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Electron collisionless layers near evaporating plasma-heated anodes
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Electron collisionless (Knudsen) layers near evaporating plasma-heated anodes are analyzed, and a
corresponding general model is formulated. Since the ratio of ion to electron mean free paths is small,
the layer is subdivided into ion continuum and ion collisionless layers. Distribution functions for
charged species are derived and auxiliary non-problem-specific relationships that are required to com-
plete the model are given. The principal results are as follows: (i) the electron distribution function is
little affected by evaporation; f, is essentially identical to the distribution found near nonevaporating
anodes. (ii) Neutral evaporating particles are heated to the plasma heavy particle temperature well
within the electron Knudsen layer. (iii) An analytical expression for the heavy particle temperature dis-
tribution across the electron Knudsen layer is derived.

PACS number(s): 52.40.Hf

Plasma sheaths form near solid and liquid boundaries
that are subjected to plasma heating. Due to an unbal-
anced space charge, relatively large electric fields can ex-
ist within the sheath, significantly influencing the energy
Aux to the anode. Although significant anode evapora-
tion can occur, particularly at high energy densities, eva-
poration effects on the near-anode region have not re-
ceived thorough theoretical attention (see, e.g., [1—7])
and presently lie outside the realm of direct measurement
[8]. This paper's objectives are to first develop a realistic
physical picture of the near-anode region, taking into ac-
count anode vaporization, and then to formulate a self-
consistent mathematical model of the region. The hybrid
model developed is applicable to the electron collisionless
(Knudsen) layer, and in contrast with earlier formulations
[2,4], accounts for heavy particle collisions and energy
transfer within this layer. The model applies to anode
heating by steady, high intensity (current )50 A), atmos-
pheric pressure plasmas, assumes that the anode liquid is
at or near its boiling point, and allows for any number of
singly and multi-ionized species. Thus, the model is
relevant to a number of plasma-based materials process-
ing applications, e.g., gas tungsten arc welding.

In order to develop the model, we first consider the rel-
ative magnitudes of the Debye shielding length kD and
the electron mean free path A, In particular, when
A,, /A, D «1 the sheath can be modeled as a continuum,
whereas a kinetic formulation is required for A,, /A, D ))1.
Preliminary estimates of A,, and A,D follow by considering
an atmospheric argon plasma over the approximate range
of electron temperatures expected near a nonevaporating
anode [2]: 8000 K& T, &12000 K. A,, can be estimated
using X, =C, /v„while AD =(sokT, /noe )'~ In these.
expressions, co is the permittivity constant, k is
Boltzmann's constant, no =n; =n, is the charged particle
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number density within the bulk plasma, T, is the electron
temperature, C, is the mean electron speed, and v,
is the average electron momentum-transfer collision fre-
quency. Considering the last qu anti, ty first,
v, = g+

& C,Q„n, ( m, /m„) ', where Q„ is the energy
averaged cross section for collisions between electrons
and species of type s, n, is the number density of s, m, is
the electron mass, and m„=m, m, /( m, +m, ) is the re-
duced mass. At T, =12000 K, energy averaged cross
sections for collisions between electrons and argon atoms
are on the order of 10 m [9]. Employing the relation
[9] Q„=6mbo(lnA —1.37), where the collision and plas-
ma parameters are given by ho=Ze /(12nkT, ) and
A =

AD /bp we find that energy averaged cross sections
for collisions between Ar+' ions and electrons, Q„, and
between electrons, Q„, are both on the order of 10 ' m .
Thus, since number densities for charged and neutral
species within the bulk plasma are approximately equal
(n, =n, =n„=10 m, as estimated by the Saha equa-
tion), charged particle collisions predominate and
A,, =10 m. Note that this estimate is consistent with
the estimate reported by Dinulescu and Pfender [1]. At
T, =8000 K, n, = 1 X10 m [2], n„=10 m 3 [3], and
electron —neutral species collisions become as prominent
as electron —electron collisions; in this case, k, = 1 X 10
m. Considering the associated Debye lengths, A,~ is on
the order of 10 m when no=10 m and T, =12000
K, and on the order of 10 m when T, =8000 K and
n o

= 1 X 10 m . Thus, since the ratio A,, /A, n is on the
order of 10 over the range of electron temperatures and
densities expected near none vaporating anodes, the
sheath in this case lies well within the electron collision-
less layer.

We can show that our preliminary A,, and A,D estimates
remain valid near evaporating anodes. To prove this, we
first consider the average number of collisions n, &

re-
quired to heat evaporating particles (having temperature
T, ) to the plasma's heavy particle temperature Th. The
quantity n, t, is given by n, t,

=3k ( Th —T, )/(2b ,s)h
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= ( m, +ml, )l(2m, I, ), where 4s,z is the average energy
transferred per elastic collision between heavy and evapo-
rate particles [9]. The corresponding thermalization time
scale is r, I, =n,h/v, z, where v, h =g,hQ, I, nh is the(&) (&)— (&)

momentum. transfer collision frequency and g,& is the rel-
ative speed between heavy and evaporate particles. A
conservative estimate of ~,I, follows by assuming a rela-
tively small cross-section of Q,'z'=10 ' m [9], and by
setting T& =5000 K [1] and nI, (=n;+n„)=1.4X10
m [3]. Approximating g,& as the heavy particle
thermal speed within the plasma ( = 1600 m/s), we obtain
a minimum collision frequency of v,''h'= 2 X 10 s
Since heavy plasma particles and evaporate particles have
masses of the same order of magnitude, n, z =1. Thus,
r,&--1X10 s. (Due to the small mass of electrons,
electron-evaporate energy transfer is much less effective,
with the shortest realistic time scale for energy transfer
being on the order of 10 s.) Since the speed of evapo-
rate particles v&„ is on the order of 10 m/s [10],the max-
imum distance required to heat evaporate to T& (given by
v&„r,& ) is 1 X 10 m. In the case of iron or aluminum al-
loys heated by argon plasmas, cross sections for collisions
between cool Fe or Al atoms and neutral and ionized Ar
and hot neutral and ionized evaporating particles are es-
timated to be on the order of 10 ' m or more [9]. In
this case, the thermalization distance will be at least an
order of magnitude smaller than the above estimate.
Thus, in many practical circumstances, evaporating par-
ticles reach Tz well within the electron collisionless layer.
Since evaporate and native heavy particle masses are of
the same order of magnitude, electron cooling within the
bulk plasma clearly does not occur, proving that T„and
thus A,, and A,D, are unafFected by evaporation.

Considering now the ion mean free path, we find that
over the range 8000 K ~ T, & 12000 K, A, ,- is two orders
of magnitude smaller than A,„in agreement with Dinules-
cu and Pfender [1]. Thus, in analogy with the conditions
determining a collision-dominated electron gas [9], ions
over most of the electron Knudsen layer are collision
dominated and can be considered a continuum (see also
Ref. [4]). We thus model ions within the electron Knud-
sen layer as residing in either a continuum ion layer or in
a very thin collisionless layer abutting the anode (Fig. 1).

Having established a physical picture of the electron
Knudsen layer, we now develop a suitable mathematical
model. %'ithin the collisionless electron and ion layers,
the following form of Boltzmann's equation applies:

w f,„—eZQ f, /m, =0,
where partial derivatives are denoted with a comma, Z is
the net number of charges on particle s, m, is the mass of
s, P =P(x

&
) is the electric potential, and x

&
is the coordi-

nate direction normal to the anode surface. The solution
to (1) is given by

f, (x, w) =a,exp[b, (m, w f /2+eZQ) ]
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FIG. 1. Schematic of the electron Knudsen layer. Ions reside
in a collision-dominated continuum over most of the layer but
are collisionless immediately adjacent to the anode.

the anode, and w& is the corresponding x j component.
The parameters a, and b, in (2) are determined by tak-

ing the first two moments of the distribution function.
Assuming that the anode is perfectly catalytic and that
the electric field at the outer edge of the electron Knud-
sen layer (located at x„,) is small, only electrons with
zero or positive normal velocities (w& ~0) pass into the
electron Knudsen layer. In this case, the minimum abso-
lute normal velocity for incident electrons is
w &,'"(x& ) =+2/(x& )/m, [where, for convenience, we
set P(x &„)=0]. Similarly, within the ion collisionless
layer, the minimum ion velocity w

&
"(x

&
)= —+2eZ(PD —P(x, ) )/m; corresponds to ions that

nearly reach the anode and then accelerate backward.
Here, PD is the potential at the anode.

Using the above limiting electron velocity, we obtain
expressions for a, and b, in the electron distribution
function f„

a, =n,o/D(m, /2mkT, ) ~, b, =. l/(kT, D ), (3)

where D [1+g]', g =s [ 16/n —4+ 32/m [E( 1/m —4)
+4]'~ ] s=m, u&/(kT, ), n,o=n, (x&„), and u& is the
mass average velocity in the x, direction. Neglecting a
small contribution due to electrons, v& can be obtained

Nlusing v& =(p„u„+g; '&p;v&;)/p, where p„and v&, are
the evaporating mass density and normal velocity, p is
the sum of all mass densities, Xl is the number of ionic
species, v&, is ith ionic specie s mean normal velocity, and
p; =n;m;. Since the anode material is at or near its boil-
ing point, evaporating and native neutral number densi-
ties within the near-anode region are at least an order of
magnitude larger than charged particle number densities
[1,3]. Thus, v

&
essentially equals u &„so that

g =0 [m, u, „/( k T, ) ]((1. Thus, the electron distribu-
tion is virtually identical to that found near nonevaporat-
ing anodes [11].

Using the above minimum ion velocity within the ion
collisionless zone leads to two relationships for a; and b, ,

Xexp[ —m, (w2+w3)l(2kT, )], (2)
n =a (2m. k T /b m')'

where T, is the local temperature of s, w2 and w3 are or-
thogonal absolute particle velocities in planes parallel to and

X exp( b; Zeg, )erfc[Qb; Z—e(PD —P, ) ]
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a =n (m;/2rrkT;) b =1/kT (6)

Although the problem of describing the electron
Knudsen layer in the presence of evaporation is, in prin-
ciple, complete, auxiliary relationships are needed to
close the problem. In particular, relationships describing
P=P(x, ), n, =n, (x, ), n; =n;(x, ), T, = T;(x, ),
u i

= v i (x i ) PD Pp and T, are needed. Maintaining a
non-problem-specific formulation, we briefly outline these
relationships. The potential P(x, ) follows from the
Gauss law

g 2p
n; —n, (7)

8x ) o

where thermionic emission has been neglected. Note that
based on Freund's data [12] (which shows negligible elec-
tron impact ionization of singly ionized Fe, Al, Cu, Si,
Mg, Pb, and Ga at T, (5 eV), the density of multi-
ionized anode particles is typically small. The number
density of charged species is obtained by integrating cor-
responding distribution functions over the velocity ranges
determined above. Thus, for electrons

n, (x, )=n„/2exp(eg/kT, D )erfc(+eglkT, D ), (8)

while within the ion collisionless layer

n; (x i ) =a,.(2m k T; /b; m; )
'~ exp( b; Ze P)—

Xerfc[+b;Ze(PD —P)] .

Within the continuum ion layer, the Boltzmann relation
results are

n; (x i ) =n, exp( eglkT, ) . — (10)

(Note that by setting D=1 in (8), corresponding to zero
evaporation, we recover the expression obtained by Sut-
ton and Sherman [11].)

The ion temperature distribution within the ion contin-
uum layer follows from the heavy particle energy equa-
tion [13]

( —', )k (ni, Tq, v, ) „=(Ki,Ti, )

where we have assumed that T; (x, ) = Ti, (x, ) and that
derivatives in the x& direction are dominant. In this
equation, K& is the heavy particle thermal conductivity

Nl[13] and n& = g,. 'i n;+n„. Note that there is no col-

(kT p
—1!b;—m; v i )erfc[Qb; Ze(PD —Pp) ]/2

+exp[ b—
, Ze(gv —Pp)](m, /b, m )'~

X [[Ze(gr~ —Pp)/m;]' +&2v, ] =0,
where x&;o is the nominal boundary of the ion collision-
less zone, and where n;, =n; (x i;, ) and T;, = T; (x i;, ).

Within the ion continuum zone, we assume that ions
are in equilibrium with respect to the mass average veloc-
ity v& ~ T1iis assumption requires that mean ion velocities
equal v„a condition that should be approached due to
the short mean free path for momentum transfer between
heavy species. The corresponding displaced Maxwellian
distributions are described by

+c,exp [ —g(x, )], (12)

where g(x, )=J [ 5k ni( x, ) ui( x, )/[2K&( x, ))], and
where co and c, are determined by problem-specific con-
ditions at the boundaries to the ion continuum zone.
With regard to this last point, due to the short mean free
path for heavy species, one can set T& equal to the bulk
heavy particle temperature at the outer boundary and to
the anode temperature T, at the inner boundary. To
complete evaluation of (12), the heavy particle number
density ni, ( =n, + g, '

i n, ) can be determined using ex-
pressions given above and by an appropriate equation of
state for the evaporate (e.g., the ideal gas law). In addi-
tion, v

&
= U &„which can be evaluated using

uiu =KT, ' exp( B/T, ),—where K and B are inaterial-
specific parameters [15]. Finally, the heavy particle
thermal conductivity can be determined via the
Chapman-Enskog approach [16].

The overall potential increase PD is obtained by calcu-
lating the total current density within the ion collisionless
zone. In the case where two singly ionized species are
present (i.e., ionized plasma gas and ionized anode
atoms), the result is

Jp/e =a, (2mkT, /b, m, )

2—g a (2irkT;/b m )exp( bjePD) —.
j=1

(13)

Notice that multi-ionized species can be readily accom-
modated in the calculation. The fact that every integral
is independent of x& provides a useful check on the con-
sistency of the distribution function derivations given
above. The boundary of the ion collisionless zone,
x, =x„„and the corresponding potential, Pp

=P(x i ),
are obtained in the course of solving the Gauss equation
[2]. Similarly, the nominal boundary to the electron
Knudsen layer, x „„determined by solving the bulk plas-
ma problem, corresponds to the location where spatial
variations in n, are comparable to the local magnitude of
n, [2]. Note that electric potential variations over dis-
tances greater than X, can be readily accommodated by
replacing P in all previous expressions with P —P(x „,)

[where P(x „,) is determined when x „, is determined].
The remaining parameters in the problem,
n, ', =n (xi=xi„), n„=n, (xi=xi„), T,, =T&(xi
=x„,), T, = T, (x, =x „,), and J„are problem specific
and are determined by conditions outside the electron
Knudsen layer. Based on the preceding discussion, T;,
can in many cases be taken as T, .
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lisional energy transfer from electrons to ions. Also note
that condensation of evaporate at the anode occurs; a
method for estimating the condensate mass Aux is given
by Anisimov [14]. The solution to (11) reads

Ti, =cp exp[ —g(x i ) ]Jexp [g(x i ) ]Ki, '(x, )dx,
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