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With reference to systems obeying conservation of flow, for which a probability density function may
be used in their description, it is shown that the interesting relationship established by Nikolov and
Frieden (NF) between entropy increase and Fisher information [Phys. Rev. E 49, 4815 (1994)] holds
only in special cases. We will here (i) exhibit a counterexample (to the hypothetical NF relationship) and
(ii) derive a valid, Fisher s information-related upper bound to entropy increases.

PACS number(s): 05.40.+j

I. INTRODUCTION

Consider a system described by a probability distribu-
tion p(rlt). Particle position r=(x,y, z) is random, and
specified by a conditional probability law p (r

I
t ),

representing the probability of a particle at position r,
conditional upon (at) time t. The broader this is, the
more equally probable are all r values, which entails a
higher degree of disorder for the system at that time [1].

Normalization holds at each time t

I(t)= (dr
p

while the Boltzmann-Shannon entropy is, of course,

H (t) = —J dr p(rl t )lnp(rl t ) .

In Ref. [1]NF expounded the notable idea that the rate
of increase of Shannon's entropy is bounded and that the
concomitant bound is related to Fisher's information.
This bound is given by the following inequality [1]:

J p(rlt)dr=1, —'I() ( ') (8)

p (r
I
t ) lb,und„;„=0,

) I boundaries

nP I boundaries

(4)

and, following Nikolov and Frieden (NF) [1], we assume
that the temporal evolution of the probability distribu-
tion is governed by a continuity equation

8P+V P=O,
at

where P(r, t) is the probability density current, whose ex-
act nature depends upon the application [1]. Only sys-
tems for which the boundary conditions discussed by NF
are here to be studied. The NF-boundary conditions read

where (r ) = fdrp(rlt)r
A corollary to (8) is that, whenever dH/dt ~ 0,

(r') ~0.
dt

The remarkable NF insight of relating dH/dt to I(t)
needs a little additional work, however. We will here
show that Eqs. (8) and (9) do not always hold. A coun-
terexample will first be exhibited and then we shall derive
an inequality relating dH/dt to I(t). Contrary to what
happens with (8), the result of our inequality is always
valid.

II. A COUNTEREXAMPLE

and it is also assumed that, if the boundaries are at
infinity, the quantities p, P, and P lnp tend to zero in a fas-
ter fashion than 1/r [1]. We reiterate that, in what fol-
lows, we shall concern ourselves only with systems for
which the NF-boundary conditions apply.

The Fisher information I is defined as [2,3]

Consider a system for which

P=vp,
so that the continuity equation adopts the appearance

Bp
at

+V (vp)=0 .

(10)
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U; =a;r;; a; EIR; i =1,2, 3 . (12)

We assume that our system is of such a nature that the
velocity field is given by

it is clear that

,'r(—t) &r') &
dt dt

(23)

3 r 2

exp
2 ~ i 0

p(rlt)= 1

(2m) / o,cr 2o 3

with a time dependent dispersion tr(t) such that

do; =a;o.;(t), i =1,2, 3 .
dt

(13)

(14)

It is clear that, for this system, NF-boundary condi-
tions are fulfilled. In the present situation our main
quantities, Shannon's H and Fisher's I, acquire the simple
forms

(The reader interested in the motivation for this example
is referred to the Appendix. )

It is now easy to verify that the continuity equation
(11) admits, in the present circumstances, solutions of the
Gaussian form

and Eq. (8) does not hold within that region.
(b) We assume that ai =a2= 1, and a3= —1. It is seen

that Eq. (20) holds here as well, while from Eq. (18) we
obtain

d (r ) =2(o, +cr2 cr—3), (24)

(d/dt)(r ) is a negative quantity, notwithstanding the
fact that dH/dt)0. Thus, Eqs. (8) and (9) are both
violated.

Admittedly, this is a very simple (and even artificial)
example. However, its mere existence invalidates (8) and
(9) as general assertions.

and it is obvious that, in the region of the (cri, cr2, o3)
space for which

o. +o. &0.

3
H= —,'I 1+in(2m. )]+g lno;, (15)

III. A CORRECT BOUND TO THE ENTROPY INCREASE
and

3 1
2 (16)

From the continuity equation (2) and the definition (7)
of H one easily finds

I
cf. Eq. (21) of I'1]]

dH =
CX) +Q2+ CX3

dt
(17)

where Eqs. (14) and (15) have been used. Further, (14)
leads to

The main ingredients entering Eqs. (8) and (9) read
here

dH f P Vp d
dt v'p v'p

(26)

which will be the starting point of the present considera-
tions. We first remind the reader that if one deals with
two vector fields A(r) and B(r) the following inequalities
ensue:

fdr A B & f drl A Bl

d 2= '
2

dt
(r')=2 g a, o', . (18) & f drl Al IBI

The right-hand side (rhs) of Eq. (8) is then of the form

I 3 1 3

—,'I(t) (r') =—g 2 g a;a';
dt i=1 ~i i=1

(19)

dH
(20)

and we proceed now to show that in the following two in-
stances we can detect violations to either Eq. (8) or Eq.
(9).

(a) We take ai = l, a2=a3=0. From Eqs. (16)—(19) one
immediately ascertains that

f drl AI2 f drlBI' (27)

where the last inequality is that of Schwartz's. Setting
now A =P /V p and B=Vp /v'p, we are immediately led
to

1/2 1/2
dH & f d

P f d
Vp. Vp

dt p p
(28)

which, with the definition (a special case of which was al-
ready used in the counterexample)

and
PV=
p

(29)

,'I(t) „&r')= —1+—,'+
dt 3 o2 03 dH & ( 2) 1/2I1/2

dt
(30)

Now, in that region of the (cr „o2, cr 3) space for which

0) 402 where
(22)

&v')= fdrpv', (31)CT) (0'3

and the expression (6) for Fisher's information, leads to
21
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is, of course, the expectation value of the squared "veloci-
ty fiel" v .

Equation (30) constitutes the desired bound to entropy
increases, expressed in terms of Fisher s information,
which should be used instead of Eq. (8) (that holds only in
special situations).

IV. DISCUSSION

dx =v(x), x, v&R",
dt

can be related to a Liouville equation of the form [4]

Bp
Bt

+V (vp)=0,

(Al)

(A2)

What is the problem with Eq. (8)'? In [1],NF's attempt
to derive an upper bound to entropy increases by evaluat-
ing the rhs of Eq. (26) under the assumption that P =a Vp
[their Eq. (23)], with a a function of t (independent of r).
An equation which looks like (8) (ours) is, in such a
fashion, arrived at. But the quantities I and (d/dt)(, r )
appearing therein do not correspond to the actual proba-
bility distribution p. They correspond, rather, to a ft'cti
tious distribution that satisfies the assumption referred to
above. Thus, the two sides of Eq. (8) end up being ex-
pressed in terms of quantities evaluated with diferent
probability distributions.

However, the main point of NF is a valid (and quite
important) one: a bound to the entropy increase can be
given in terms of Fisher s information Our. equation (30)
constitutes an expression for such a bound and comple-
ments thus the NF's notable finding of Ref. [1].

APPENDIX

Any autonomous system of N ordinary differential
equations

where p (x, t) is, at time t, the density of points in phase
space [4]. This Liouville equation describes the temporal
evolution of an ensemble of systems, distributed in phase
space with density p, each of which evolves as prescribed
by (Al). Obviously, (A2) is a continuity equation of the
form

ap+v p=o,
at

(A3)

where

P=vp . (A4)

Here the velocity field v =P /p depends exclusively
upon the position (in phase space) x and not upon the
time, as in our counterexample. Such a situation can be
encountered, for instance, in [5].

The form (A2) was the one originally employed by
Liouville [4] and is valid for any autonomous system of
ordinary differential equations, while most textbooks deal
with a less general Liouville equation, restricted to Ham-
iltonian systems.
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