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The Kerr-effect response of an assembly of noninteracting dipolar and anisotropically polarizable
spherical molecules is calculated from the Euler-Langevin stochastic differential equations. The solution
is obtained using combinations of the Legendre polynomials and the associated Legendre functions as
angular variables, together with the Hermite polynomials as angular velocity variables. The molecules
are compelled to rotate in three-dimensional space and are acted on by a dc bias field, superimposed on
which is an ac electric field in the same direction. When the response is restricted to second order in the
applied field, the coupling of the fields gives rise to two distinct nonlinear harmonic components of the
complex birefringence, varying at the fundamental (w) and the second harmonic (2w) of the ac field.
Small inertial effects are considered, and their importance is illustrated in numerous dispersion and
Cole-Cole plots for various values of the parameter P measuring the balance between induced and per-
manent dipole moments and a fixed value of the inertial parameter y. Special emphasis is placed on the
phase angles between in-phase and out-of-phase harmonic terms whose values may be multiplied by a
factor of 2 at high frequencies, compared to those obtained in the rotational diffusion limit (Debye’s
model), thus allowing possible practical applications. The transition matrix that is appropriate to dielec-
tric relaxation is also given, since a knowledge of it in the nonlinear case, unlike the aftereffect solution,

is needed for the description of the dynamic Kerr effect.

PACS number(s): 05.40.+j, 78.20.Fm, 77.22.Gm

I. INTRODUCTION

In recent years, considerable efforts have been made in
the study of electro-optical relaxation phenomena, e.g.,
dielectric [1,2], Kerr-effect [3-7], and magnetic relaxa-
tion [8], for the purpose of obtaining satisfactory calcula-
tions of inertial effects on the rotational Brownian motion
of molecules in a liquid. When these effects are ignored,
the relevant equation that governs the evolution of the
orientational distribution function is the Smoluchowski
equation written in configuration space. As is well
known, the rotational diffusion model initially proposed
by Debye [9] leads to a dielectric absorption spectrum
without returning to transparency at high frequencies
and indeed holds only at low angular frequencies such
that <7, !, 7, being the dielectric relaxation time. Thus
a suitable approach to inertial effects requires one to
work in configuration angular velocity space. This may
be made either from the Fokker-Planck-Kramers (FPK)
equation for the probability density function or from an
averaging procedure of the nonlinear Euler-Langevin
equations. Both methods have been previously used to
calculate the aftereffect solution (following the sudden re-
moval of a constant external electric field) for the Kerr
effect relaxation of an assembly of three-dimensional (3D)
needlelike rotators: the first method has been used by
Kalmykov and Quinn [6], who have considered polar and
anisotropically polarizable molecules; using the second
method, Coffey et al. [7] have calculated the Kerr-effect
response of noninteracting dipolar molecules only. Ex-
perimental investigations on the femtosecond optical
Kerr effect in nitrobenzene and chlorobenzene have
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shown the necessity for the inclusion of molecular inertia
for explaining the full temporal profiles [10]. Thus an
inertial theory must be used in view of an adequate
description of the ac Kerr response at very high frequen-
cies. It is this aspect we shall develop in the present pa-
per for spherical molecules (or symmetric tops) having
both permanent and dipole induced moments and sub-
jected to the action of a dc electric field superimposed on
an ac electric field. Moreover, we shall restrict that
response up to terms of the squared field only. Also, we
must bear into mind that the birefringence arising from
the presence of permanent dipole moments is, in essence,
nonlinear in such a way that the aftereffect solution for
the Kerr-effect relaxation, unlike the linear dielectric
response, cannot be used to obtain the ac Kerr-effect
response.

In a previous paper [4], we solved the FPK equation
for the orientation of a molecule rotating in a plane (disk
model) and acted on by a dc bias field superimposed on
an ac field. We then derived analytic expressions for the
steady-state birefringence in the form of complex
birefringence functions leading to harmonic components.
Our objective here is to extend these results for rotation
in three dimensions corresponding to a more realistic
physical model in order to compare them to those ob-
tained with zero inertia in earlier work [11]. However,
we shall not consider as a starting equation the FPK
equation insofar as this equation leads to calculations
that become rapidly much more tedious in 3D than in 2D
space. We shall rather illustrate our procedure by using
the Euler-Langevin stochastic differential equations [1].
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II. THE KERR-EFFECT EQUATION
FOR THE ROTATING SPHERE MODEL

We consider a dielectric liquid consisting of an assem-
bly of rigid noninteracting spherical molecules acted on
by an electric field of the form E(¢)=E_+E,cos(wt),
that is, a constant bias field on which an ac field is super-
imposed in the same direction. Since any collective effect
is neglected, we may state that this assembly pertains to a
closed system undergoing independent rotational
motions. This allows one to reduce the problem to the
orientational motion of an individual molecule, which
may be described from the Euler angles 9(2),¢(¢),9(t) as
shown in Fig. 1. We now assume that this molecule car-
ries a permanent (field-off) dipole moment u situated at
its center. The dipole axis is directed along one diameter
(the Ox, axis) and makes an angle ¢ with the field direc-
tion (OZ) at time . We also assume that the molecule is
anisotropically polarizable so that the total dipole mo-
ment is

m=p+aE, (1)

where a is the two-by-two molecular polarizability ten-
sor. The orientational torque produced by E (¢) is there-
fore given by

T=mXE. (2)

If the geometric axes of the molecule are chosen to be
coincident with those of the polarizability tensor, the
magnitude of the torque T may be expressed as

T=—puE sind—(a,—a,)E’sind cos? , A3)

where o and a, are the principal electric polarizabilities
parallel and perpendicular to the dipole axis (a;=a; and
a,=a;=a,). We then deduce the orientational potential
energy

=—p-E—1EaE,
= —uE cosd—LAaE?*cos’d—1a,E? , )

FIG. 1. Definition of Euler angles and associated angular ve-
locities.
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where Aa=aq;—a, and
a 0 O
a=|0 a O0]. (5)
0 0 ¢

We denote by I the moment of inertia of the spherical
particle about one of its diameters. Hence, following
McConnell [1] and using Eq. (3), the Euler-Langevin
equations that govern the rotational Brownian motion of
the sphere in the presence of the driving field are

dCOl .
I——z—=—I[wz(w3—w2cot19)]—uE(t)smﬁ
—AaE*(t)sind cosd —Ew, +A4(2) , (6a)
dwz
17- =J[w(w;—w,cotd)]—Ew, +A,(2) , (6b)
d0)3
17=—§a)3+k3(t) , (6c)

where @ =(w,,w,,®3) is the angular velocity vector, the
components of which are (see Fig. 1)

0;=7%, o,=@sind, w;=¢cosd+y (7

£ is the rotational friction coefficient experienced by the
molecule in the fluid, so giving rise to a viscous drag
torque —£w, and A(#)=(A;,A,,A3) is a random torque
(white noise) exerted by the thermal bath (environment)
on the molecule. It is generally assumed that the stochas-
tic process associated with the random motion of a
Brownian particle is a white noise so that it has the
properties

‘:lit5=::jztj=o ) (8&)
KO (1 =2kTE8,,8(1) , i,j=1,2,3, (8b)

where §;; is the Kronecker symbol, 8 is the Dirac delta
function, k is the Boltzmann constant, and T is the abso-
lute temperature. The overbars represent the statistical
average over a large number of rotators that all started
with the same angular velocity (sharp initial condition).
In what follows, we shall focus our attention on the first
differential equation [Eq. (6a)] insofar as it is the only one
that is field dependent. As originally suggested by Frood
and Lal [12] and then undertaken by Coffey [3], we
rewrite Eq. (6a) by effecting the changes of variables

(9a)
(9b)

p(t)=uP,(cos?)=pcosd ,
K (t)=p?P,(cos?)=u*(3 cos>8—1)/2 ,

where P, and P, are the first- and second-order Legendre
polynomials, the expected values of which are appropri-
ate to dielectric and Kerr effect relaxation, respectively.
We then obtain

; K(1)
= =——a—, 10
Ht)=w (1) 3(‘“2__p2)o.5p(t) (10a)
. — ;2192
Boymon()= - ROFERO— 190 0

3(“2_P2)0‘5P(t)
so that Eq. (6a) takes the form
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IK (8)+EK (1) +1(48*+ 202K (1) — 3T w,04(u>—p2)*3p(2)
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=1p2(192—w§)+3(y2—pZ)E(t)p(t)+3%(pz—pz)Ez(t)p%t)~3(u2—p2)°~5p(t)xl(t). (11)
7’

This equation provides us with the time evolution of K (t)
and so is characteristic of the Kerr-effect relaxation in
the presence of the driving field E (¢). It agrees with that
of Coffey, who considered the case of polar molecules
only (Aa=0) [3].

At this stage of our investigation, it is interesting to see
what happens in the long time limit, that is, for t much
larger than 7, the friction time equal to I /§. This situa-
tion occurs in the case of vanishingly small inertia. The
components of the angular velocity may therefore be re-
garded as centered Gaussian stochastic variables, so that

(1]

(0/0)a;(0) =8, %L

ij I
Averaging Eq. (11) over configuration angular velocity
space and using Eqgs. (8) and (12), we have

E(K)+6kT(K)
:%,ﬁE(t)((Pl )—(Py)
+3AauEX1)(4(P,) —

exp(—|t|/7p) . (12)

L(P)+2), (13)

where P, and P, denote the Legendre polynomials of or-
der 3 and 4, respectively, arising from the calculations of

p(u?—pH=p3(1—cos’d)cosd=2u’ (P, —P5) , (14a)
pAu*—p?)=u*(cos’d—cos*?)
=#4(%+%P2-—%P4), (14b)

and, according to the theorem of equipartition of energy,

}in%)(l(4{92+2w§)K)=6kT(K) . (14¢)

[

The angular brackets in Eq. (13) denote a dual average,
which may be described as follows (see [13,14]). First, by
interpreting the stochastic Euler-Langevin equation (11)
as an integral equation and applying the Stratonovitch
rule [14], we perform the average (denoted by an overbar)
over a set of rotators that all started with the same (sharp
initial conditions) angular velocity. This procedure
[13,14] allows us to represent the problem of calculating
the desired average [in this case P,(cosd)] as that of solv-
ing a set of deterministic equations governing the time
evolution of the set of sharp starting values (in the FPK
equation approach the procedure generates the set of
differential-recurrence relations governing the time evolu-
tion of the transition probability, which requires a 6 func-
tion, i.e., a sharp initial distribution). Next we suppose
instead of the sharp value a Maxwellian distribution
(thermal equilibrium) for the initial values of the angular
velocities in this set; the average with this distribution is
denoted by ( ), the overbar denoting the first average be-
ing deleted for economy of notation. Dividing across
both sides of Eq. (13) by u?&, we have

%(P2)+6(P2)=§l"(t)(<Pl Y—(Py))

+B(1)(2(P,)—%(P,)+2), (15

where D is the rotational diffusion constant equal to
kT /& and

— B =Aa
(e) kTE(t) , B(1) kTE (2) . (16)
Equation (15) is a differential-recurrence relation that
coincides exactly for n =2 with that obtained by solution
of the Smoluchowski equation, namely [15],

1, _ n(n+1) _
D<P,,)+n(n+1)<P,,> () 2 +1 (<Pn—1> <Pn+1>)
+B() n(n—+1) (P )+(n—l)n(n+l)<P

nin+1)}n+2

2n—1)2n+3) "

n—2>" ))<Pn+2) .

(2n —1)(2n +1) (2n +1)(2n +3

(17

III. MATRIX FORMULATION OF THE DYNAMIC KERR-EFFECT RESPONSE

When inertial effects are taken into account, the angular velocities can no longer be considered as in thermal equilib-
rium. This means that the velocity distribution function does not follow a Maxwell-Boltzmann law. Taking the ensem-
ble average over each term of Eq. (11) and noting that

(=p2)%3p(A(1)) = (> —p2)®3p(1) ) (Ay(1) ) =0 , (18)

this equation becomes
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2,2
(K')+B(K)+2a2<K[H2(01)+%H2(02)+3])——q—;—(PiHl(Qz)Hl(Qﬂ)

2,2 3
= T ()~ B @) + B (P — ) 4382 2B (4 2P~ 4P, (19)

or in terms of the second Legendre polynomial

2
(ﬁ2)+[3(132)+2a2(P2[H2(Ql)+§H2(0.2)+3])—aT(PiHI(QZ)H,(Qﬁ)

a?
2
where

B=1/mp=§/1 , a*=kT/I, o,=aV2Q; (i=1,2,3),

H,(Q,)=4Q2—2 is the Hermite polynomial of order 2
associated with the angular velocities, and P} (u =cosd)
is the associated Legendre function of second order such
that

PP =vV1—a2 2P, (u) .
du

From Eq. (9b), we have

(P, )=—{((3sind cos?)})

=— “‘2/2 <P;H,(Ql>>=—aT‘/§<zl> ., 0)

where H(Q;)=2Q, is the first Hermite polynomial and
hence Eq. (19b) reduces to

J

11av2
2

(Z,)+2B(Z,)=—

(19b)

%(zl Y+B(Z,)
HZ(QI)_HZ(Q2)

=aV2(P,[2H,(Q,)+ H,(Q,)]—

2
—%PéH,(Qz)Hl(Q3))+6a\/§<P2)
_6 sLE _2,54a .,
SVEIa(Pl) Sx/ilaE @21

if we restrict ourselves to the response to second order in
the electric field strength (the products E{P;), E*(P,),
and E 2(P4) would be at least of order E*, E* and E s,
respectively). The next differential equation will be given
by the time evolution of the leading term on the right-
hand side of Eq. (21), namely,

%(22)=(Zz)=%<P2[2H2(Ql)+H2(QZ)]
2
—%P%H,(QZ)HI(Q;,)). 22)

The details of that calculation are given in Appendix A.
We have

(z, )—%((Pz—l)Hl(Ql)Hl(QZ)H1(93)>

—aV2( P H,(Q)Hy(Q)+ Hy(Q)+1H, (2 H,(0)]) ——EE_ (P} —PhHH,(0)))

8Aa
3IaV2

2uE
E%(%Pi—;f’;>H1(91)>+;.ff72<P§H,<nl)>+

5IaVv2

2Aa

2 1
3Im/§E (P}H(Q,)) . (23)

The Kerr-effect response to order E? is the quantity of interest, so that terms such as E (PH,(Q))), E¥PIH,(Q))),
and E>(P}H,(Q,)) may still be neglected. Equation (23) then becomes

11av?2

(Z,)+2B(Z,)=— 5

(Z,)—aV2(PI[H(Q)H,(Q,)+ H;(Q)+1H, () H,(Q,)]

‘/_

+3(P, ~ DH(Q)H (0B, (05)) + T2 2B (z,) (24)
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where

(z;)=(PIH,(Q))), (25a)

(Z3)=(Pi[H(Q)H,(Q,)+H;(Q)+1H,(Q))H,(Q;)]
+3(P,— 1)H (Q)H(Q,)H(Q;)) . (25b)

If we stop the procedure at this level, we obtain the 3 X3
approximation. Indeed, Egs. (20), (21), and (24) may be
gathered in a matrix form as

%<P2>
0 —a/\/i 0 <P2>
%(zﬁ =|6av2 —B aV2||(Z,)
_1la (Z,)
d 0 — —2B 2
dt<22> V2
0
+3Y2 p ) |—2¢p))
S5Ia
3(21)
0
—E‘QA E%(1) |1 (26a)
or 0
. 6V2
[p2() ]=[M,][py(2)]— o1 HEDIC ()]
+2%2 B 01Dy~ 222 aaE 01y
(26b)
where
(P,)
b,(0]= [{Z,) |,
(Z,)
0 —a/V2 0
[M,]= {6aV2 —B av2 |,
0 —1la/V2 —28
(P,)
[p)]= [{Z,) |,
(zZ,)
(26¢)
0
[C)]= |{Py) |,
<21>
0
[Dl(t>]= 0 ,
<21>
0
[Col= |1
0
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[M,] represents the transition matrix, [C,(2)], [D,(#)],
and [C,] may be regarded as driving field matrices. In
the treatment of the aftereffect Kerr response for polar
linear rotators, Coffey et al. [7] argued that the 3X3
truncation was not correct because (Z;) contains not
only a (Z,) term but also a (Z)) term with similar
second-order Hermite polynomials. Thus it was conclud-
ed that it was necessary to calculate { Z5 ) and to include
it before (Z 3 )»80 that the good approximation would be
4X4 and not 3X3. We have verified this (see Appendix
A) and found that, in fact, both 3X3 and 4 X4 approxi-
mations are completely equivalent. This remark is im-
portant insofar as it allows us to carry out the calcula-
tions from a 3 X 3 transition matrix, which is much easier
to manipulate than a 4X4 one.

IV. SOLUTION
BY FOURIER TRANSFORM METHODS

By inspection of Eq. (26a), one sees that the determina-
tion of (P, ), {(Z,), and (Z, ) requires that of (P, ) and
(z,), which are characteristic functions of dielectric re-
laxation. In order to accomplish this, we refer the reader
to Appendix B in which a general treatment of the time
evolution of the expected value of the nth Legendre poly-
nomial for spherical particles is given. Setting n =1 in
Eq. (B7), we have

I(B))+E(B))+I{(8*+adP,)
=I{w,03P} ) +2pE(t){1—P,)
+2AaE*(t){P,—P;) (27a)

or, if we confine ourselves to second order in the electric
field,

2
(B,)+B(P, )+%(P1[H2(Ql)+H2(Qz)+4]>

_a 5
_T<P1H1(02)H1(Q3)>

2 pE() | 2 AaEX1) (P,)

+3 I 5 I

(27b)

where P} =sind. Further, by definition
(P ) (t)={cos?)(¢t),

so that

(28a)

<p1>=—<ssina>=—“—”<plﬂ, @,))

aVE

<21)

and Eq. (27b) becomes

(28b)

di<21>+ﬁ(21>

=2aV2(P,)+-% vl (22>

_2vV2 1/'

2 2
o MEO =S ~——=AaE*t){P,) , (29a)
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where
(z,)=(P[H,(Q))+H,(Q,)]—PH,(Q,)H,(Q3)) .
(29b)
Performing the time derivative of (z, ), we find that
(2,)+2B(z,)=—3aV2(z, ) — % <z3)
4pE(2)
T 3lavs (P3H,(Q)))
__4a_ .,
5lava s )
X{(2P}+3PHH,(Q))) . (30)

The field-dependent terms in Eq. (30) are at least of order
E3 and E° and so they may be ignored. From Egs. (28b),
(29a), and (30), the transition matrix for dielectric relaxa-
tion of spherical molecules is

0 —a/v2 0
M;]= |2av2  —B a/V2], (31)
0 —3av2 -28

so that the set of these differential equations may be writ-
ten as

[Po@)]={iQ[i] = [M,]} " (= $A.[C/(2)]— FAo{[E

T2 DD ]+ A [H][P((Q2~w)]+[H

4651
V3
[B(O]1=IM, D] -2 2pEMIC,],  G2a)
where [p,(¢)] and [p,(#)] are column matrices
(P) (P,)
[pl(t)]= (Zl) , [pl(t)]= <21> (32b)
(Zz) <22)

Taking the Fourier transform of both sides of Eq. (32a)
yields

[P,(Q)]=—{iQ[I]—[M;]} "'[C,]
X (27, 8(Q)+mAo[8(0—Q)+8(0+Q)]} ,

33)
where
E(t)=E.+E,cos(wt) ,
2V2 2V2
)“0 3a a7 MLg , )\, —TI;‘U.EC s (34a)
[Py(@)]= [ " [p,(0)Jexp(—iQe)dt , (34b)

[I] is the unit matrix, and & the Dirac distribution. We
can proceed in a manner similar to that used to get Eq.
(26b) on Fourier transforming this equation, which gives

P(Q—w)]+[E][P(Q+w)]}

IP(Q+w)]}

—[Col{Br2m8(Q) + 1By 8(20 — Q) +8(20+ Q)]+ 280, 7[80— Q) +8(0+2)1}) ,

(35)
where [C(2)] and [D,(€2)] are the Fourier transforms of [C,(z)] and [D,(¢)],
2V2Aa 2V2Aa 2v2
30=WE » Boe="77, E.Eo, Bp=" —=(EX+1E}), (36a)
and [E] and [H] are useful skewed diagonal matrices
000 00O
[E]=1|1 0 0|, [H]=1/0 0 O (36b)
010 010

[Pi(Qtw)] may be evaluated from Eq. (33) by substituting Q into Q+w. Thus the Fourier transform of the Kerr

column matrix is
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[Py(Q)]={iQ[I]—[M,]} " (—2A[EI[P,(Q)]+ ZAJ[EN{i(Q—w)[I]—[M,]} !

X [Col{2mA,8(Q—w)+7Ag[8(20— Q)+ 8(Q)]} + SAJ[EI{i(Q+w)[I]—[M,]} !

X [Col{27A, 8(Q + )+ TAg[ 820+ Q) +8(Q)]}
+2A [H][P(Q)]—3A[H]{i(Q—e)[I]—[M,]} ~

X[Col{27A 8(Q—w)+7Ag[6(20— Q)+ 8(Q) ]} —2A[H]{{(Q+o)[I]—[M,]} ™

X [Col{27A,8(Q+ ) + A [8(20+Q)+5(Q)]}
— [Col{BE2m8(Q) + 1By [8(20— Q) +8(20+ Q)]+ 280, 80— Q) +8(0+Q)]}) . (37)

This equation clearly shows that the Kerr-effect response obtained after inversion into time domain consists of two dis-
tinct harmonic components varying at the fundamental frequency () and twice the circular frequency (2w) of the ac
field. We also note the presence of time-independent terms, which may be divided into two parts: one is frequency in-
dependent and corresponds to terms proportional to A2 and B, while the other is frequency dependent and arises from
the permanent dipole moment of the molecule (terms proportional to A3). The existence of first harmonic terms in
arising from a coupling effect between dc and ac fields demonstrates a nonlinear behavior of the Kerr response. In ad-
dition to this, we must mention that the 2w response resulting from field-off dipolar moments is nonlinear as well when
restricted to second order in E2.

After many algebraic manipulations checked on a computer in order to avoid errors, the inverse Fourier transform
applied to Eq. (37) yields

[P2A1)]=2A[M,] 7 [E][M,] 7' [Col— $A2[M,] "' [H][M,] ' [C,]+B£[M,]7'[Co)
% sze([M2]“‘[E]itw[ll—[M1]}“[Co])— $A3Re([M,] "' [H]{io[I]—[M,]} "'[Co))
+ 2AZRe({i20[1]1—[M,]} "' [El{io[I]—[M,]} " [Colexp(2iwt))
—$AiRe({i20[1]—[M,]} 7'[H ]{tw[I]— [M, ]} ~'[Colexp(2iwt))

—EZO—Re( {i20[1]—[M,]} "'[Cylexp(2iwt))

+2AoA Re({io[I]1—[M,]} "'[E]{iw[I]—[M,;]} "[Cylexpliot))
—$hoA Re({io[I]—[M,]} " [H]{io[1]—[M;]} ~'[Colexplint))
— 2ok Re({io[1]—[M,]} ' [E][M,] ' [Colexplint))
+2A0A Re({iw[I]1—[M,]} "' [H][M,] '[Cylexplint))
—2B4Re({iw[1]—[M,]} "'[Colexplint)) , (38)
where Re stands for the “real part of.” It should be noted that the second and the 12th term in Eq. (38) give zero contri-

butions. Moreover, the only term that is needed in the calculation of [p,(2)] is the first element of that column matrix,
that is (P, )(¢). It is found that

2
(P))(1)=(P,)(0)+ 3 [Anj(w)cos(jwt)+An; (0)sin(jot )] , (39)
j=1
where
E _ g} —20*—20*(8a%+9B?)+ 8a*B?
(P (o)=-L B | 4 LAag, 1 FZC 2 S (40a)
s 15 | kT 15 kT 15 1%a? A —3w?+4a?)+ X —w?+2B*+5a%)

the overbar denotes the time average of E*(t) equal to E2+0.5E}, and the subscript st stands for steady state,

28a ;s AB+oB | 8u’E} (82— 5w?/4)(aA—bB)+3wB(bA+aB)

, (40b)
51 A2+ B? 512 (a?+b%)(A%*+B?)

Anj (@)=
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28a ;2 BB—wd | 8u’E} (B2—502/4)(b A +aB)—3wB(aA—bB)

An’(w)= s 40

2WTT TS R0 2y g s (a>+b2)(A%+B?) (40
b1 | _p* | 4Aa 284'+wB’ | 8 A'(—202+2B%)+ 5088’

Ani(0)= 5 oz "1 (BB o ga o Bk VLAY , (40d)
w1 | _p* | 4Aa 2B’ —wA’ | 8’ B'(—20*+2B*)—50BA’

Ani(w)= 5 3KT2 +— I; E\E, VErS L 512 E\E, A4 B7 (40e)

a,b, A, B, A', B', A’', and B’ are functions of w representing the real and imaginary parts that arise from the calcula-
tion of the determinants of the 3 X 3 matrices in Eq. (38). These are defined by

det{io[I]—[M,]}=a+ib with a=B(—3w’+4a?), b=w(—w’+2B*+5a%)

det{i2o[I1]—[M,]} = A +iB with A=12B(—w*+a?) , B=o(—8w*+4B*+34a?)
det{io[I]—[M,]} = A'+iB’ with A'=38(—w’+4a?), B'=w(—w’+28*+17a?) “h
det{iw[I]—[M,]} det{iw[I]—[M,]} =A'+iB’

with A’ = — 0’ +0* (1382 +2202) — 0%(92a*B2+85a* +4B*)+ 48%*,

B = 0P| 6w*—0*(82a%+128%)+ 128a* +32a°8%] .

With a view toward obtaining expressions for the harmonic components of the birefringence, which may be easier to
apply to experiments, we shall now seek to express Egs. (40a)—(40e) as normalized functions of friction and
birefringence relaxation times 7 =1 /£ and 7=£ /(6kT) and the factor P =kT(Aa/u?).

V. NORMALIZED AMPLITUDES FOR THE BIREFRINGENCE FUNCTIONS

Denoting by X;(») and Y;(w) the real and imaginary parts of the complex birefringence functions normalized to uni-
ty, we have

Anj(w) An/'(w)
X;(0)= y Yil@)=—T—", 42)
Anj(0) An(0)
where An;(0) is the value of Anj(w) at zero frequency,
1 (4—Sw?t%) A+ 120* ;7B
Xy (w)= 2. 22p2
3(P+1) A} +w*B?
6(1—6w*rp 1)+ 0’15 ( — 240 T+ 127 /75 +17) “3a)
a
2(1—60*rpT)? + (w5 /18)( — 240’ TpT+ 127 /75 +17)?
® (4—50’1%)B 7— 1215 4,
Yz((o)=
3(P+1) A} +0*7B?
120%rp7+127/1p+11
+Pry — 5 5 (43b)
2(1—6w*rpr)* + (7% /18)( — 240 7pT+ 127 /75 +17)
1 1 (2—20%%) A +50* ;7B
Xl(w)z =
P+1 |3 AP +o*PBP?
4.3 2
- + —4+(17/6 +4
P+ 1 O " TETr o TET[ Vrg /7] @3}
(2—30?* )+ 0¥ i (— o rpr+27/7p+17/6)?
o 1 (2—‘2(921'%)7'B1—5'1'FA1
P+1 |3 AP +o*PBP
+ et 1 . o’ rpT+47/Tp+11/3 @)
F(2—302 512+ 0?2 — 0¥ rpr+21/mp +17/6)% |
1 HE}

2(0)——k (P+1) (442)
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Ani(0)=—5 =57 (P+1), (44b)

4= =805+t se+ 2L |- ot %+—8§6—i+8—2— +3, (440)

B, =360y —0*TpT 36+1—g3——7;_i +g— 5+—13£TTF , (44d)

A= — oSt P+ ot 13+%TTF — % %+“3—6i+4% +%, (44e)

By =60*rpT—a’TpT 12+i‘3i77p +% 8+13—61T‘i (441)

If in Egs. (43a)—(43d) we let 75 tend to zero, the well-known noninertial harmonic components are recovered [11].
It is also interesting to write down in normalized form the time-independent component of the birefringence in terms
of 75, 7, and P, in order to compare it with that which we have previously derived for zero inertia [11]. Thus we obtain

(Py)4(w)
(PPN )=
27t (P, )(0)
.
E o* Ty +40 Ty 1+%TF +%
1 1 .
TP+1 282 "B 6 . 20 ) r sl )
E2 —3w TFT+§ +0’% |~ TFT+2;+—6‘

where the superscript N stands for normalized. As I —0
or 7z—0, we find that
lim (P, )M w)
TF—>O
i [,
P+1 2E? E}

Ej

2 >
o

2D

1+

(46)

where D is the rotational diffusion coefficient defined by
Einstein’s relation

KT_ 1
E 61’

Equation (46) agrees fully with our Eq. (5) of Ref. [11].
In the case of purely polar molecules (P — o ) under the
influence of a pure ac field (E.=0), Eq. (45) reduces to
the sole frequency-dependent part that never becomes
negative, as can be seen from the denominator of this
equation (imaginary roots only). This result is in agree-
ment with an early work of Rocard [16]. This remark is
important to confirm the validity of the truncation at
n =3 of the transition matrix where it is also meant that
only small inertial effects are taken into account. In or-
der to see their importance on the general behavior of the

D= 47)

Kerr effect response, it is convenient to introduce the di-
mensionless inertial parameter y defined by

_B_ & _17F
yY="75= e
;

a IkT

This relation shows that y measures the balance between
7r and 7. Following Sack [17], convergence of the non-
linear terms in the 3 X3 approximation is ensured provid-
ed ¥ <0.0167. Another physical quantity merits some at-
tention, namely, the phase angle 6;(w) existing between
in-phase and out-of-phase birefringence harmonic com-
ponents and characterizing the dispersive nature of the
dielectric liquid submitted to an ac electric field. We ob-
viously have

(48)

1 Yj(o)

0;(w)=tan™ (49)
This equation must be used carefully insofar as the in-
verse circular function (tan~!) is a multiform function
having an infinite number of determinations. Within the
range 0 <w < + o0, the phase angle is continuous so that
the principal determination (tan~!)p, denoted by the sub-

script P, is not always valid. We then have
(tan"H)=(tan" p+k,m , (50)

where k is an integer. This last comment applies partic-
ularly to computer users where the principal determina-
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tion (tan™!)p is systematically employed and may lead to
erroneous calculations.

VI. NUMERICAL ANALYSIS
OF THE 3 X3 APPROXIMATION
FOR THE SYMMETRIC TOP MODEL

We shall first examine the plots of X; and Y, against @
(dispersion and absorption spectra) for various values of
P and a fixed value of ¥ =0.016. The cases P < —1 and
P> —1 are well differentiated for both harmonic com-
ponents because the normalization factor is proportional
to P+1. All these curves present a resonant behavior
that manifests itself by the existence of a common inter-
section point, which is independent of P, and is not ap-
parent at all for the Y;(w) plots with zero inertia. It is in-
structive to note that the real parts X;() also have such
a common point regardless of y. We have verified that
the frequency related to these points is monotonically de-
creasing as y increases. Moreover, the peaks of Y;(w)
are shifted toward the right of the frequency domain as P
lies between — o and + o, with increasing amplitudes
for —ow <P<—1 and decreasing ones for —1<
P < + oo. For both harmonic components, we see the ap-
pearance of overshoots for the X;(w) plots (X;> 1) in the
interval —3 <P < —1. All these considerations are illus-
trated in Figs. 2-5.

We shall now study the Cole-Cole diagrams, that is,
the variations of Y; against X;. We have chosen the same
P values as those used in our previous paper [11] in order
to compare the results with each other. For P< —1, it is
shown that X ; may take negative values, which is not the
case at zero inertia. So the relevant plots are deformed in
the high-frequency region with ends tending tangentially
to the OX; axis instead of the OY; axis (Figs. 6 and 7).
For —1<P < + o, the situation becomes a little more
intricate. One may, however, overcome this difficulty by
considering some interesting limiting P values. These are
P =—1 for the first harmonic component (H1) and P =0

02 L logo [(w/2) (Hz)]

FIG. 2. Dispersion and absorption plots of the second har-
monic component of the birefringence for P<—1 and
¥ =0.016. R and I stand for the real and imaginary parts of the
complex birefringence. The subscripts 1-4 denote various P
values. 1, P=—1.7;2, P=%;3, P=—Y 4, P=—10.
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02 |

logyo [(@/27) (H2)]

-0.6 L

FIG. 3. Same as Fig. 2 for P> —1. 1, P=—0.4;2, P=0; 3,
P=%;4,P=10.

for the second one (H?2), which correspond to highly po-
lar molecules (Aa=0), as can be seen from Egs.
(43a)-(43d). Regarding H2 in the range —1 <P =0, we
see that the solution of X,(w)=0 consists of two zeros in-
stead of only one at zero inertia, so that the high-
frequency part of Y,(X,) tends to the OX, axis (Fig. 8).
The same trend is observed for H1 in the range
—1<P=<—1/2 (Fig. 9). As P becomes positive for H2
or greater than — 1 for H1, the role of molecular inertia
is characterized by negative values of X;(w) at highest
frequencies. This is not observed in the rotational
diffusion limit (I —0, £ being finite). Generally speaking,
all these curves show similarities to the corresponding
curves of the noninertial response in the very low fre-
quency region; however, they deviate considerably for in-
creasing values of ¥ and w, then exhibiting skewed arcs
(deformed quasiconchoids of circles).

We may complete this description by considering mol-
ecules having induced dipole moments only (x=0), so
that P>+t (Aa>0or <0). In practice, the prevalence
of the electric polarizabilities over the permanent mo-
ments is sufficiently fulfilled for |P|> 10, say. The right-
hand sides of Egs. (43a) and (43c) then reduce to the
second term of the sum in the large square brackets. If
we solve X;(w)=0, namely,

1.6

02T logo [(w/21) (Hz)]

FIG. 4. Dispersion and absorption plots of the first harmonic
component of the birefringence for P < —1 and y=0.016. 1,
P=—1.52,P=—3;3,P=—7;4,P=—15.
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FIG. 5. Same as Fig. 4for P> —1.1,P=—0.7;2, P=—0.5;
3,P=—§;4,P=%; 5, P =10.

r
—2otrr—o’rpr | —4+17- | +6=0
for j=2 (H2) (51a)
and
r
——w4T§.~T—-w2¢FT —4+—1—7-—£- +4=0
6 7
for j=1(H1), (51b)

we find that these two equations have the same real solu-
tion for small y values,

kT

21 2 3 kT
= -

0= or o' =
41T

N W

(51c)

This result shows that the angular velocity for which the
real part of the birefringence is zero lies in the high-
frequency domain. As I —0, we can verify that the plots
Y;(X;) have no intersection points with the OY; axis and
tend tangentially to this axis. Hence Eq. (51c) allows us
to extract the moment of inertia of the highly anisotropic
molecule, I =3kT /(20?). Indeed, it is always possible by

experiment to determine the absolute temperature T to-

1ry, -17

-0.2

FIG. 6. Cole-Cole plots of the second harmonic component
of the birefringence for P < —1 and y=0.016. The numbers
above or below the plots are for various P values.

-0.2
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02 -

FIG. 7. Cole-Cole plots of the first harmonic component of
the birefringence for P<—1 and y=0.016. The numbers
above or below the plots are for various P values.

gether with the angular frequency  for which X;(w)=0.

For other values of P, the analytic solution of X j(w)=0
or Y;(w)=0 does not provide simple expressions for w.
They may be found, however, by numerical methods.
Moreover, the angular frequencies corresponding to
X;(0)=0 or Y;(»)=0 may always be determined experi-
mentally. Thus the best-fit procedure is a suitable tech-
nique to obtain the relaxation times 7 and 7. The mo-
ment of inertia is therefore simply given by I =6kT1T.
In the low-frequency region, inertial effects are unimpor-
tant so that a good estimate of P and 7 may be made by
using our previous results detailed in Ref. [11].

The general features of the Cole-Cole plots in the
high-frequency region entail deep modifications of the
variations of the phase angles in this region. We shall
focus on this aspect in the next section.

VII. STUDY OF THE PLOTS 0;(»)

For high values of ®, the amplitude of the
birefringence response is very small and may be the cause
of inaccurate data if the signal-to-noise ratio is bad. This
difficulty may be overcome if one notes (from the Cole-
Cole plots) that the variations of 6;(w) as & becomes
large can be multiplied up to a factor 2 compared to

02 -

FIG. 8. Same as Fig. 6 for P> —1.



FIG. 9. Same as Fig. 7 for P> —1.

those obtained for ¥ =0, thus allowing a possible practi-
cal application with increased precision.

We shall examine the plots of 0;(w) as functions of @
for various values of P and ¥ =0.016 (Figs. 10 and 11).
We first concentrate on the limiting values of P, P=* oo,
corresponding to nonpolar molecules. The asymptotic
value attained by 6;(w) goes from 7/2 for y =0 to 7 for
¥=0.016. In the case of polar molecules only, P=0
(H2) or P=—1 (H1), we note also the doubling of the
phase angle in the limit of high frequencies. Close to
these values, P =0.1 (H2) or P=—0.49 (H1), we see
that 6;(w) presents a maximum that exceeds slightly =
and then tends to w, exhibiting a value twice that ob-
tained for y =0.1. Near P = — 1, the plots are complete-
ly different according to P=—1" or P=—1". For
P=-0.9, 6;(0)=27 when y=0.016, whereas
0;(0)=37/2 when ¥y =0: here the multiplicative factor
is 4. For P=—1.1, 0;(») passes through a minimum
(negative value) and tends to 7 when y =0.016 instead of
/2 when y =0.

In conclusion, our investigation on the phase angles be-
tween the real and imaginary parts of the complex
birefringence functions leads, when molecular inertia is
included, to values that deviate very clearly from those
obtained at zero inertia in proportion to increasing fre-
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360

270

-90

log;o [(w/2x) (Hz)]

FIG. 10. Plots of the phase angles versus log;o(w/27) for the
second harmonic component of the birefringence. The numbers
above or below the plots are for various P values.

work with a double set of information on parameters
such as P, 7y, and 7 since it is always possible to measure
separately the first and the second harmonic components.

APPENDIX A

Here we shall calculate the transition matrix [M,] up
to the 5X5 approximation in order to see how the set of
differential equations characteristic of the Kerr-effect re-
laxation is constructed. From Eq. (6), we have

Q= —avV2Q,Q;+aV20%cotd—BQ,
A
—IZWE/E sind— IAV %sind cosd+ ———= a\/§ ,
=aV20Q,9;,—aV2Q,Q,cotd—BQ,+ ‘2/_ (A1)
B+ —= As
3 Ia1/§

In view of deriving Eq. (22), it is also convenient to know
the general expressions for symmetric tops of the time

quencies. Moreover, use of coupled fields allows us to derivatives of the Hermite polynomials, namely,
|
(H,(Q))=— “‘2/5 n{H, _(Q)H (Q,)H,(Q;))+ “‘/2 n{H, _(Q)[H,(Q,)+2]cotd)
—nB{(H,(Q,))— 2n—ﬂ——(H,,_1(Q )E sind) —2n——= ‘/— (H,_,(Q,)E%ind cos?) , (A2)
IaV?2 Ia
(H,(Q,))= a‘/in(H (Q)H, _(Q,)H,(Q;))
— “‘2/2 n{H,(Q)[H,(Q,)+2(n —1)H, _,(Q,)]cotd) —nB{H,(Q,)) , (A3)
<H (Q3)=—np(H,(Q,)) , (A4)
([H (Q)H,(Q3)])=—pB(H, _,(Q,)H, (Q3))+(n —p)m/2 (H{(Q)H, _ _1(92)H1(93)Hp(93))
a\/i
—(n —p) (H{(Q)[H, _,(Q,)+2(n—p—1)H, _, _,(Q,)]cotdH,(Q3))
_(n _P)B(Hn—p(QZ)Hp(QS)) . (AS)
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FIG. 11. Same as Fig. 10 for the first harmonic component of
the birefringence.

From these equations and noting that
Plcotd=2P,+1, P} =“—‘2/3(4P2- DH,(Q,),

(A6)
(P,—1)cotd=—1P] ,

Eq. (23) may be readily found. .
The same method may be applied to carry out (Z;)
from Eq. (25b). Insofar as we wish to prove that matrix
truncations of the form 3X3 and 4X4 give similar re-
sults, it is sufficient here to consider the step-off solution,
which allows us to simplify the literal expressions without
obscuring the physics of our problem. This leads to

(Z,)=—3p(Z;)+aV2(Z,)

3a

‘/E(z’ﬁ,

where (Z,) contains Hermite polynomials of fourth or-
der and

<Z'2)=<P2[H2(Ql)+H2(Qz)+H2(93)]) >

+7aV2(Z,) + (A7)

(A8)

is a term formed of second-order Hermite polynomials
such as (Z,). Hence the hierarchy of differential equa-
tions in the 4 X4 approximation is

(B,) 0 —aT‘/E o o |[(p,)
(Z,) 6aVv2 —B av2 0 (zy)
(Z,) 0o - 11aVv?2 28 0 (z,) |
(Z3) 2 (z3)
0, —22v2 0 —28
(A9)

or in matrix notation

[P2()]=[M,][py(8)] .
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In order to manipulate normalized expressions, we may
take the initial condition

(P,)(0)
(Z)(0)
(Z,)(0)
(Z5(0)

(A10)

o O O =

We may therefore calculate the orientational correlation
time defined by

7P =1im f0+we TPy ) (1)dt

s—0

=lin(1)L((P2>(t)) , (A11)

where L denotes “the Laplace transform of.” The solu-
tion of Eq. (A9) may be expressed as
[p(0]=L~'(s[1]-[M,]} ', (A12)

so that the determinants of {s[I]—[M,]} in the 3X3 and
4X 4 approximations are

det{s[I]—[M;]}3x3
=s[(s +B)(s +2B)+ 11a?]+6a*(s +28) ,
det{s[I]—[M,]}4x4
=(s+2B){s[(s +B)(s +2B)+11a*]+6a*(s +28)}
=(s+2B)det{s[I]—[M;,]}3x3 > (A14)

(A13)

respectively. Thus the Laplace transform of the step-off
solution (P, )(1) is

(all )an
det{s[l]——[MZ]}an ’

L{P))],xn= (A15)

where (a,;),x, is the first element of adj{s[I]—
[M,1},.x»- We find that

(@11)3x3=(s +B)(s +2B)+11a?, (A16)
(@1)axa=(s+2B)[(s +B)s +2B)+11a?]
=(s +2B)(au)3x3 . (A17)

From Egs. (A13), (A14), (A16), and (A17), it is clear that

LI{P)()]3x3=L[{Py }(D)]4x4 » (A18)
whence

A= =2 ey 1 (A19)

3IX37 Tax4 12028 B Y-

with 7=£/(6kT)=pB/(6a>).

Thus the next approximation following 3X3 will be
5X35. By inspection of Eq. (A7), the relevant matrix to
this is



av?2
0 : 0 o o
6av?2 -B av?2 0 0
V3
[M2]5X5= 0 ——11‘12_2 _23 0 _‘Cll/i
0 0 TaV2 _2_3%[2_ Yy
from which we have
det{s[I]—[M;]}sxs
=s{(s+B8)(s +2B)[(s +2B)(s +3B)+ La?]
+11a%(s +2B)(s +3B)+ 2a*}
+6a’(s +2B)[ (s +2B)(s +3B)+ La’],  (A21)
(a1))sxs=(s+B)s +2B)[(s +2B)(s +3B)+ La?]
+112%(s+2B)(s +3P)+30% (A22)
whence
T(2) = 1234+97a2ﬁ2+%a4 =T £ —QYZ .
X5 6a?B(128*+31a?) 2 6
(A23)

Equations (A19) and (A23) agree with those obtained by
McConnell [1] who used stochastic rotation operators, al-
lowing one to calculate the normalized autocorrelation
function of the spherical harmonic Y,,,(3(2),¢(2)) ap-
propriate to / =2 processes.

APPENDIX B

In the derivation of Eq. (19b) giving the time evolution
of the second Legendre polynomial, we have started
from the first Euler-Langevin equation [Eq. (6a)] in which
we have changed the variable ¢ into P,(cosf). We think
it interesting to obtain a more general formulation con-
cerning the time evolution of the nth Legendre polynomi-
al. This would be useful to carry out higher-order non-
linear responses (greater than 2).

As currently done, we set as variable ¥ =cosd, so that

u=—>Jdsind=—(1—u?)12y , (B1)
ii = —(#cos?+ I sind)=—[ud?*+(1—u?)'2$]. (B2

Now, if the new variable in Eq. (6a) is P,(cos?)=P,(u),
we must evaluate
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, (A20)
-
dP, 4y . dP
P =" &% __ (1—,2)12 n
(1) du d (1—u?) 0du , (B3)
. ,d*P, 4P,
P, (u)=u 5 tii an
., d? dP
=(1—u2)9? LY -V —u )23
(1—u®) T [ud+(1—u*)"%3] dn
(B4)
From Eq. (B4), we have
(=)= — LA ZUDP ZuP
H=3%1t)=— ,
@y (1—u2)”2P;
where
PI__ n Pu( )__ dzP"
" dw T g
Using the recursion formulas
(1—u?)P)=2uP,—n(n+1)P, ,
(1—u*)P,=n(P,_,—uP,),
2n +1)uP,=(n+1)P, . ,+nP,_,,
Eq. (BS) becomes
N P, —[uP,—n(n+1)P, 19>
He)=— 2\1/2p!
(1—u®)"/°P,
; nin—1) 1 2 52
P, + W(P,,—Pn_z)l_uz‘*'n P, | &
o (1—u2)"2n(P,_,—uP,)
; n(n—1) 1 2 52
P+ |——F(P,—P,_ +n*P, |&
" an—1 Fn TP s nh,
T _1pn(n+1)
(1—u?) 1/2—2—”—+—1—(P,,_1— n+1)
(B6)

Substituting Eq. (B6) into Eq. (6a) yields
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1B, +1 l—_lu—ziz%:i:—l”(P,,—P,,_z)JrnZP,, §Y
+I[ 1 n(n+1) (n—1)n(n+1) N_n(n+1)(n+2)P
1—u2 | 2n—1D2rn+3)"" 2n—1)2n+1)"""2 @2n+1)2n+3) "*?
+gj>,,—Iwzma(1—u2)‘“2115(:-%(1>,,_1—1>,,+,)
=pE 220, P, )
+aaE ) (2nn_(1n)(-;;)+3) " ((;n_—ll);l((zzj-ll)) n=2 (nzﬁznfll)()(zﬁzs)) nt2
—A(1—uh) I (p P, )

(B7)

In particular, Eq. (27a) may be found by setting n =1 in Eq. (B7). Also, the infinite hierarchy of differential-recurrence
relations may be directly established from this equation as 7—0. In this case, the ensemble averages of the last terms
on the left- and right-hand sides of Eq. (B7) are zero, so that Eq. (B7) reduces exactly to Eq. (17).
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