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Phase transitions in finite-thickness nematic liquid-crystal films:
Planar anchoring
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Phase transitions in finite-thickness nematogenic materials bounded by two planar surfaces and
characterized by identical surface interactions linearly proportional to the order parameter have
been studied theoretically by solving the coupled nonlinear Euler-Lagrange equations. The surface
interaction was assumed to favor molecular orientation in the surface plane with no rubbed or
preferred direction. The related problem of a semi-infinite film having a single surface has been
studied previously at temperatures above the bulk nematic-isotropic phase transition point 7~1.
For that geometry and physically relevant elastic constants, it was shown that, in addition to the
bulk transition, there is a second transition at higher temperatures between biaxial and uniaxial
ordering of the surface layer when the strength of the surface coupling is not too weak. It is shown
here that this double phase transition reduces to a single one for suKciently thin layers.

PACS number(s): 61.30.Gd, 64.70.Md, 68.45.—v

Theoretical studies of nematic liquid-crystal Alms have
been of long standing interest due to their applications
in displays [1] in addition to their role as model systems
for the study of phase transitions and critical phenom-
ena [2—9]. A surface may strongly affect the degree and
direction of nematic order of the region it bounds, re-
sulting in deviations &om the equilibrium order of an
unbounded (infinite) sample domain. For example, at
temperatures above the bulk nematic-isotropic transi-
tion (Tel), there is local ordering of the liquid-crystal
molecules in the vicinity of an interface due to interac-
tion potentials which transmit the aligning action of the
substrate into the bulk. The orientational ordering near
such an interface is restricted to a boundary layer as the
magnitude of the order decays with distance &om the
surface.

Several authors have investigated the e8'ects of con-
finement of nematic liquid crystals (NLC's) for difFer-
ent cell geometries and surface potentials [4,10—13]. In
particular, it was shown by Sheng [4], who used the
Landau —de Gennes theory to treat the case of a con-
6ned liquid-crystal sample between two parallel plates
with homeotropic boundary conditions and a surface in-
teraction potential linear in the order parameter, that
the bulk-transition temperature shifts upward as the film
thickness is reduced. Also, if the liquid-crystal cell thick-
ness is coxnparable with or thinner than the boundary
layer thickness, the bulk transition between the isotropic
and nematic phases disappears. Similar modifications of
the phase diagram are expected to occur when the sur-
face aligning mechanism is other than homeotropic.

The purpose of this work is to study, above T~l, the
efFect of 6nite thickness on the phase diagram of NLC's
when the surface interaction favors planar anchoring, i.e.,
molecular orientation parallel to the surface but without
any preferred direction in this plane. A surface of this

type may be modeled by a surface potential that is linear
or quadratic in the nematic order parameter by appropri-
ately choosing the parameters appearing in the potential.
In earlier work, phase transitions in semi-in6nite nemato-
genic materials bounded by a single flat surface and char-
acterized by a preferential planar surface interaction lin-
ear [14] and/or quadratic [15,16] in the order parameter
were studied theoretically at temperatures above T~y. It
was found, for physically relevant elastic constants, that
there is at most one additional phase transition above
and distinct &om the bulk phase transition, depending
upon the strength of the surface coupling (see Fig. 1).
For weak surface coupling, no surface phase transition
occurs and a uniaxial surface layer having the director
normal to the surface remains the stable state until T~l
is reached. However, as the linear surface interaction cou-
pling is increased, there is a prewetting transition &om a
uniaxially ordered surface layer to a biaxially ordered one
as the temperature is reduced towards T~l. On further
increasing the surface coupling, this transition boundary
becomes second order via a tricritical point. Eventually,
the second-order transition boundary becomes asymptot-
ically independent of the surface coupling. It was also
shown that the mean-field continuous transition bound-
ary is suppressed due to Berezinskii-Kosterlitz- Thouless
(BKT) fiuctuations.

Here we consider the case of a NLC bounded by two
planar surfaces. We shall show, for the case in which the
surface interactions are identical and linear in the order
parameter, that the two successive phase transitions oc-
curring with decreasing temperature in the semi-infinite
case (first between two surface states, then to the bulk
ordered state) reduce to a single one when the layer is
suKciently thin. Typical phase diagrams, showing the
efFects of 61m thickness on the bulk phase transition as
well as the boundary layer phase transition, will be given.
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isotropic transition occurs at t = 1. The parameter ( is
the correlation length.

The scaled nematic order parameter p, ;~ can be written
in its principal axis system as a function of two scalar
functions p(g) and q(() as

( p+ 'rI

pv(&) =
6 ( O

o o )—p —g 0
O 2p)

(4)

where ( = z/(. Substituting Eq. (4) into Eq. (2) us-

ing Eq. (3), the corresponding reduced bulk f'ree energy
density becomes
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FIG. 1. Phhase diagram for L = oo. Shown is the continu-
ous transition boundary between the uniaxial and the biax-
ial surface layer obtained from the Landau formulation (solid
line). Also shown is the BKT boundary (dashed line) between
the two layers. The bulk transition occurs at t = 1. Inset
represents an enlargement of the lower interaction strength

0

region of the graph. Shown is the mean-field tricritical point
(filled triangle) and the BKT tricritical point (open triangle).
The transition from the uniaxial to the biaxial surface region
changes from second order to first order via the tricritical
point with decreasing surface coupling (v). The prewetting

ace ay-6rst order transition boundary between the two surface la-
ers ends on the bulk transition line (filled square).
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where primes denote differentiation with respect to (. We
shall concentrate on the case p = 1 since the ratios be-
tween the bend and the twist elastic constants (Kss/%22)
is typically of order 1—2 and Landau —de Gennes theory
predicts Kss/%22 ——1 + p/2.

To obtain the total scaled free energy per unit area,
the expression for the total bulk &ee energy needs to be
supplemented by a surface contribution F, which, to low-
est order in the reduced nematic order parameter, may
be written as

1
e;, =e;, ——Tr(e )b,,D D

and the bulk &ee energy density as [17)
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ere e,.z q = oIe;~/cIzg and a sum is implied over repeated
indices. The coefficient a is regarded as (linearly) temper-
ature dependent whereas the other coefBcienten s ((~a p, cq,
and c2) are taken to be constant in the temperature re-
gion of interest.

The expression for gb can be simplified by setting [18]

—1Pij —8 &ij) s = p/~6p,
1t = (3p/P )a, —

f = (36&'/P')a, 4&' = (»/p') ci p = c2/ci. (3)

Here t rs the reduced temperature and the bulk nematic-

We consider a NLC cell of width 2L' and large
cross-section area A sandwiched between two identically
treated substrates situated at z = +I', where z is the co-
ordinate normal to the surfaces. Within the Landau —de
Gennes formalism, the nematic tensor order parameter
may be expressed in terms of the dielectric tensor eD(r)
as [17]

nsor e, r

where L = L'/(. Here v is proportional to the strength of
the surface interaction; planar boundary conditions are
obtained by requiring that v & 0. Note that for p = 1 )

v = 1.0 corresponds to a surface interaction stren th f
2

0
1.5 ergs/cm and the scaled film thickness L = 1 cor-
responds to a real film thickness of approximately 79 A.
The total scaled free energy per unit area in the x-y plane
is thus given by

p'( L) = 4v/~, 6
~

—1 + 3)
p (L) = —4v/y 6

i
1+ —p i,

2 l
3 J

q'( I,) =o;—
g'(L) = O.

Numerical results for the thermodynamic boundaries
separating the difFerent states in the surface coupling (v)-
temperature (t) phase space were obtained by employing
a computer software code cGLNEW [14,19]. Transitions
&om the biaxial to the uniaxial surface layer above T~l

I"(&)O' = I"I[V]/( + +.[p]/( = d( f + &..
—L

The functions p(() and I7(g) are determined by min-
imizing F for any particular set of parameters. For-
mally, this is done by solving the coupled nonlinear Euler-
Lagrange equations (see [14]) obtained from the Landau-
de Gennes free energy density expression Eq. (5) subject
to the boundary conditions
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can be either second or first order, depending upon the
strength of surface coupling [14]. On the other hand,
transitions &om the bulk state to either the biaxial or the
uniaxial surface layer are more subtle. For semi-infinite
thickness, this transition occurs at t = 1 but is 6rst or-
der for the bulk to uniaxial case and second order for
the bulk to biaxial transition. This is explained by the
fact that the uniaxial surface layer only partially wets
the surface while the biaxial layer wets the surface com-
pletely. However for finite thickness, both uniaxial and
biaxial surface layers only partially wet the surface and
the transition &om the bulk state is always first order.

The results of our calculations are summarized graph-
ically in Figs. 1—3. These are phase diagrams in the
interaction strength (v) —reduced temperature (t) plane
for diff'erent values of film thickness (I = oo, 4.8, and
1, respectively). The insets in these figures are the cor-
responding enlargements of the low interaction-strength
regions of these graphs. For a semi-infinite film, the bulk
phase transition occurs at TNI for all surface couplings
[14]. This transition shifts to higher temperatures as the
61m thickness is reduced because of the ordering field ex-
erted by the bounding walls. Although this field is short-
range and is exerted directly only on those molecules ad-
jacent to the walls, intermolecular interactions cause it
to infIuence the bulk, particularly when the film thick-
ness is small and comparable with the correlation length

In contrast to the bulk transition, the surface layer
transition Rom the biaxial surface state to the uniaxial
surface state has a smaller shift to only slightly higher
temperatures since the surface behavior of the con6ned
NLC depends only very weakly on the 61m thickness.
Consequently, the point of intersection of the prewetting
transition line and the bulk NI transition line shifts to
higher surface couplings as well as to higher tempera-
tures.

On further reducing the film thickness it is found that,
at L = 4.85, the bulk transition is significantly modified.
At this critical 61m thickness, the bulk transition disap-
pears at v = 15.3. Below L = 4.85 (see Fig. 2), the bulk
transition boundary splits into two branches terminating
in critical points. Thus, there is an intermediate range
of surface couplings for which there is no bulk transition
but only a continuous surface transition. The two criti-
cal points move apart as L is further reduced, increasing
the range of surface couplings for which only a continuous
phase transition occurs. At L = 4.55 the upper branch of
the bulk transition disappears entirely. The lower branch
of the bulk transition continues to shrink as L reduces
further. Eventually, it merges with the prewetting tran-
sition line at L = 3.38. Below L = 3.38 there is only
one transition, Rom the uniaxially ordered surface layer
to the bulk (see Fig. 3). This transition is first order for
weak surface couplings and becomes second order via a
tricritical point as the surface coupling is increased. An
interesting point to note here is that even for extremely
thin films of the NLC, the surface phase transition never
disappears for any surface coupling. This feature can be
easily understood since the surface phase transition here
occurs between two surface states having diferent sym-
metries. While such transitions may be of either first or
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FIG. 2. Phase diagram for L = 4.8. Shown are the con-
tinuous transition boundaries obtained from Landau theory
and BKT formulation as in Fig. 1. Also shown are the two
branches of the bulk transition boundary (dotted-dashed line)
ending in critical points (filled circles). Inset represents an en-
largement of the lower interaction strength region of the graph
showing the mean-field and BKT tricritical points as well as
the point of intersection of the prewetting line with the bulk
transition line (filled square) which moves to higher tempera-
tures as well as higher surface couplings with decreasing film
thickness.

second order, there must always be a transition of some
sort. The line of transitions cannot terminate in a critical
point.

Finally, the continuous transition boundary deter-
mined &om Landau theory is not the true thermody-
namic boundary since the mean-6eld solution neglects
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FIG. 3. Phase diagram for L = 1. Shown is the single tran-
sition boundary from the uniaxial surface layer to the bulk ob-
tained from Landau theory and BKT formalism, respectively.
Inset shows an enlargement of the lower interaction strength
region of the graph. The transition from the uniaxial surface
region to the bulk changes from second order to first order
via a tricritical point with decreasing surface coupling.
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fluctuations. The order in the surface biaxial layer has
the same symmetry as the two-dimensional XY model.
The continuous phase transition, which describes sym-
metry breaking within the bounding plane, is there-
fore in principle described by the Berezinskii-Kosterlitz-
Thouless, (BKT) mechanism [20,21]. The BKT Huctua-
tions lead to a suppression of the mean-field solution and
result in a shift of the continuous transition boundary
to lower temperatures [14]. It is found that a greater
suppression of the mean-field boundary occurs for very
thin films. The dashed lines in the phase diagrams (1)—
(3) represent the BKT boundaries. The BKT phase
boundary can possibly be detected experimentally by
evanescent-wave ellipsometry [22] or by inelastic light
scattering [15].

In summary, we have calculated the thermodynamic
phase diagram for a finite thickness film of NLC above
its bulk transition temperature for the case of planar
boundary conditions and an interaction potential that
is linear in the order parameter. The Euler-Lagrange

equations have been solved exactly by numerical meth-
ods. It is found that while the bulk transition shifts to
higher temperatures as the film thickness is reduced, the
surface layer transition is fairly robust to changes in film
thickness. There is also a critical thickness for all sur-
face couplings at which the bulk transition disappears.
Consequently, for su%ciently thin samples of nematic,
the double phase transition obtained for the semi-infinite
case reduces to a single one. For weak surface coupling,
there is a single first-order phase transition Rom a uni-
axially ordered surface layer to a biaxially ordered one
as the temperature is reduced. This transition becomes
second order via a tricritical point as the surface coupling
is increased.
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