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Effect of symmetry breaking on two-dimensional random walks
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The distinction between regular and disordered random walks breaks down in two or more spatial di-

mensions if the regular random walks have broken global spatial symmetries. A better classification for
regular random walks is "integrable" and "nonintegrable. " It may be impossible to distinguish the dy-

narnics of a nonintegrable regular random walk from the dynamics of a disordered random walk.

PACS number(s): 05.40.+j, 02.50.—r, 05.45.+b

The theory of random walks has had wide application
in the physical sciences, ranging from models of transport
in solids and molecules to models of biological processes
(see Ref. [1] for a review and further references). The
treatments generally distinguish random walks on regular
lattices from those on disordered lattices. The hope is
that on regular lattices it is possible to obtain analytic ex-
pressions for return time probabilities, mean first passage
times, etc. In this paper, we show that the dynamics un-
derlying random walks is deeply a6'ected by the sym-
metries of the lattice. A broken spatial symmetry can
cause a random walk on a regular lattice to be indistin-
guishable from that on a disordered lattice.

We wi11 consider a random walker on a two dimension-
al finite square lattice with N=(L+ 1) lattice sites, such
that each site of the lattice has four joining sites (except
at the boundaries) and the walker jumps only between
nearest neighbor sites. We label the sites (n&, n2), where

n& and n2 are integers with values L/2(n, (+L—/2
and L/2(ni(—+L/2. The site labeled n=(n„n2)
lies at the spatial point x=x, i+x2j, where x& =n, A and
x2=n25, i and j are unit vectors along the horizontal
and vertical axes, respectively, and 6 is the spacing be-
tween lattice sites. The probability P(x, t) to find the
walker at point x [site (n „n2)] at time t is described by
the master equation

mal set of eigenvectors
~ P; ) and real eigenvalues

;(i ,=0, . . . , N —1). Let (x~P; ) denote the entry of the
ith eigenvector due to lattice site x. The the solution to
the master equation takes the form
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where the transition matrix W(x'~x ) =co(x'~x )—5„„,+ -co(x~x"), and co(x'~x) is the transition rate from
site x to site x. The double summation is over the posi-
tion of all lattice sites. The walker is constricted to tran-
sitions between neighboring sites.

In this paper we will restrict ourselves to systems with
detailed balance. Let Po(x)=lim, P(x, t) denote the
long time probability distribution. The random walk
satisfies detailed balance if Po(x)co(x~x') =Po(x')co(x'~x).
If this condition is fulfilled, we can symmetrize the transi-
tion matrix. Let us introduce a function
P(x, t ) =P(x, t )/QPo(x). Then the master equation
takes the form c)P(x, t)/dt=+„P(x', t)V(x'~x), where
V(x' x) is a symmetric matrix defined
V(x' x) =QPo(x') /Po(x) [co(x'~ x) —5„„g„-co(x~

x") ].
Since V(x'~x) is symmetric, it has a complete orthonor-
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FICx. 1. (a) Square lattice with L +1=35 (1225 lattice sites).
(b) Nearest neighbor spacing histogram of decay rates for a reg-
ular random walk on lattice 1(a). (c) Nearest neighbor spacing
histogram of decay rates for a disordered random walk (walk
with random transition rates) on lattice 1(a).
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P, (x)
P(x, t)= g g, P(x', 0)(x'~P;)

Po x'

Xe "(P,)x) . (2)

The eigenvalue A,O=O and eigenvalues A, ; &0 for
E =1, . . . , N —1.

We will now show that because the dynamics of ran-
dom walks with detailed balance are governed by a sym-
metric transition matrix, we can use the machinery of
quantum chaos theory to categorize them, and relate the
behavior of such random walks to an underlying Hamil-
tonian mechanics. The onset of chaos in classical Hamil-
tonian systems is due to the breaking of symmetries. For
conservative systems with two or more degrees of free-
dom, symmetry breaking may be caused by symmetry
breaking boundaries as occurs in the Bunimovich billiard,
or by nonlinear resonances between degrees of freedom of
the system such as occur in the Henon-Heiles system [2].
Regardless of the cause, this symmetry breaking and on-
set of chaos manifests itself in quantum systems as a
change in the spectral spacing statistics of the energy-
level spectrum. In random walks, as we shall show
below, such a symmetry breaking transition manifests it-
self as a change in the spectral spacing statistics of decay
rates.

It is useful first to show the difference between a regu-
lar lattice and a disordered lattice. Let us consider a two
dimensional Rat square lattice [c.f. Fig. 1(a)], where the

transition rate from a given lattice site to its nearest
neighbors is constant and equal to 1. The sites at the
corners of the lattice each have two nearest neighbors,
while sites on the edges each have three nearest neigh-
bors. The master equation for this problem is exactly
solvable. The decay rates for a lattice with N=(L +1)
sites are

CK'IT=4—2 cosa,P I. +1
pm

L, +I (3)
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where integers a=O, ,L and P=O, . . . , L. A histogram
of the nearest-neighbor spacing of decay rates A, is shown
in Fig. 1(b) for the case L +1=35. It very closely follows
a Poisson distribution Pp =(1/D)exp( s/D ), —where s is
the spacing and D is the average spacing between levels.
The decay rates for this integrable random walk have a
large number of close spacings. Let us next consider a
random walk on the same lattice [Fig. 1(a)], but now take
random values for the transition rates. Random transi-
tion rates were obtained from a random number genera-
tor (randomly picked from the interval [0,1)). The decay
rates and the level spacing statistics for the decay rates
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FIG. 2. (a) Square lattice from Fig. 1(a), but with corners cut
off. (b) Nearest neighbor spacing histogram of decay rates for a
regular random walk on lattice 2(a).

FKx. 3. Nearest neighbor spacing histogram of decay rates
for regular random walk on the lattice of Fig. 1(a) with corners
cut off (a) by one and two sites, respectively; (b) by two and four
sites, respectively; and (c) by three and six sites, respectively.
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are computed numerically. The histogram of spacings
between neighboring decay rates is shown in Fig. 1(c).
The level repulsion is evident and the shape of the distri-
bution, at least numerically, follows closely a Wigner dis-
tribution, P~(s)=(msl2D )exp( vr—s l4D ), and agrees
with predictions by random matrix theory [3].

Let us now break the symmetry of the Bat, square ran-
dom walk by cutting off the corners of the lattice in an
uneven way [cf. Fig. 2(a)]. We will again choose the
transition rate from a given lattice site to its nearest
neighbors to be 1. The histogram of nearest neighbor
spacings between decay rates is given in Fig. 2(b). We see
that the spectral statistics of this regular random walk is
indistinguishable from that of a random walk with ran-
dom transition rates. We have accomplished this merely
by breaking the symmetry of the boundaries on the regu-
lar random walk.

However, a question that remains is how sensitive the
observed change in spectral statistics is to the relative
size of the lattice defect, i.e. the ratio of the size of the de-
fect to the system size. In Fig. 3 we start with one site
cut off the top-left corner of the lattice, and two sites cut

U(x»xz)=2x, +—3xz+e'xixz(xi xz)

The transition rates are

~(x i,xz Ix i +~,xz )

(4)

g [U(xi+5 xz) U(xi xz)]+
25 2h

off the top-right corner. We then increase the amount of
the cut proportionally. The result clearly demonstrates
that a certain degree of level repulsion sets in immediate-
ly at the very small cut. The first case [Fig. 3(a)] demon-
strates both Poisson and Wigner-like characters. As the
amount of the cut increases, the distribution rapidly
changes to Wigner-like.

We can break the symmetry of the lattice in quite a
different way. Let us consider a random walker on a
square lattice [Fig. 1(a)], but choose the transition rates
as functions of the potential
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FIG. 4. Nearest neighbor spacing histograms of decay rates
for regular random walk on lattice 1(a) with transition rates
given by U(x) and (a) g=0.2, @=0.0; (b) g =0.2, a=0. 1; and (c)

g =0.2, @=1.0.

FICx. 5. Nearest neighbor spacing histogram of decay rates
for regular random walk on lattice 1(a), with transition rates
given by U(x) and (a) g=0.2, a=0.0; (b) g =0.2, @=0.1; and (c)
g =0.2, e= 1.0.
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co(x, ,x 2 ~x ],x2+6 )

[ U(x &, xi+A. ) —U(x „xi) ]

2A
+

26
(5)

When a=0, x„and x2 are independent, and the problem
decomposes into two independent one-dimensional prob-
lems. When eAO, the two degrees of freedom are cou-
pled and can resonate. In Fig. 4, we show the spectral
spacing histograms for @=0.0, 0.1, and 1.0. Note the
change from a Poisson-like distribution to a Wigner-like
distribution as e increases. To support the point that this
change is due to coupling and resonance between the de-
grees of freedom, we will repeat the calculation for a
similarly shaped potential U(x, y ), where

U(x„x2)= —
—,'e(x& —x2) + —,"(x&—x2)"

+ —,",(x, +x2) (6)

Note that there is no coupling of the degrees of freedom
for any value of e. The histogram of nearest neighbor
spacings of the decay rates for this case is given in Fig. 5
for the same values of e as considered in Fig. 4. The level
spacing stays Poisson-like.

It is interesting to look at the limiting case of the walk-
er on the lattice when the lattice spacing goes to zero
(6~0) and the transition rates approach infinity. In this
limit, we can make a direct connection to conservative
chaos theory. A Kramers-Moyal expansion of the master
equation [4,5] leads to a Fokker-Planck equation with
corrections of order b, and smaller,

=V'„.[P(x, t )V„U(x) ]

+ 7'„P(x,t)+0—(h ) .

If small correction terms are neglected, this is exactly the
Fokker-Planck equation used by Millonas and Reichl [6]
to study Brownian motion in the two dimensional poten-
tial U(x). In Ref. [6], the authors showed that the
Fokker-Planck equation can be transformed to a
Schrodinger-like equation, and a direct connection can be
made to classical and quantum chaos theory (a similar
connection was made by Alpatov and Reichl [7] for a
periodically driven Brownian rotor). The spectral spac-
ing statistics of the decay rates of the Fokker-Planck
equation undergo a transition similar to that in Fig. 4(b),
and are directly related to a transition to chaos in an un-
derlying Hamiltonian mechanics.

It appears that the distinction between regular and
disordered random walks may be much less clear than
originally thought. Regular random walks must be
categorized as either integrable and nonintegrable de-
pending on whether or not global symmetries have been
broken. One can hope to find analytic solutions for inte-
grable regular random walks, but not for nonintegrable
regular random walks. One way to check whether a reg-
ular random walk is integrable or not is to examine the
spectral statistics of its decay rates. The dynamics of
nonintegrable regular random walks may be impossible to
distinguish from the dynamics of random walks on disor-
dered lattices.
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