shed
some light on the subject of increase in dynamic range
due to the presence of dithering [14]. In the absence of
dithering, we have just one bit, no matter how we av-
erage. For this reason, the signal of amplitude 0.2 will
be read as just "0." As we saw before, with an optimal
dither and averaging at least ten times, we can increase
the dynamic range enough to distinguish a signal of am-
plitude 0.2. It seems evident that if we want to increase
the dynamic range enough to distinguish a signal of am-
plitude 0.22, we need at least ten times as many averages
(see, e.g. , oversampling techniques [19], implemented in
modern analog-to-digital converter systems). From what
we have said, it is clear that the averaging procedure is
truly efBcient in increasing the dynamic range only if the
dither signal can span the entire input range with con-
stant probability. This is again the same condition met
before for an absence of distortion. We do not address
this issue any further in this paper.

where

z
C .0

—t 2

e2 2dt

is the error function. We are now in a position to calcu-
late the curves, D vs 0., for the two noise cases consid-
ered above. Theoretical predictions shown in Fig. 4 are
in very good agreement with the digital simulations.

We note that as long as we are concerned with dis-
tortion, the optimal dither signal consists of a uniform
noise with amplitude equal to the quantization step. In
this case, the averaged quantization error is zero. For
smaller noise values, clipping effects on the signal are
present while for larger noise values, a reduction of the
system output range affects the response. In both cases,
the quantization error does not average to zero. Gaussian
noise, although showing qualitatively similar positive ef-
fects, is characterized by a worse performance.

It is worth noticing that the addition of noise plus aver-
aging procedure plays a crucial role in both the lineariz-
ing mechanism and the increase of dynamic range. As an
example, let us consider a constant input signal which
has an amplitude of 0.2 (threshold at 0.5). To achieve
a correct representation of this signal at the output, we
should arrange the system in order to have an averaged
output of 0.2. This result can be obtained if the signal
crosses the threshold two times out of ten (on average).
In such a case, we collect two "1"'sand eight "0"'s which,
averaged, make 0.2. To reach linearity such a probability
should be kept equal for all the input range, i.e. , we need
a dither signal which is uniform over the whole quantiza-

III. STOCHASTIC RESONANCE IN
THRESHOLD SYSTEMS

In this section, we will show that SR, as observed in
threshold devices, can be interpreted under the same
scheme as the dithering effect. In fact, the dithering ef-
fect shows an optimal condition that can be achieved
by tuning the noise intensity, just like the SR condition.
Moreover, in this case, for the SR condition the &equency
of the periodic input does not play any role. The evidence
of SR in multithreshold systems will be given as well.

Let us consider a harmonic signal x(t) = A sin(not) [20]
at the input of a threshold system. To take into account
the symmetrical shape of the signal z, we slightly modify
our previous system S according to the following rule:

for z( ——1
2

y(t) = ( 0 for —
—,
' & z & -',

forx) —.
In this system, there are two symmetrical thresholds, cen-
tered around zero. Zero is also the average value of the
input signal and of the additive (dither) noise. The am-
plitude A is chosen smaller than the threshold value so
that, in the absence of noise, the system output y is al-
ways equal to zero. The addition of noise induces random
jumps above the upper and beyond the lower threshold
causing y to switch from "0" to "1" or "—1." We are
interested in monitoring the presence of the input sig-
nal x in the output y. For this reason we consider the
y(t) time series and compute the corresponding power
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and

(I,)= n for+& ~+2A
yn 2 2

in good agreement with digital data. The horizontal
asymptote yields to A„(oo)= A (see Figs. 8 and 9).

IV. CONCLUSIONS

The use of the word "resonance" for the SR phe-
nomenon has been questioned since the very beginning
[1]. Recently, it has been demonstrated [22] that, for a
diffusion process, in a double well system, the meaning
of "resonance" as the matching of two characteristic fre-
quencies (or physical time scales) is indeed appropriate
for such a phenomenon, if the residence time of the two
states (in the bistable case) is taken into account as the
order parameter. For this system, the resonant condition
can be obtained either by changing the noise intensity or
by changing the input signal frequency. For the threshold
systems that we consider here, instead, such a frequency

matching condition does not hold anymore [23] at the
moment that we have only one characteristic frequency
(periodic forcing). As expected, the change of the input
frequency does not produce any effect on P„(cr)[20]. For
this reason the output signal enhancement [24] typical of
the SR phenomenon can be obtained, here, for nonperi-
odic signals as well.

It seems reasonable to conclude that SR in the thresh-
old systems considered here, far from being a resonant
phenomenon, can be more correctly interpreted as a spe-
cial case of the dithering effect [6,25] consisting of a
threshold crossing process aided by noise. For this class
of effects the name "noise induced threshold crossings"
seems more appropriate.
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