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Small-fluctuation expansion of the transition probability for a diffusion process
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In many applications of diffusion processes, fluctuations can be considered as a small perturbation of
the underlying deterministic dynamics. These situations are currently believed to be described by an
asymptotic expansion of the corresponding transition probability in powers of the (small) diffusion
coefficient. We offer a systematic procedure whereby all further terms in the above expansion can be sys-

tematically computed in terms of the solutions to certain Lagrange equations associated with the under-

lying deterministic dynamics.

PACS number(s): 05.40.+j, 02.50.Cw

Diffusion processes find many important applications
in several fields of research, like mesoscopic physics,
quantum optics, chemical reaction theory, and popula-
tion dynamics. We all know that these processes are fully
described by the probability density P (x, t) and the transi-
tion probability (density) P(x, t~xo, to) (t ~ to). Moreover,
we recall that a diffusion process can be viewed as a
deterministic first-order time evolution —defined by the
drift velocity field V(x, t)—perturbed by Gaussian fiuc-

I

tuations parametrized by the diffusion coe+cient D (as-
sumed throughout constant) [1]. As a consequence,
P(x, t) obeys the Fokker-Planck equation [2]

P(x, t)=DU P(x, t) [V—(x, t)P(x, t)]
t x(

whereas P(x, t~xo, to) is its fundamental solution (propa-
gator). Actually, the latter object enjoys the functional
integral representation [3,4]

P(x",t"~x', t')= J 2)x(t)5(x" x(t"))5(x'——x(t')) exp —(1/2D) f dt L(x(t),x(t), t) (2)

in which L (x,x, t) is the so-called Wiener-Onsager-Mahlup Lagrangian:

L(x,x, t)=Lo(x, x, t)+D —V(x, t)= —,'[x; —V(x, t)] +D V(x, t) .8 i . 2 8
Bx. a

Quite often (in the above-mentioned applications) fluctuations are a small perturbation of the deterministic dynamics,
and so looking for exact solutions to Eq. (1)—equivalently, carrying out the exact path summation in Eq. (2)—becomes
an unnecessary task. Rather, it is sufficient to find asymptotic solutions of Eq. (1) in the limit of small D. As it turns out,
the first step toward this goal is more easily accomplished by evaluating the path integral (2) in the same limit. Basical-
ly, this amounts to performing a saddle-point expansion in Eq. (2), which gives to lowest order in D [3]

P(x",t"~x', t')=(4mD) [J(x",t";x', t') j'~ exp[ —[Z(x",t";x', t')+ Wo(x", t";x', t')l2D]], (4)

with

hatt

Wo(x t 'x t ): dt L()(x x t)~(» —q().» ( .
~ ) (5a)

j gll

Z(x", t";x', t') = dt V, (x—, t—) ~„
2 ~' Bx.

(Sb)

where q (t;x2, t2, xi, ti ) denotes the solution of the Lagrange equations stemming from Lo(x,x, t), which goes through
both (xi, t, ) and (xz, t2), while J(xz, t2, x), t) ) is the Van Vleck determinant [5] associated with W ( oxtz2, xt,)).

However, all this is not the end of the story, for Eq. (4) merely yields the first of infinitely many terms in the asymp-
totic expansion of the transition probability.

Our aim is to provide a strategy that permits the systematic evaluation of higher-order corrections to Eq. (4) in the
limit of small difFusion coefficient. As we shall see, the resulting complete asymptotic expansion of P(x",t"~x', t') is
fully expressed in terms of the previously introduced deterministic trajectory q (t;xi, t2', x „ti ).

Our result can be most neatly stated with the help of some preliminary definitions. Denoting by f (x) a smooth arbi-
trary function, we introduce the following second-order differential operator:
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Q(x, t;x', t')f(x)—:[J(x,t;x', t')] '~ V„[[J(x,t;x', t')]'~ f(x)]—2 ' ' ' f(x)
X). X;

(}Z(x,t;x', t )

Bxi

1 (},, BZ(x, t;x', t')J x, t;x', t'
J(x, t;x', t') (}x,

' ' '
(}x;

f(x) .

Moreover, we define recursively

g„(x,t;x ', t'; t i, . . . , t„)—=Q(x„ t„;x, t )%„)(x„ i, t„ i', x ', t ', t i, . . . , t„ i )
~
„—q (q .~ q.„q ), (7)

with%0—= 1, and

b„(x,t;x', t')= d—t„ . . . dt, X„(x,t;x', t', t„ . . . , t„ ) (n )1),
t'

while it is understood that bo —= 1. Then the full asymptotic expansion of P (x",t"~(x', t') is given by

P(x",t"~x', t')„„=(4 D) ~ [J(x",t";x', t')]'

Xexp[ —[Z(x",t";x', t')+ W (0x",t";x', t')/2D]] g D "b„(x",t";x', t') .
n=0

A study of the very difticult question concerning the con-
vergence of Eq. (9) goes far beyond the scope of the
present paper, although experience with similar problems
[6] suggests that the series in Eq. (9) is in general a diver-
gent asymptotic one.

The proof of Eq. (9)—though not particularly
dificult —would be too long to be reported here. So, we
shall merely sketch its basic steps. Briefly, it makes use of
the following well-known results about the classical dy-
namics defined by Lagrangian Lo(x,x, t): (i)
8'0(x, t;x', t') obeys (in the x, t variables) the Hamilton-
Jacobi equation associated with Lo(x,x, t); (ii)
q(t;x", t";x', t') is just the solution of the first-order
equation

q;(t) = 8'0(x, t;x', t')+ V, (x, t)
8

dt (}x; x =q(t)
(10)

as selected by the initial condition q(t")=x"; (iii) the
Van Vleck determinant J(x, t;x', t') satisfies (in the x, t
variables) the continuity equation associated with Eq.
(10); (iv) as a consequence of Eq. (10), the following equa-
tion holds true [7]:

q, (t„x,t;x', t')+ 8'0(x, t;x', t')+ V (x,t).ai '
BXJ.

b„(x",t';x', t')=0, n ) 1 (12)

X q, (t„x,t;x', t')=0 .a
BX

Now, a natural ansatz for P(x",t"~x', t')„„ is just Eq.
(9), where at this stage the functions b„(x",t";x', t') are
of course unknown (their determination is in fact our
present goal). Obviously, consistency with Eq. (4) implies
bo = 1 and the request that Eq. (9) should obey the (initial
time normalization) condition P (x",t')x', t')„„
=5(x"—x') demands

since Eq. (4) already meets such a condition. We proceed
by inserting Eq. (9)—with x",t" replaced by x, t —into
Eq. (1). Thanks to the above-mentioned (i), (iii), and (iv)
facts, the following transport equations for the unknown
functions b„(x,t;x', t') arise (after various arrangements)

+ Wo(x, t;x', t')+ V;(x, t)
Bt (}x;

b„(x,t;x', t')

=Q(x, t;x', t')b„,(x, t;x', t') . (13)

We thank A. Defendi, P. Hanggi, and I. Guarneri for
useful discussions.

As a matter of fact, Eq. (13) can be solved easily.
Perhaps, the simplest procedure consists in first setting
x =q(t;x", t";x', t') in Eq. (13). Because of Eq. (10), the
left-hand side of the resulting equations is then recog-
nized as the total time derivative of
b„ Iq (t;x",t";x', t'), t;x', t']. Hence, we find by integra-
tion [using Eq. (12)]

tP

b„(x",t";x', t')= f dt Q(x, t;x', t')

Xb i(x i 'x t )~ =&(g ~ g' ~ ' g') (14)

On account of bo = 1 and Eqs. (7), repeated use of Eq. (14)
precisely gives Eq. (8). Q.E.D.

Before closing this paper, a comment is in order. Any
nor malizable function defined over an infinite range
should necessarily vanish at infinity. Now —thanks to
the structure of Eq. (1)—any solution P (x, t) of that
Fokker-Planck equation that vanishes for any t at spatial
infinity together with VP(x, t) remains normalized, if it
was so at some initial time. Applying this result to Eq.
(9), we conclude that P(x",t"~x', t')„„ is indeed nor-
malized to one for any t")t' (since it is at t') provided
the above boundary conditions are fulfilled.

Details about the matter discussed in the present paper
and illustrative examples will be reported elsewhere.
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