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Maximum entropy, pseudoinverse techniques, and time series predictions
with layered networks
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A maximum-entropy-based method for the training of layered networks is presented. Our tech-
nique guarantees an errorless learning process for learnable mappings with just a minimum number
of examples. The network is proposed for nonlinear systems prediction. Some numerical examples
for chaotic time series are presented. The method can be considered to yield an alternative tool for
feed-forward training.
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I. INTRODUCTION

During recent years a great deal of effort has been in-
vested in the development of training algorithms for feed-
forward neural networks [1,2]. Neural networks have ex-
hibited remarkable properties for the storage of patterns
and for data processing, having found use in a wide vari-
ety of environments. Of particular interest is the applica-
tion of statistical mechanics techniques in the analysis of
the process of learning a rule (on the basis of selected ex-
amples), the case of a student perceptron (SP) trained by
a teacher perceptron (TP) having been studied in great
detail. The associated learning curves have been calcu-
lated on the basis of several (distinct) training schemes
[8-51

Most trained networks are able to predict, i.e., to pro-
duce outputs corresponding to new inputs (that are not
included in the training set) on the basis of an adequately
selected working hypothesis. This hypothesis is, of course,
represented by a set of synaptic weights lV; that, when
appropriately implemented, yields good results for the
examples of the training set. Much effort has conse-
quently been devoted to the task of developing suitable
training algorithms that are able to adjust the synaptic
weights so as to enable the network to infer the correct
answer when presented with a new input. Of course,
one wishes for algorithms that accomplish such a goal
within a reasonable (CPU) time and with a not too large
number of examples. The most popular learning meth-
ods involve minimization of an energy (or cost) function
that depends upon the set of training patterns. Diverse
approaches to this end include simulated annealing [6],
genetic algorithms [7], and gradient methods [1,8,9]. A
cost function is minimized by recourse to an algorithm
that incorporates a degree of randomness, as represented
by a "temperature" or by "mutations. " In order to im-
prove upon the learning process, diverse energy forms
have been proposed [10].

In the present effort we also wish to introduce improve-
ments upon the learning process. However, we shall con-
centrate our efforts on the selection of the working hy-
pothesis. This is to be accomplished according to Oc-
cam's razor, i.e., with the miminum number of assump-
tions compatible with the available input. This is conve-
niently done by recourse to the information theory (IT)
approach to statistical mechanics, as embedded in the
maximum entropy principle [ll—13]. A learning protocol
will be developed in this fashion and applied to simple
layered networks.

II. THE MAXIMUM ENTROPY
PSEUDOINVERSE TRAINING TECHNIQUE

Consider a SP with N input units (, connected to an
output unit ( whose state is determined according to ( =
g (6), where g (x) is the transfer function, and h = ( W'

is the membrane potential, of the output neuron. For
each set of weights W the SP maps ( on (. We train the
SP with a set of P inputs (" with p= 1, ..., P and the
corresponding appropriate outputs (o ((), as provided by
a TP with weights Wo. Of course, the SP and the TP
share an identical architecture. It is obvious that

g (go") = (" W,

where (" is an input-patterns matrix and g (go) is a
vector of components (g ((o), g

~ (Q), ..., g
~ ((o+) ),

given by the output patterns, which constitute our avail-
able information. The idea is now to introduce a maxi-
mum entropy approach [11—13] in order to determine the
weights W on the basis of an incompLete information sup-
ply [in the present situation, rank ((")( N, in general].
In order to infer weights consistent with Eq. (1) we shall
assume that each set of weights W is realized with proba
bility P(W) (our essential IT ingredient). In other words,
we introduce a (normalized) probability distribution over
the possible sets V7. Of course,

P(W)dW = 1, (2)
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are defined in the fashion

(W, ) = P(W)W;dW,

the constraints (1) allow for the elimination of the La-
grange multipliers A. One can thus express the (W, ) solely
in terms of the training examples

and a relative entropy is, in the usual way [ll—13], asso-
ciated with the probability distribution, namely,

(W) = IMp [("]g '(Cp),

S= — PW ln d%,
(Pp(W) ) (4)

where Pp (W) is an appropriately chosen a priori distri-
bution [11—13]. This entropy is to be maximized, subject
to the constraints (1). Our central idea is that we rein-
terpret these equations according to

g '(Cp) =(" (W)

where explicit account is taken of the fact that we are
assumed to be dealing with many sets of weights, each
one being realized with a given probability.

As customary [12], one is then led to freely maximizing
the quantity

- —1
where IMp [("]= ((") (~ ((~) is the Moore-Penrose

pseudoinverse. The most probable configuration of
weights [compatible with the constraints (1)] is thus given
in terms of a pseudoinverse matrix (that of (").This re-
sult is intimately related to the Bos et al. [14] learning
rule. Notice that with the choice (11) the training er-
ror vanishes. Additionally, the set of "inverse" examples

(—(~, —(p ((")) possesses an associated distribution iden-
tical to that given by (7). Consequently, —(p((") is that
ouput produced by the network for the input —(".

III. TIME SERIES APPLICATIONS

S' = — P(W)ln ~ +aP W(P(W) &

)
( l' (

+ (" AWP W dW,
)

where a and A are Lagrange multipliers associated, re-
spectively, with the normalization condition (2) and with
the constraints (1). Variation of S' with respect to P (W)
immediately gives

P (W) = exp [
—(1 + n)] exp (—F W) Pp (W), (7)

We aim to apply the above discussed methodology to
time series predictions, with reference to chaotic sys-
tems. Good predictions of such a kind find application
in diverse areas, specially in connection with signal pro-
cessing. It goes without saying that chaotic systems are
abundant and provide an excellent test for the predictive
ability of neural networks. Of course, a deterministic al-
gorithm for chaotic time series would not be lacking for
interested users.

For our present purposes we make use of the standard
trick of placing high order monomials in the inputs of a
projector [15]. With these monomials as inputs, the state
of the output neuron is given by

where F = ((~) A. As in statistical mechanics, one con-
veniently defines the partition function Z (=g 0+) m(, +)

dW exp (—F W) Pp.

E 2)'(2a n) exp
~

(a2F2

so that with (3) and the distribution (7) one has, for the
(W, ), the convenient expression

(W;) = —2a 1;. (10)

Notice that the present (pseudoinverse) approach entirely
bypasses consideration of the set of equations (1), which
constitutes its main virtue. Both the definition of j. and

A choice is now to be made concerning the a pri-
ori probability distribution Pp [11—13]. Here we se-
lect a Gaussian Po, i.e. , choose it to be proportional to
exp (—2', ), with a (formally) free parameter a. The
results, however, do not depend upon the value of a.

It is now an easy matter to explicitly evaluate the par-
tition function. We find

+).~*,IM, G+.

restricting our analysis, for simplicity s sake, to the first
orders in (12), this being a good approximation in most
instances. With the threshold 0 and the weights w, , m, ~,
and m, ~A, we build up that particular vector W which sat-
isfies the relation g ((f ) = 8" W, where a vector h has
been introduced whose components are zero order, first
order, second order, etc. , terms. The maximum entropy
algorithm prescribes that the most probable configura-
tion of weights compatible with the relevant constraints
is given by

W = IMp [~"] g
'

(Cp ) .

This is the maximum entropy recipe for the learning pro-
cess to be invoked in the applications to be discussed
here. The concomitant transfer function will be chosen
to be of the linear form g (x) = x.

Our task is now that of starting with some data
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homogeneity amplitude and uD its frequency. In the
present instance we take q = 3.5, g = 1.5, and w~ = 2/3.
These values account for an attractor dimensionality of
the order of 2.38, so that it suffices to consider [see
Eq. (15)] m = 4.

Our diff'erential equation (16) is tackled, as usual,
by recourse to the Runge-Kutta method in order
to acquire the data needed for use in the train-
ing process. The training data are given by
((y„,y„~,y„2,y„s)",y„"+ ), with p = 1, . . . , P. For
7 = 2, and after a training session of a few seconds, our
maximum entropy predictions (P = 60) are character-
ized by a mean square error (200 points) of 5 x 10 s. For
the back-propagation network we need several hours of
training, with 500 examples, to obtain a mean square er-
ror of about 5.3x 10 . Figures 2 and 3 display maximum
entropy predictions for different w values. As expected,
the larger w, the worse the performance.

IV. DISCUSSIONS AND CONCLUSIONS

A general method for time series prediction has been
presented that makes use of a feed.-forward network
trained with a maximum entropy algorithm. Very good
results are obtained. A remarkable fact is to be empha-
sized: the rather Smal/ quantity of examples needed for

the training process. This is certainly a notable facet of
our approach. By suitably increasing the number of com-
ponents of the input vector [the matrix of the P inputs
(" is associated, via the matrix b~ (see above), with the
corresponding outputs (o ] the input patterns are able to
"capture" the essential correlations of the system in a
rather natural fashion. This allows for the elimination of
intermediate layers of more complex architectures, and
thus reduces the training times. Additionally, alterna-
tive approaches [17,18] suffer from very slow convergence
rates if the number of examples is small enough.

Summing up, we have considered in this efFort the
learning of a rule with a neural network of continuous
units and have been able to show that a pseudoinverse
type of solution can be derived Rom the maximum en-
tropy principle. We have illustrated our considerations
with reference to two examples, where it becomes appar-
ent that pseudoinverse learning is a topic worth studying.
Thus a maximum entropy approach to the learning pro-
cess in a neural network has been added to the reservoir
of learning techniques that seems to ofFer promising per-
spectives.
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