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Transition probability calculations for atoms using nonorthogonal orbitals
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Individual orbital optimization of wave functions for the initial and final states produces the most ac-
curate wave functions for given expansions, but complicates the calculation of transition-matrix elements
since the two sets of orbitals will be nonorthogonal. The orbital sets can be transformed to become
biorthonormal, in which case the evaluation of any matrix element can proceed as in the orthonormal
case. The transformation of the wave-function expansion to the new basis imposes certain requirements
on the wave function, depending on the type of transformation. An efficient and general method was
found a few years ago for expansions in determinants, spin-coupled configurations, or configuration state
functions for molecules belonging to the D2& point group or its subgroups. The method requires only
that the expansions are closed under deexcitation and thus applies to restricted active space wave func-
tions. This type of expansion is efficient for correlation studies and includes many types of expansions as
special cases. The above technique has been generalized to the atomic, symmetry adapted case requiring
the treatment of degenerate shells nl, with arbitrary occupation numbers O~N~4l +2. A computer
implementation of the algorithm in the multiconfiguration Hartree-Fock atomic-structure package for
atoms allows the calculation of transition moments for individually optimized states. An application is

presented for the BI 1s 2s 2p P'~1s 2s2p D electric dipole transition probability, which is highly
sensitive to core-polarization effects.

PACS number(s): 02.70.—c, 31.15.+q, 31.20.Tz, 32.70.Cs

I. INTRODUCTION

The standard multiconfiguration self-consistent-field
(MCSCF) procedure optimizes the orbitals used in a
configuration interaction (CI) calculation with some
specific selection of configuration state functions (CSF's).
As a result, matrix elements between two separately opti-
mized states must take into account the nonorthogonality
between the two sets of orbitals. Transition matrix ele-
ments for two nonorthogonal states can be calculated
fairly readily from basic principles without any transfor-
mations if there are only a few orbitals and a few
configurations. For large calculations and many open
shells, the formulas rapidly become complicated. Tradi-
tionally, in quantum chemistry, they are computed in
terms of the transition matrix elements of individual
determinantal functions and these in turn are evaluated
as the first- and second-order cofactors of orbital overlap
matrices [1]. Prosser and Hagstrom [2] proposed the use
of the unsymmetrical Choleski factorization for the rapid
evaluation of the necessary cofactors. This method has
been applied by Agren et al. [3] to configuration interac-
tion expansions of a few hundred configuration state
functions.

In atomic physics, pairwise methods have prevailed
with unrestricted nonorthogonality allowed only for
determinantal expansions. Westhaus and Sinanoglu [4],
using a transformation proposed by King et al. [5],
showed that for E1 transitions it was not necessary to

transform all orbitals, only the symmetries of the current
pair contributing to the transition by the AI =1 selection
rule. Nicolaides and Beck [6] improved the efficiency fur-
ther by applying a priori selection rules for which the sur-
vival rate was about 1 out of 10. They also treated radial
overlaps below a cutoff criterion as zero. A similar pro-
cedure was used by Beck [7] for a study of E2 transitions
where the selection rules are different. When expansions
are in terms of vector coupled configuration state func-
tions (eigenfunctions of the total angular and total spin
momenta) a number of assumptions have been intro-
duced. The use of transition states allowing a simultane-
ous optimization of the initial and final states has been
suggested [8]. In the general relativistic atomic structure
package (GRASP) [9] a linear combination of energy ex-
pressions is used as the optimizing energy functional so
that the orbitals of the initial and final states are con-
strained to be the same. Another commonly used ap-
proximation treats the radial distributions as though they
mere exactly orthonormal, even if obtained via separate
self-consistent-field calculations for the different
configurations involved (for instance, in ATOMSPEC,
Cowan's chain of programs [10]). Since we are interested
simultaneously in all the configurations included in the
multiconfiguration calculation, the advantage of having
the best possible single configuration is kept, without for-
mally introducing any nonorthogonality complications.
A more rigorous approach has been attempted in the
computer codes Civ3 [11]and MCHF-ASP [12] by extend-
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ing the Fano-Racah algebra, which underlies the angular
momentum theory, to allow a limited use of nonorthogo-
nal orbitals [13],avoiding radial orbital transformations.
The restrictions adopted in the computer codes [14,15],
however, may cause serious limitations.

Another approach is one where the wave functions are
transformed to a new radial basis so that the evaluation
of operators between states can proceed as though the
bases were orthonormal. A few years ago, an eScient
method was found [16], which solves this problem in the
case of a restricted active space (RAS) [17] configuration
selection scheme. The method is not only efBcient but
also easy to program. It was first implemented for a
somewhat less general type of wave function, namely, the
complete active space (CAS) wave function, a special case
of the RAS scheme. The resulting CAS state interaction
(CASSI) program [18] is used in quantum chemistry to
compute transition density matrices and arbitrary matrix
elements such as overlap and Hamiltonian matrix ele-
ments over a basis consisting of separately optimized
CAS self-consistent-field (CASSCF) wave functions
[19,20].

The idea is based on a second quantization scheme for
a nonorthogonal basis, proposed by Moshinsky and Selig-
man [21]. As an illustration, consider the second-
quantized form of an operator, sandwiched between two
determinantal functions, in a scheme with one single
orthonormal orbital basis. The ket function is produced
by a string of creation operators acting on the vacuum.
The bra functional consists of the vacuum bra followed
by a similar string of annihilators. Between them is the
operator. In elementary textbooks on second quantiza-
tion [22,23], it is shown (in tedious detail) how repeated
application of the anti-commutation rules [a~,a~]+ =5~~
and other anticommutators ultimately produces a result
in agreement with the usual Slater-Condon rules. These
are simple because the Kronecker 5 functions are mostly
zero. The same approach works also with nonorthonor-
mal orbitals, but the anticommutators become instead
[az, a&]+ =S&z, the elements of the orbital overla, p ma-
trix. The formula now becomes the sum, with varying
sign, of a very large number of products of overlap ma-
trix elements, in fact, it can be evaluated as a determinant
by the so-called Slater-l. owdin rules [1].

Of course, our present problem is not the use of a sin-
gle, nonorthonormal basis but rather the use of two
different orthonormal bases. This problem is readily
shown to be equivalent: The second-quantized form of
the operator is easily transformed so that its creators are
those of the ket state, but the annihilators are the same as
for the bra. Then every nonzero anticommutator will be
identical in form to the case considered earlier, so it is
evident that the transformation of operator integrals to a
mixed orbital basis allows us to compute matrix elements
over a mixed determinant basis by the Slater-I. owdin
rules.

Moshinsky and Seligman then realized that the use of
two different, nonorthogonal orbital sets for bra and ket
determinants would result in the simple, usual Slater-
Condon rules if the two orbital sets formed a biorthonor-
mal system, since everything depends solely on the over-

lap matrix elements. Soon after its birth, Moshinsky and
Seligman's picture was shown to be very helpful in nu-
clear physics. It has been used in the ¹enter model [24]
and the same formalism was further developed by intro-
ducing the notion of holes in nonorthogonal bases [25].

Of course, this does not in itself solve our problem
since our two orbital sets will certainly not be biorthonor-
mal. A weak partial solution has been widely used: the
corresponding orbital method [26], originally introduced
by Amos and Hall [27] for single determinantal wave
functions built on unrestricted molecular orbitals. This
method has been applied to CASSCF wave functions, for
which the CI expansion space is invariant under orbital
rotations within the inactive or within the active orbitals.
Such rotations are used to bring the orbitals into "corre-
sponding orbitals. " The two sets are individually ortho-
normal but, if different, cannot be biorthonormal. They
are, however, biorthogonal. In effect, the transition ma-
trix elements are computed as if in a common orthonor-
mal basis, but with an extra normalization factor for each
determinant [5]. The point in the restriction to true or-
bital rotations, keeping each orbital set orthonormal, was
the belief that the CI expansions in the new basis must be
recomputed by a conventional CI program after the new
basis was obtained.

However, the necessity to use CASSCF wave functions
is in itself a hindrance and the ability to freely mix only
the active orbitals (or the inactive) is a severe restriction.
The corresponding orbitals have been used for general CI
or MCSCF expansions to perform nonorthogonal molec-
ular configuration interaction [28] and transition moment
calculations [29,30], but in the proposed research the
method is applied separately to each pair of Slater deter-
minants. If selection rules indicate that a contribution
may occur, the overlap matrix of orbitals present in the
pair of determinants under consideration is diagonalized
with two unitary matrices.

A few years ago, it was observed that formally, the
CASSCF wave function allows a much larger class of or-
bital transformations. The orbital transformation matrix
must be nonzero only in the portion coupling inactive
with active or virtual or coupling active with virtual or-
bitals. It must be nonsingular, but need not be an orthog-
onal matrix. It could still be used as suggested above be-
cause such a transformation matrix can be factorized into
a sequence of single-orbital transformations and any
single-orbital transformation can, in the CAS expansion
space, be exactly performed as long as it does not excite
from the inactive to the active or from the active to the
virtual space. This immediately solved the problem for
CASSCF wave functions and for molecules with symme-
try D2& or its subgroups. The CAS restriction was natu-
ral at the time; the symmetry restriction arose from the
fact that a single-orbital transformation could break the
spin symmetry of the wave function expansion. A pro-
gram implementation in terms of symmetry adapted
states could not represent the symmetry-broken inter-
mediates in the wave function expansion. The formulas
would be formally correct, but the program implementa-
tion would prevent calculation of the symmetry-broken
intermediates: they could not be represented in the wave
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function expansion space. This problem was solved for
the nonrelativistic molecular problems by an ad hoc for-
mula where the result of two subsequent single-orbital
transformations, identical apart from spin, were ex-
pressed as two consecutive spin-preserving operations.

The minimal class of orbital transformations that must
be allowed in order to bring arbitrary orbital set pairs
into agreement with the requirements of biorthonormal
systems contains those that are brought to triangular
form after suitable permutation of orbitals. Finding the
triangular transformation matrix for a given overlap ma-
trix is then equivalent to a lower and upper (LU) triangu-
lar matrices decomposition, as shown in Ref. [16].

The requirement on the wave-function expansion space
to allow this class of transformations is that it be closed
under deexcitation. For some preferred orbital ordering,
if one or more orbitals in a determinant are replaced by
lower-numbered orbitals, the result must be in the expan-
sion space. For determinants, it is either another deter-
minant in the expansion space or zero. It was realized
early that the RASSCF generalization [17,31] to the
CASSCF has this property and the CASSI program was
rewritten accordingly to become a RASSI.

Biorthonormal orbitals are now extensively used in the
finite-element MCSCF LUCAS program [32], where the al-
gorithm of countertransformations is applied to Slater
determinant CI expansions. Since the Slater determinant
basis does not make use of the full atomic symmetry, one
can transform each spin-orbital separately. This has been
used in multiconfiguration Hartree-Fock (MCHF) calcu-
lations with more than 10X 10 Slater determinants [33].

In this paper we present a development on the use of
restricted active space symmetry-adapted CI expansions
in atomic transition probability calculations, involving
the treatment of degenerate shells nl, with arbitrary oc-
cupation numbers 0~N ~41+2. The paper is organized
as follows. After this introduction, there is a section on
the restricted active space, another on nonorthogonal
second quantization, and one on the details of transfor-
mation of orbitals and CI coe%cients. This is followed by
a section describing the program structure and finally one
with an illustrative application, namely, the BI
1s 2s 2p P' —+1s 2s2p D oscillator strength, which is
highly sensitive to core-polarization effects.

II. RESTRICTED ACTIVE SPACE CONCEPT

The CAS method [19] forms a cornerstone of the
multiconfiguration approach: It has been used success-
fully for describing the static part of the electronic corre-
lation energy of molecular systems [20]. The CASSCF
wave function is a superposition of all the configurations
in the ¹ lectron space that fulfill two simple require-
ments: A certain number of inactive orbitals are always
occupied and another specified number of active orbitals
have varying occupancy. The inactive and active orbitals
are optimized to make the energy stationary. Of course,
the expansion space is further limited by any space- or
spin-symmetry requirements and by specification of the
total electron count, but this can hardly be considered a
restriction. In the algebraic approximation, the results

are limited in precision by the finite basis set used, but it
is usually not very diScult to saturate the basis set and
obtain a basis set limit, so the obtained results are essen-
tially a function of just the active space selection. The
number of configurations is a polynomial with degree
equal to the number of correlated electrons. Already
with a few electrons, the CAS configuration space be-
comes quickly unmanageably large when the number of
active orbitals is increased. Thus the CASSCF method is
essentially an orbital method, similar to SCF, but able to
manage near-degeneracy and open-shell problems. It is
seldom able to include much dynamic correlation.

A RAS form of the wave function, introduced by Olsen
et al. [17], encompasses many commonly used restricted
configuration interaction expansions. In the RAS
scheme, the restricted configuration space is determined
from two different orbital spaces: the inactive space
where all shells are filled and the active orbital space,
which is further divided into three orbital subspaces:
RAS-1, for which the total occupation of the orbitals
must be at least some lower limit (n, ~ N& ); RAS-2, with
no constraint imposed, and RAS-3, for which the total
occupation of the orbitals may be at most an upper limit
(n3 ~N3). In any configuration, the distribution of elec-
trons from RAS-2 is then determined by the conservation
of the total number of active electrons in the system
n2=N —n; —n, —n3, where n, is the number of inactive
electrons in closed shells. Since the number of electrons
from RAS-2 is unrestricted, the resulting configuration
space is reminiscent of the original normal active space
CAS.

There are basically two ways of using RAS expansions.
The orbitals in RAS-1 will normally correspond to deep
valence or core orbitals that should be correlated or po-
larized. The orbitals of RAS-2 correspond to valence or-
bitals including near-degeneracy orbitals. The orbitals in
RAS-3 are additional orbitals introduced in order to po-
larize or correlate the orbitals in RAS-1 and RAS-2.
Another interesting distribution is the following: RAS-1
would contain the orbitals of a zeroth-order wave func-
tion, RAS-2 the most important correlating orbitals, and
the less important correlating orbitals would be put in
RAS-3. By allowing fourfold excitations out of RAS-1
and only double excitations into RAS-3, one obtains CI
expansions that contain the major part of triple and qua-
druple corrections in a compact fashion.

The RAS concept offers a number of advantages.
(i) It allows the use of very general types of CI expan-

sions, providing systematic checks of the errors induced
by truncating the CI expansion.

(ii) The RAS expansions satisfy the closure under deex-
citation property, i.e., removing one electron from a sub-
shell nl and placing it in any subshell n'l of the same spa-
tial symmetry with n'&n, we generate a configuration
state function that appears in the original configuration
interaction expansion. For subshells belonging to the
same subspace, the restriction n ' & n is not necessary, giv-
ing closure for a limited set of excitations.

(iii) RAS expansions support a group of orbital trans-
formations that allow the use of fully biorthonormal or-
bitals in the sense of Moshinsky and Seligman.
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Properties (ii) and (iii) will be intensively used in the
present transition probability calculations.

However, the remaining anticommutation relation be-
comes

III. SECOND QUANTIZATION
WITH NONORTHONORMAL ORBITALS p, q

(el . 0 )=(%1 . 17' (2)

and choosing C to be of the form

C=S-'"X,
where X is a unitary matrix, the new orbitals constitute
an orthonormal set

S;i =(C SC);~ =5;. . (4)

(The special case X=I is known as the "symmetric or-
thogonalization" [34].) The sets of creation operators cor-
responding to the original (nonorthogonal) a and
transformed (orthonormal) a orbitals are related to each
other in the same way as the orbitals themselves, since
they must create the relevant orbitals if applied to the
vacuum state. Let the a stand for a row vector

(5)

The creation and annihilation operators in the orthonor-
mal basis a satisfy the usual anticommutation relations
[35,23]

a7 aJ +aJ a7 7J

aa+aa;=0, (6)

The material in this section is essentially that presented
by Moshinsky and Seligman in a paper on the use of
nonorthogonal orbital sets in a second-quantization for-
malism. Any reader familiar with tensor algebra in the
Einstein notation will be delighted to discover that sim-
ple, systematic use of upper and lower index placement
can be used to the same effect. The "direct" or "normal"
orbitals are the carrier-space basis functions and should
have a lower index. Lowering and raising is done by a
metric, whose doubly covariant form is the orbital over-
lap matrix. This alternative presentation is convenient in
some applications. (It is less useful in situations where
many different equivalent bases appear. )

Consider a set of linearly independent spin orbitals
with the general metric

fdrdm, y'(r, m, )y (r, m, )=(p~q) =S, (1)

where p, in the atomic case, may stand for the quantum
numbers quartet (nlm, m&). Introducing a new set of or-
bitals

p~q

(C
—1TC—le

) (9)

where we used the Hermiticity of S and Eq. (6) to show
that C ' C ' =S . Clearly the anticommutation rela-
tions satisfied by the creation and annihilation operators
for a nonorthogonal basis differ from the normal ones by
the appearance of the overlap matrix ( n

~
m ) instead of

the Kronecker delta 5„
The second-quantization form of the operators in a

nonorthogonal basis [y] can be deduced straightforward-
ly from their form in the orthogonal basis [yI using the
transformation Eq. (5). We have, for example, for the
one-electron operator

k=g h u~a (10)
pq

=g(CC hCC ) a a

=g (S 'hS ') ata (11)

a ~n&=+I(n) S n ~n, . 0 . n

p

(12)

The occupation number array n with elements n; specifies
the occupation number (0 or 1) of the spin orbital i and

I'(n); =( —1) '='

We see that aq does not annihilate orbital q alone and the
result is not a single determinant.

However, a linear combination of operators such as a
can be used as an annihilator. Define & =Q„S „'a„. Us-
ing a to denote a column vector, we can also write

where h~~
= (p ~

h
~ q ) is the one-electron integral in the

orthogonal basis.
While this formula is in perfect analogy to the ortho-

normal case, it is very unsuitable for most applications.
The reason is that the operator a, which is the Hermi-
tian conjugate of a, does not act properly as an annihila-
tor. A determinant can be written as a string of creators
acting on the vacuum; preceding this with the operator
aq and then using Eq. (9), the result can be expressed in
occupation-number representation as

a, a +a.a,. =O, a=S-'a . (13)

from which we can deduce

pq

a a„+a„a =(a„a +a a„) =0 .

These have the same form as for the orthonormal case.

a,~& +8 a,~=6,

The one-electron operator f can now be written as

(14)

The matrix multiplication with the inverse of S will coun-
teract the S appearing in Eq. (9), giving the new anticom-
mutation rule
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f=g(S 'h) a 8 as the bra and

~P, . . . , v&—:apt at~0& (23)
which may be defined as the second-quantization form of
the operator. The & operator here acts as expected for
an annihilator:

& ~n&=I(n) n ~n, . 0 . . n (16)

If the two-orbital sets also span the same space, as we
have assumed here, they are jointly called a biorthonor-
mal basis. Two sets of determinantal functions, identical
in definition except that two biorthonormal orbital sets
are used, form a biorthonormal system of determinantal
functions. The same is true for most types of spin and
angular momentum coupled configuration state func-
tions: If they are orthonormal when orthonormal orbit-
als are used, then they form biorthonormal systems when
biorthonormal orbitals are used. However, they do not in
general span the same space, unless a full CI expansion
space is used.

The above analysis is essentially that of Moshinsky and
Seligman [21]. Its essence is that by using the ordinary
orbital basis for ket functions and creators and the dual
basis for bra functionals and annihilators, then any for-
mulas that can be proved by anticommutation relations
will remain true also for the nonorthogonal case.

They showed, specifically, that the matrix elements of
one- and two-body operators F=+;f; and G =g; & g;.
between a dual Slater determinant (SD)

Aq& (1) qi~(n )
N!

as the bra and an ordinary Slater determinant

1
Agti(1) . y (n) (19)

N!
as the ket have the same values as the matrix elements of
the operators

X a p'„&ki6z~gi2 ~ki~2»g~. (21)

(20)

between the state

~a, . . . , P&=et at ~0& (22)

This is the most suitable form for computations. Each
term in the second-quantized form simply performs an
orbital replacement, if possible, with precisely the same
sign rules as if an orthogonal orbital set had been used.
The price to pay is that a Hermitian operator is no longer
represented by a Hermitian matrix.

The conjugate of the new operators define a set of new
creators and thus orbitals. This relation between these
new orbitals and the original ones is symmetric and one
says that one basis is the dual of the other. The two bases
are said to form a biorthonormal system since

Jdr dm, y'(r, m, )qr (r, m, )=(P~q &=(O~a at~0& =5

(17)

as the ket. The second-quantized expression of the one-
and two-body operators is then formally identical to the
one we know using an orthonormal set of single-particle
states. That is the first key of our approach.

We will use configuration interaction expansions of
configuration state functions &5(a;LSm) for describing
two different atomic states

%,(aLSm ) =g C„@ (a„LSm.),

%z(a'L'S'm')=g C„"N (a„L'S'~') . (24)

Each CSF is a linear combination of Slater determinants.
It is a spin and angular momentum S and L eigenfunc-
tion. The one-electron orbital basis functions are prod-
ucts of angular momentum functions and radial func-
tions, i.e., y„i~ (r, 8,$)=(l lr)P„i(r)I'&m (0,$). The radi-

al functions {P„IJ are in general difFerent from {P„&I and
we need to consider overlap integrals over the radial
functions only. This simplifies calculations since the or-
bitals of each l quantum number can be considered sepa-
rately and the overlap and transformation matrices are
independent of mr.

IV. TRANSFORMATION OF ORBITALS
AND CI COEFFICIENTS

The contents of this section may be summarized as fol-
lows.

(i) The special choice of a LU (or, more precisely, a
UL) decomposition of the inverse overlap matrices S
will define biorthonormal bases obtained by upper-
triangular orbital transformation matrices for transfor-
mations defined by Eq. (2) where the orbital basis is con-
sidered as a row vector.

(ii) An upper-triangular orbital transformation matrix
can be expressed as a finite sequence of single-orbital
transformations. Each expresses the new orbitals as a
sum involving no higher-numbered orbital.

(iii) The nontrivial effect of each such transformation
step on the CI expansion array is the same as the effect of
a one-electron operator with deexcitations only.

(iv) With a RAS wave function, such operations are ex-
actly representable and the needed. data structures are al-
ready available in a direct CI scheme.

(v) Some special procedures need to be introduced to
simultaneously take advantage of the space and spin sym-
metry and yet avoid symmetry-breaking intermediates.
Most of the details in the coming discussion appear also
in the original article [16] on this method. However,
different and important to the present application is the
treatment of the last point: elimination of symmetry-
breaking intermediates.

The transformation matrices C and C express the
unknown biorthogonal sets {y"j, {tp ], in the original
basis {q
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(
A ~A )

—(~X X )CXA

B B Y Y YB

To fulfill the biorthonorrnality condition

( AI 8)

(25)

(26)

minantal functions. Thus, with any wave function basis,
the CI expansion will fulfill

y c„'Ic„'&=yc„"Ie„"&

1+g (tlk 'talk )al dk & c„' I@„"& . (32)

the transformation matrices should satisfy the condition

C YBCXA t —
( SXY)—1 (27)

gAf ~ X$( XA
lk

l

We want then to find the CI vector C that satisfies

(28)

In the above, the overlap matrix has been assumed to be
square, but, as shown in Appendix B, this restriction may
be removed.

There are infinitely many pairs of transformation ma-
trices that will produce biorthonormal basis sets. The
choice adopted in the present approach is predicted by
the restrictions on the configuration state function spaces
used for 4, and %'2. We require the transformation ma-
trices to be upper triangular. That this is a suitable
choice will become evident from the effect of the transfor-
mation on the CI coefficients. For the moment, the C
matrix is assumed to be given.

The original set of orbitals or, equivalently, creators
a ~ are transformed into the nonorthogonal a set

Here, the first equality shows, by definition, that the two
CI expansions should express the same wave function.
The first and last members are equal because of the
preceding formula (31). It follows that the two last
members are equal, which provides the necessary connec-
tion between C' and C". Any CI program has the capa-
bility to express the result, on the CI expansion vector, of
applying an exciting operator such as al" &k'. For the
particular case of a RAS wave function, the result will be
exact if always I & k. The expansion vector C" can thus
be obtained by performing a direct CI calculation with a
one-electron operator having one index fixed ( k ).

The general transformation can then be obtained
through the single orbital replacements sequence

p2 q 1 t]p+/ 2 t22+'p3 t32+ 7

X A A X

Pk P1 1k+ P2 2k+m 3 3k+ + Pk —1 (k —1)k
X A A . . . A

y c„Ic„)=pc" Ie„') . (29) A X+0 k kk +0 k+1 (k+1)k +
(33)

In Ref.
I
16] it is shown how this can be done by a finite

sequence of single-orbital transformations.
The simplest way to proceed is to find out what hap-

pens when one single orbital k is reexpressed in the other
orbitals. At this stage, several orbitals may already have
been transformed. The present orbital set is denoted with
primes, the next, with one orbital more transformed, is
denoted with double primes:

ak r Ikal + kkak (30)
leak

Any determinantal function is a string of distinct creators
acting on the vacuum. Reexpression of a determinant in
the primed system using the double primed orbitals will,
by the above formula, either leave it as it is (if the creator
ak is not in this string) or else the creator ak is replaced
by a sum of creators according to the above formula.
This can be written generally as

I+'&= '1+&(&lk ~lk)al
l

(31)

if N denotes any determinantal function of a selection of
orbitals. Note that no complicated algebra is needed for
the annihilator &k'. it merely expresses the removal of or-
bital k from the determinant, the caretted operators act-
ing as proper annihilators, as explained in Eq. (16) and
the reasoning behind that equation. Then this formula
works also for any spin-coupled configurations, whether
Serber functions, unitary group approach, or whatever,
since those are simply fixed linear combinations of deter-

The replacement of step k consists in replacing ak by
Af

aXt y Aft + y Xtt
l&k l) k

It can be written as

ax) —y (CxAtU+tL) axt
I

(34)

(35)

by splitting the matrix t into upper ( U) and strictly lower
(L ) triangular parts. The fact that Eq. (35) should hold
for aII k values implies

CXA —(I tL)(tU) —1 (36)

Since the inverse of an upper-triangular matrix is upper
triangular, we have

CXA (37)

with

(38)

U —(tU) 1 (39)

I being a lower-triangular matrix and U an upper-
triangular matrix. Similar considerations apply for the
transformation C and CI countertransformations
bringing %2 in its biorthonormal form.
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I.et us now return to the determination of C and
C . Substituting Eq. (36), but adding additional super-
scripts to distinguish the matrices transforming C fromC, into Eq. (27) we get

(I—t'")(t'")-'(tUx") '[I—(t' ")]=(S~')-'

k=1
1++ (t„.„—5„.„)a„.„a„k

n'

= II 1+ X s. a.'~.k t.."'P
k =1 n'Wn

(40)

If we require the transformation matrices to be upper tri-
angular, from Eq. (27), it is immediately seen that
S ' =U L, or another exercise in decomposition.
More precisely C =U and C =L . In fact, this
choice of triangular matrices will mean that in the parti-
tioning described in Eq. (36),

LY8
O tLXA O

tUYB (Ux—Y)
—1 tUxA —(LxYt) —1

ln 1+ y s„a„k&„k = y s„a„ka„k, (44)
n'Wn n'Wn

where we use the fact that the action of (a„k&„k)j will
give no contribution for j& 1 and n'Wn. The logarithm
of each factor commutes. Moreover, if we define s as the
sum

where the factor in front of + scales each configuration
with t„„raised to the power given by the occupation
number of shell n in the configuration. The product is
evaluated via its logarithm

1+g (t„„—5„.„)a„.k &„k
k=1 n'

(41)

where k =1,2, . . . , (g—=4l+2) enumerates the
equivalent components (mr, m, ), while n stands for the
particular radial function P„&(r ), and n n, if we strictly
follow the above scheme. Any other indices are ir-
relevant and have been omitted. To evaluate this without
breaking symmetry, we first rewrite each factor as

I+X (t '

n'

The reason that the detailed formulation above has
been kept is that this works still if C and C are not
just upper-triangular but block-upper-triangular matrices
with orbitals collected into the four main orbital types:
inactive, RAS-1, RAS-2, and RAS-3. As shown in Ref.
[16], the transformation of inactive orbitals can be taken
out as a single scale factor and the virtual orbitals can of
course be simply ignored. The extra freedom allowed by
general rather than triangular diagonal blocks can be
used to gain extra numerical stability in certain cases.

Finally, we need to refine the method to avoid
symmetry-breaking intermediates. To do this, we first or-
der the spin orbitals so that those equivalent by symme-
try are ordered contiguously. We now observe that the
transformation of every component of such a subshell
will have identically the same transformation coefFicients,
which depend only on radial overlaps, and that the com-
ponents transform independently of each other, i.e., they
may be transformed in any arbitrary order with the same
result. For the subshell (nl ) under consideration, Eq. (31)
tells us that the transformation is equivalent to the appli-
cation of an operator product

s = g sn' g a~'kink
n'Wn k =1

it is easy to see that it is nilpotent of degree g+1
~g+ 1 ~o

(45)

(46)

The nilpotency of the logarithm s can be used to ter-
minate the series

k=1

.nI+g (t„.„—5„„)a„ka„k
n'

1=exp(s)t„„"qI= g s t„„"4.
~=0 &' (47)

V. PROGRAM STRUCTURE

The computer implementation of the biorthonormal
basis algorithm in the McHF-ASP programs [12] is now
limited to the evaluation of the transition moments be-
tween two CI expansions, i.e.,

The whole point in converting to a logarithmic expres-
sion is that all intermediate results, obtained when
operating with s, are now contained in the expansion
space: Since it is a double tensor of rank zero with
respect to spin and orbit, as shown in Appendix A, s
preserves both spin and orbital symmetries when acting
on a CSF.

The complete result is thus obtained by repeatedly ap-
plying the operator s, sc:aling, and adding. If the triangu-
lar decomposition of S ' was used, then the sums above
are over n'(n rather than n'Wn and s is seen to be a
strictly deexciting operator.

1+Xs'a'k&k (42)
'0) QO(i) %2

l

n'Wn

where we define s„=t„.„/t„„,and the last factor simply
scales by t„„ those determinants of 4 where spin orbital
nk is occupied. Since this factor commutes with all the
remaining factors in large parentheses in Eq. (41), it can
be moved to the end. Repeating this with all the factors
gives

where O(i ) is an electric or magnetic multipole transition
operator of any tensorial order [36]. The basic steps per-
formed by the transition probability program can be sum-
marized as followed.

(i) Check whether the CI expansions used for ql, and
+2 satisfy the closure under deexcitation property.

(ii) Calculate the CSF coupling coeFicients A,t" appear-
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ing in the expression of the excitation operator action on
the CSF's, i.e.,

and needed to perform the transformation of the CI
coefficients [see step (iv)]. They are identical to the
coefficients of the one-electron integrals I(n~l, n; I ) in the
(@„~H~C& ) matrix element (see Appendix A). These
quantities are invariant under orbital transformations and
give the matrix representation of the excitation operators
mapping the CSF expansion. This step is carried out for
both%, and%, .

(iii) Calculate the one-electron orbital overlap matrix
and decompose it into block-triangular factors to find the
new radial functions {P„&(r)] and {P„&(r)],which are
biorthonormal.

(iv) Use the method outlined in Sec. IV to transform
the configuration interaction eigenvectors C and C by
a sequence of single-orbital replacements. That step is
performed for each l symmetry, considering excitation
operators

P„ I(r)~P„&(r) with i
J k

which satisfy the closure under deexcitation property of
the CI expansions of 0', and 'P2.

(v) Use the standard (i.e., orthogonal) Racah-algebra
"machinery" to transform the many-electron amplitude
into a sum of one-electron reduced matrix elements [37].
The left- and right-hand side orbital indices of these refer
now to the two diferent orbital biorthonormal sets.

The algorithm will apply to any CSF sets that are
closed under deexcitation for both 4& and 0'2 expansions.
The latter can include non-RAS-CI expansions that satis-
fy the closure under deexcitation property only within
each irreducible representation, thereby still allowing the
needed transformations.

The present approach does not constrain the inactive
orbital spaces to be identical for the two states, unlike the
corresponding orbitals method [26], which has been used
for transition moment calculations [38]. The inactive
shells are closed but core relaxation is allowed. Though
Eq. (27) assumes identical numbers of shells on the left-
and right-hand sides, the program can handle two wave
functions that differ in dimensions in the RAS spaces.
This more general case is considered in Appendix B.

There is presently a restriction in the CI program [39],
which can deal with any number of s, p, or d electrons in
a shell but with no more than two electrons in a shell
with l ~ 3. If l ~ 4, the L,S term for the shell is restricted
to those allowed for 1=4. The presence of two f shells in
the same subspace can violate the closure under deexcita-
tion required property of the CI expansion. From a prac-
tical point of view, however, if f shells (or higher l angu-
lar momentum shells) are put in RAS-3 as correlating or-
bitals, there will be no problem, provided that we allow at
most one or two electrons in that subspace.

The computer implementation of the algorithm has
been tested by checking the invariance of the transition
moment with respect to orbital rotations within the inac-

tive space or active subspaces (RAS) for which the
transformed CSF vector(s) can be obtained for one (or
both) states, by performing the CI calculation keeping the
original CSF list(s). Since this invariance property is not
related to the variational quality of the one-electron basis
it has been checked to hold for any transition moment
connecting any eigenvector of the left-hand side to any
eigenvector of the right-hand side resulting from the CI
diagonalizations. Another stringent test of the biortho-
normal codes consisted in evaluating the transition prob-
ability between wave functions 4', and Oz build on a com-
mon orthonormal orbital set; in that case, the property
can indeed be calculated exactly using existing codes
[14,15] and an "artificially" rotated orbital set used for
one of the two states involved can mimic a nonorthogo-
nal situation.

VI. APPLICATION: THE 1s 2s P0~1s22s2P D
TRANSITION IN B I

TABLE I. SD multireference MCHF calculations
~( P )={js2s 2p js22p P j and Q (2D}

= {js 2s2p, js 2s 3d D j.
yz E Po (a.u. ) No. pf CSF's E D (a.u. ) No. of CSF's

HF —24.529 061
2 —24.560 354
3 —24.621 891
4 —24.638 480
5 —24.645 478
6 —24.648 728
7 —24.650 290

1

6
129
520

1301
2584
4479

—24.311 869
—24.311921
—24.379 506
—24.416497
—24.424 768
—24.429 451
—24.431 353

1

4
157
812

2320
5004
9161

The interaction between the configuration 1s 2s2p
and the Rydberg series ls 2s ns S and 1s 25 nd D has
been investigated recently by Carlsson et al. [40]. CAS
multiconfiguration Hartree-Fock calculations of transi-
tion probabilities and lifetimes, with increasing active
sets, have been performed keeping the 1s subshell closed.
The agreement between calculated and experimental life-
times is, in most cases, rather good. However, much less
satisfactory results have been obtained for the
1S 2s 2p P' —+18 282p D line. It has been argued that
the disagreement between the length and velocity gf
values is due to neglect of the strong core polarization by
the 2s electron in 1s 2s2p . We investigated the core po-
larization of the 1s shell by performing multireference
single- and double-excitation MCHF calculations. The
two zeroth-order multireference wave functions are

gg{0)(2Po) {ls 2s 2p ls 22p 3 2PO
j

4{ '( D)={ls 2s2p, ls 2s 3d D j .

These calculations fit with the RAS concept, with the
RAS-1 orbital subspace containing the ls shell (Ni =0).
The RAS-2 spaces contain 28, 2p and 28, 2p, 3d for I'
and D, respectively. The correlation orbitals define the
RAS-3 subset, with a maximum occupation number
N3 =2.

The total energies and MCHF expansion lengths are
reported in Table I for the increasing active sets, up to



52 TRANSITION PROBABILITY CALCULATIONS FOR ATOMS. . . 4507

TABLE II. SD multireference MCHF gf values in Bi.
$2$2p 2po~ 1$22$2p

TABLE III. Oscj.llator strengths for 1$2$2p P'
~1$2$2p D in B &.

gfI gf. 5E (cm ') Method Length Velocity

0.6876
0.2456
0.2625
0.2891
0.2928

0.8156
0.2696
0.2695
0.2866
0.2900

0.28(02)Expt'

'From Ref. [41].

2.5534
0.9959
1.0705
1.1868
1.2036

53 197
48 720
48 440
48 125
48 051

47 857

CAS MCHF (1$ closed)'
Weiss
Sibincic'
Sinanoglu and Davis
Nicolaides and Beck'
Nesbet
this work

Theory
0.243
0.402
0.690
0.216
0.174
0.292
0.292

0.274
0.504
0.942

0.210

0.291

n =7. The corresponding length and velocity oscillator
strengths, calculated with the theoretical transition ener-
gy differences, are given in Table II. The two forrnalisms
converge very nicely to each other and to the experimen-
tal value. The final theoretical values reported in Table
III are calculated using the experimental transition ener-
gies. They agree very well with the laser-induced Auores-
cence measurement of O'Brian and Lawler [41], demon-
strating the 1s polarization effect.
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APPENDIX A

Starting from the second-quantization form of the
single-particle Hamiltonian operator

(Al)

with the one-electron integral definition

and use it to express Eq. (A3) simply as

H= —g i 2(2l+ 1) g (a„.ia„i )oo 'I„ i „I .
n', n

(A5)

From Eq. (A3) it can be seen that the action of the need-
ed excitation operators on the CSF's appearing in the
transformation operator Eq. (47) can be naturally extract-
ed from the one-electron integral list generated by the an-
gular code [42].

APPENDIX B

In the biorthonormality of Eq. (26) nothing requires
the number of orbitals on the left- and right-hand side to
be identical for a given l value. Let n and m be the di-
mensions of the orbital bases (Iy ], [y ]) and (Iy ],
[y ] ), respectively, with m )n In that ca.se, the (n X m )

overlap matrix S has the structure
1 ~ d 2Z l(l+1)

r
SxY—

( TZ) (B1)

we simply have

XP„., (r )dr, (A2)
where T is a square submatrix of order n and Z is a rec-
tangular submatrix of dimensions n X(m n). We —want
to find the transformation matrices C and C satisfy-
1ng

n'I, nl g +n'lmrm nlmrm
I n', n m&, m

(A3) CxAtSxYC YB (I0) (B2)

To make more explicit the fact that this operator is scalar
in both spin and orbital spaces, it is interesting to build
the coupled tensor of ranks (00) [35]

where I is the unit matrix of order n and 0 is the zero rec-
tangular matrix of dimensions (m n) Xn L—et us ma. ke
the ansatz

(a1' a )(00) 1 a~. a
2(21+ 1) ~ n' mlm n

mmmm

m&, m

CYB
CYB CYB

11 12

0 I (B3)
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where C11 is a square matrix of order n. The condition
(82) corresponds to

(84)

CXA TTC YB+CXA t Z p (85)

Equation (84) can be used to obtain a pair of matrices(C,C„). Once these are obtained, one can get C,2 as

and C PB—
( CxA tT )

—1CxA tZ (86)
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