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Relaxation, noise-induced transitions, and stochastic resonance driven
by non-Markovian dichotomic noise
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Under the inBuence of non-Markovian dichotomic noise, the linear process behaves nonlinearly:
relaxation becomes nonmonotonic, and the process exhibits a series of transient noise-induced tran-
sitions. The latter give rise to stochastic resonance when an external oscillating field is applied.
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It is well known that the deterministic kinetics can be
drastically changed by the influence of stochastic forces.
In some cases the presence of noise may result in highly
nontrivial effects. Of these, the best known are: noise-
induced transitions [1,2] and stochastic resonance [3,4].

To the best of the author's knowledge, in all cases of
noise-induced transitions and stochastic resonance dis-
cussed so far, only Markovian driving noises have been
taken into account. Non-Markovian stochastic processes
are more diKcult to deal with than Markovian ones. Be-
sides, very little is known about the behavior of stochas-
tic flows driven by non-Markovian noises. Only very re-
cently have a few papers been published which use non-
Markovian driving, either explicitly [5] or implicitly [6].
A systematic theory of explicitly non-Markovian noises
with exponential damping of memory has been recently
proposed by the present author [7]. On the other hand,
Markovianity seems to be but an approximation for nat-
ural fluctuations occurring in the real systems. There-
fore it seems natural to ask how non-Markovianity of the
driving noise changes the behavior of driven stochastic
processes.

To avoid misunderstandings, it seems proper to men-
tion at this point that, in fact, almost any stochastic How
A (t) driven by a colored Markovian noise, or by white
noise and oscillating force, is a non-Markovian process
by itself. In particular, almost all systems exhibiting the
phenomenon of stochastic resonance are non-Markovian.
In this sense there is a vast literature on non-Markovian
stochastic processes, though this fact is mentioned explic-
itly very rarely. What is said above is that, to the best
of author's knowledge, a discussion of the use of non-
Markovian noises as driving processes is almost absent
&om the literature.

I propose in this paper to consider one of the simplest
stochastic flows, viz. , the linear process (relaxation):

8 = 1(~+2p W + r'), r = g(2p A —v)2 —8p A,

where A is the probability of switching between states
+4 per unit time, v is the inverse memory time, and 70,
pq describe, respectively, Markovian and non-Markovian
contributions to the master equation [cf. Eq. (8) below].

It is generally believed that the highly nontrivial effects
of noise can be observed in nonlinear processes only. In
particular, it is believed that the system in parabolic po-
tential does not exhibit stochastic resonance [8], because
the latter is related to the enhancement of the switching
of the system between its two (or more) possible states.
However, we will show that the non-Markovianity of the
driving noise introduces a sequence of noise-induced lo-
cally stable transient states even in the linear process,
and that the joint efFect of non-Markovianity and of the
external (additive) sinusoidal driving leads to a behavior
identical with that commonly ascribed to the stochastic
resonance.

Consider first the simplest case: the noisy relaxation:
a = ao g a(t), b = 0. The (exact) solution for the average
value of x(t) reads

(*(t)) = ' (=(t 0))*

where xo ——x(0) and

The average of:- can be calculated exactly for
dichotomic noise (DN) (either Markovian or non-
Markovian), but the derivation is lengthy (details are
given in Ref. [7(b)]). The result is

driven by multiplicative non-Markovion symmetric di-
chotomic noise ((t) [7]:

(2)

with the probability distributions fulfilling the non-
Markovian master equation, and with the correlation
function

sl —(z1 + 01)(z1 + 02)/(z1 z2)(zl. zs) &

etc. , and zz are the solutions of the cubic equation

z + (81+82)z + (8182 —A )z —vb, = 0.

(6)
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For the Markovian case (pp = 1, » = 0) the noise-
driven relaxation is monotonic and the process becomes
divergent when ap ( QA2 + A2 —A. Non-Markovian-
driven relaxation is illustrated in Fig. 1. Such a process
is highly nonmonotonic, which results, among others, in
much longer effective relaxation times than in the noise-
less case. Dispersion of z(t), calculated in a similar fash-
ion, exponentially tends to inanity in all cases.

The behavior of the average value of the process vari-
able z(t) is rather trivial. More interesting are the most
probable values of z(t), identified with the location of
maxima of the probability distribution P(z, t). The lat-
ter can be found exactly only for the Markovian case, for
non-Markovian driving DN one has to resort to approx-
imations. The best approximation found in [7(a)] leads
to the following master equation describing kinetics (1):
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FIG. 2. Temporal evolution of probability density for re-
laxation driven by non-Markovian dichotomic noise. ap ——1,
pp

——O, py ——1, 4=2.5) A =5, v=0.05.
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The numerical solution of Eq. (7), for an initial distri-
bution centered around x = 1, is shown in Fig. 2. The
most striking non-Markovian effects are (i) the presence
of oscillations in the time evolution, visible along the time
axis, and (ii) the appearance in the course of time of sev-
eral additional peak splittings, visible along the x axis
for constant time. Note that Markovian DN is able to
force at most one such splitting. According to some in-
terpretations [1], the appearance of additional peaks in
P(z) (at a given t) means the appearance of the noise-
induced transitions between macroscopic states having
no deterministic counterpart. Assuming this philosophy
to be true, the non-Markovianity may lead to a multi-
tude of such transitions: more and more new transient,

locally stable states (local maxima of probability density)
appear in the course of the relaxation process driven by
non-Markovian DN. This point is illustrated in Fig. 3,
where the traces of local maxima of P(z) at subsequent
times t are drawn on the (z, t) plane. Dashed lines cor-
respond to unstable local states, full lines correspond to
transient (meta) stable local states. Corresponding evo-
lution under Markovian driving is denoted by crosses.
In this case the Markovian driving leads to distribution
with only one maximum (it coincides with the evolution
of one of the most probable non-Markovian states). A
logarithmic scale is used to make clearer the behavior
near x = 0.

Figure 2 shows that there is nonzero probability den-
sity between these local states, therefore transitions be-
tween such states are possible. It is such noise-induced
transitions between new noise-induced states that makes
possible the occurrence of stochastic resonance effects
when regular driving is added to the kinetics (1).

The stochastic resonance (SR) is the phenomenon of an
increase of the response of the system to the determin-
istic forcing by an increase in the input noise, occurring
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Relaxation driven by non-Markovian dichotomic
lines). ap —1, xo = 1, pp = 0, pi = 1, A = 2.5,

Dashed line shows the Markovian-driven case,
= 0; dotted line: no noise (A = 0).
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FIG. 3. Temporal evolution of locally most probable states
from Fig. 2. Crosses denote the Markovian-driven case,
pp

——1, pg
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in bistable systems subject to both periodic and random
driving. The most popular signature of this effect be-
ing commonly in use is the peak in the signal-to-noise
ratio (SNR) as a function of the input noise strength,
although the physics of this phenomenon is the transfer
of energy into some physical process &om the stochas-
tic field (noise) with the assistance of the regular field
(pumping, signal). The idea of SR was introduced as
a plausible explanation, based on numerical simulations,
of the recurrence of ice ages [2], and later discussed in
many aspects, both purely theoretical and in application
to several specific physical systems. SR is presently one
of the most popular subjects in the theory of stochastic
processes, and the relevant literature is vast [3,4].

Consider now the process (1) with a = ao, 6 = P cos ut
The solution for x(t) is obtained easily in terms of the
function (5). The oscillatory character of the process,
seen in Figs. 1—3, is now sustained by the external pump-
ing and new transient noise-induced states are being born
in the course of time even for t ~ oo. This gives rise to
the possibility of phenomena of the type of stochastic
resonance.

The solution can be written in the form

(x(t)) = f (t) + A cos(ut + P), (9)

where f(t) describes the transient behavior, similar to
that given by Eq. (5). Elementary calculations give

A = cu no + ni, P = arctan( —~no/ni),

The ampli6cation of the incoming signal is given by the
ratio of amplitudes A and P. The signal-to-noise ratio
can then be defined as B = A/PA . Figure 4 shows this
measure of SNR as the function of the noise strength

for a few values of v. The dashed line shows the
Markovian-driven case. The linearity of the process (1)
is refIected in the property that the relative ampli6cation
does not depend on the amplitude P of the incoming
signal.

The system considered exhibits four difFerent time
scales: To ——I/ao, T = I/v, T, = I/A, and T, = 2n/~.
The analysis of the dependence of B on noise parameters
shows that the conditions for the stochastic resonance

0.0 10.0

FIG. 4. Signal-to-noise ratio R vs A and v. ap ——0.1,
xp = 1, w = 1, 7p = 0, py = 1, A = 2.5.

are present when all these time scales are roughly of the
same order of magnitude. Moreover, the smaller the ex-
ternal frequency, and the longer T, the stronger the
effect. For some combinations of parameters the process
becomes divergent, especially for stronger noise. In such
cases the SR can be observed only at the beginning of
the evolution, before the increase of (x(t)) will obscure
the effect.

The efFect is damped by the addition of the Marko-
vian contribution (pp ) 0) and vanishes when there is
no non-Markovian contribution (pi ——0). Therefore the
stochastic resonance in a linear system is a purely non-
Markovian phenomenon.

The SR described above is certainly atypical in com-
parison with the literature. In this respect, it is worth-
while to note that recently other unconventional cases
of SR have been reported: SR without external periodic
force (coherent oscillations of the system are induced ei-
ther by the noise or are present as a deterministic limit
cycle) [9], SR in nonlinear monostable oscillators [10],
SR without symmetry breaking [ll], or noise-enhanced
heterodyning [12].

The behavior of the linear process (1) driven by non
Markovian dichotomic noise, described in this paper, re-
sembles in some aspects the behavior of bistable pro-
cesses. This is in contrast to the recently found efFect
that sufBciently strong Markovian noise may linearize the
response of a nonlinear dynamical system [13].
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