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We compute the percolation threshold of systems of interacting particles by a random-adding algo-
rithm with a rejection criterion based on the density distribution of the particles. The results are very
close to those obtained in our previous work based on a simple Boltzmann central-particle approxima-
tion. The results are also essentially the same as those obtained by the Metropolis method, even though
our algorithm is conceptually different and does not generate a true equilibrium configuration. This
finding suggests that connectivity, in comparison with other system properties, is more “general” and is
not sensitive to the particulars of the equilibrium state. Thus, our findings offer an efficient method for
obtaining percolation thresholds in systems of interacting particles. This method is computationally
simpler and faster than the well known Metropolis method.

PACS number(s): 02.70.—c, 64.60.Ak, 61.20.Ja, 82.70.Kj

I. INTRODUCTION

In a recent Rapid Communication [1] we reported an
alternative method for computing percolation thresholds
in systems of interacting particles. We argued that in
comparison with the Metropolis algorithm used thus far
for such problems, our random-adding method is more
efficient and more natural to percolation problems. In
the present paper we extend our comparison of the two
methods, starting with a system of particles having a
repulsive “hard core”and a connective “soft shell.” The
percolation thresholds obtained by the two methods are
practically identical. This fact is remarkable because it
contrasts sharply with the situation for other equilibrium
properties (such as the pair-correlation function), where
the random-adding procedure and the Metropolis algo-
rithm are known to disagree [1]. Thus, it may be simpler
to simulate connectivity properties than thermodynamic
properties.

Following these conclusions we have generalized our
method to other more complex interactions, by providing
a rejection criterion which mimics some global features of
the equilibrium configuration of the system. Basically,
our criterion ensures that, e.g., in the presence of an at-
tractive ‘“‘well,” particles will tend to conglomerate
around each other. The results obtained by this method
are in excellent agreement with those obtained by the
Metropolis algorithm. This has two consequences: First,
it confirms the usefulness of the random-adding algo-
rithm as a more efficient tool for computing percolation
thresholds. Second, it confirms that connectivity proper-
ties require only some global features of the equilibrium
configuration, which are apparently the ones contained in
our rejection criterion. This also explains the success of
our previous method, the heuristic Boltzmann central-
particle approximation, which turns out to be a simplified
version of the more rigorous criterion provided here.
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The rest of this paper is organized as follows: In Sec.
IT we present the problem of percolation thresholds in the
continuum with interparticle interactions. In Sec. III we
compare the Metropolis and the random-adding methods
and present some general aspects of the random-adding
method for the simple case of hard core—soft shell objects
(or particles). In Sec. IV we extend this method to a
more general potential and suggest a “global” characteri-
zation of the equilibrium state of interacting systems for
the percolation problem. Section V describes the im-
plementation of this generalization into a computer algo-
rithm. In Sec. VI we compare the results of our method
with those of the Metropolis method and we show that
our approach retains accurately the basic features of the
connectivity of percolating systems. Finally, Sec. VII
highlights the most important implications of the present
work.

II. BACKGROUND

In recent years, continuum percolation [2] has been a
field of growing interest. The connectivity and its physi-
cal implications in continuum systems of objects (or par-
ticles) is of relevance to many fields in physics, ranging
from properties of porous media [3] to the physics of mi-
croemulsions [4]. In particular, recent interest has con-
centrated on the physics of systems and processes com-
posed of interacting objects. Conspicuous examples are
water [5], molecular liquids [6], microemulsions [4],
deposition processes [7], and polymerization [8].

The problem of percolation in systems of interacting
objects holds a peculiar place in percolation theory. His-
torically, percolation theory made its major advances
through lattice models [9]. These enable predictions of
the universal characteristics of percolation systems, such
as critical exponents, which are identical for all lattices
and continuum systems (except for the transport proper-

4482 ©1995 The American Physical Society



52 APPLICATION OF THE CENTRAL-PARTICLE-POTENTIAL . ..

ties). On the other hand, the percolation threshold is sys-
tem dependent. For continuum systems of permeable ob-
jects, considerable theoretical success can be obtained
from analogies between continuum systems and lattice
systems [10] or from analytical theories [11,12]. On the
“experimental” side, computer simulations are a very
practical means of finding the percolation threshold of a
continuum system of permeable objects [13,14]. Howev-
er, when it comes to systems of interacting objects,
analytical attempts to derive the percolation threshold of
continuum systems have met with only limited success
[15-17]. Most of the results obtained thus far are only
qualitative and show marked quantitative deviations from
the results of computer simulations [15]. On the other
hand, some success has been obtained for lattice systems
[18,19]. Prominent among these is a class of models
known as percolation in correlated sequential adsorption
[20,21] (CSA), in which adsorption rates on a site in a lat-
tice can be enhanced if neighboring sites are occupied.
Like other lattice systems, however, CSA does not relate
directly to a physical microscopic interaction, and the
enhanced adsorption rates are chosen rather arbitrarily.
Moreover, as mentioned above, the percolation threshold
is a system dependent property, and therefore lattice sys-
tems are unlikely to be very useful representations of con-
tinuum systems. In view of the relative failure of analyti-
cal methods, the percolation threshold of the continuum
system of interacting objects must be determined, at
present, through computer simulations. For such sys-
tems the only available computer simulation method up
to now is the Metropolis method [22,23], which has been
used [4] for percolation in connection with models of mi-
croemulsions [24]. However, this method is lengthy in its
use of a large amount of computer time and it is particu-
larly difficult to apply in percolation problems, because in
a Metropolis run, the density remains fixed. Thus, one
must make a series of such runs with varying densities in
order to find the percolation threshold.

Because of this, the Metropolis procedure is an un-
natural and not too efficient way of finding the threshold.
Nonetheless, there is no other known way of simulating
the equilibrium state of an interacting system, and there
seems therefore to be no choice but to use the Metropolis
method. In this paper, however, we argue that the con-
nectivity properties of a system (i.e., the percolation
threshold) are different from other equilibrium proper-
ties, such as the thermodynamic properties or the pair-
correlation function, and in principle one may be able to
reproduce the percolation threshold of a system without
necessarily reproducing all the other equilibrium proper-
ties of the system. We prove this assertion by presenting
here a simulation method that performs this task. This
simulation procedure is different from the Metropolis
method but reproduces the percolation thresholds of in-
teracting systems obtained with it. Our method is, how-
ever, conceptually simpler as well as more natural and
more efficient for percolation problems in general. Its
success implies that the connectivity properties of the
system may depend on fewer details than other equilibri-
um properties of the system (such as the pair-correlation
function). While in this paper we do not concentrate on
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this general question, we nonetheless think that it is an
intriguing line of inquiry that should be pursued further.

III. THE METROPOLIS AND THE RANDOM-ADDING
METHODS

As we mentioned in Sec. II, the Metropolis algorithm
starts with a given density of objects which remains con-
stant during the whole run. Starting from some initial
configuration, new ones are generated by random trial
changes, usually a shift in the position of one of the parti-
cles in the system. Every such trial change is accepted or
rejected according to a criterion based on the change AE
in the total energy of the system that the trial move pro-
duces. There are two cases: (a) If AE <0 (hence, the total
energy diminishes), the trial change is accepted. (b) If
AE >0, a random number s between O and 1 is generated.
This number is then compared with the Boltzmann factor
exp(—BAE) where B=1/kyT, T is the temperature of
the system and kp is Boltzmann’s constant. If
s =exp(—pBAE) the trial change is accepted, otherwise it
is rejected.

Conditions (a) and (b) ensure that a long series of thus-
ly generated configurations conforms to the Gibbs distri-
bution [23]. Such a series then serves to calculate statisti-
cal averages of physical quantities. In percolation prob-
lems [4], this algorithm is used to calculate the average
probability, P, for the existence of a spanning cluster in
the system. The critical density is defined as the one for
which P reaches a prechosen value (the authors of Ref.
[4] use P=0.5, but the critical density is relatively in-
sensitive to the precise value chosen [4]). Because the
Metropolis process cannot, as a practical matter, be im-
plemented with a large number of objects (typically a few
hundreds), a large number of Metropolis steps are re-
quired to ensure that fluctuations and statistical uncer-
tainties are small (for example, in Ref. [4] about N =500
particles and 4X 10* steps per particle have been used).
For the purpose of computing the percolation thresholds
this makes the Metropolis method quite lengthy, even be-
fore the density is varied. Furthermore the need for a full
run of the simulation for each different object concentra-
tion is impractical and somewhat unnatural for percola-
tion. A more natural method would be to increase con-
tinuously the objects density and wait for percolation to
occur. This is the basis of the random-adding procedure.

This random-adding procedure is commonly used for
the case of zero interactions (permeable objects) with
bonding defined by partial overlap of the objects
[11-13,25-27]. Objects are “thrown” into the system at
random locations and the concentration is increased until
a spanning duster is obtained. Thanks to an efficient algo-
rithm developed by Hoshen and Kopelman [28], such a
simulation [12] can be conveniently carried out with large
samples (typically N >10%. In this case, the absence of
interactions makes all configurations equally probable.
Since the random-adding procedure generates
configurations totally at random, it clearly reproduces the
equilibrium state of the system. This ceases to be the case
when interactions are present. Even for the simplest pos-
sible system, that is, a system of hard spheres, it has been
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known for some time that the random-adding procedure
does not reproduce the equilibrium state [29]. For the
case of hard spheres, the random-adding method takes
the following form: at each step, one “throws” in a
sphere’s center at a random location. If the newly added
sphere overlaps one of the previously placed spheres, it is
removed and a new sphere is thrown in its place. The
process is repeated until no more spheres can be accepted
to the system. We conclude then that in the random-
adding procedure the “history” of the system, i.e., its
process of buildup, introduces a statistical bias that
makes some configurations a priori more probable than
others [29]. Hence, the random-adding method produces
preferentially a certain type of configuration. This is in
contrast with the true equilibrium distribution, where all
the allowed configurations (where no overlap of spheres
occurs) are equally probable. This in itself leaves open
the question of whether or mnot the preferred
configurations reproduce the equilibrium state of the sys-
tem. Not all (equally probable) configurations, after all,
represent adequately the equilibrium state of the system.
This may be immediately appreciated by simply consider-
ing the example of a perfectly ordered configuration in
which all the spheres are neatly stacked in one corner of
the system. It is basically an “empirical” question wheth-
er or not the random-adding generated configuration be-
longs to the dominant class of true equilibrium
configurations. In general, however, the answer is that it
does not. For example, Widom [29] has shown by explicit
calculations in one-dimensional systems that the thermo-
dynamic properties of the random-adding configuration
are different from the true equilibrium ones.
Connectivity, however, is a different property of the
system. Therefore, it is not obvious that random-adding
generated configurations have percolation thresholds
different from those of true equilibrium configurations.
The question is most easily answered by a direct check.
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The authors of Ref. [4], for example, determined the per-
colation threshold of a system of three-dimensional hard
spheres and two-dimensional hard disks (using the
Metropolis method, i.e., the equilibrium configuration).
In both cases, the binding criterion was provided by add-
ing a “soft shell” of diameter d. Two objects are bound if
their shells overlap, that is, if their centers are separated
by a distance smaller than d. We have used a random-
adding procedure with a removal criterion to determine
the percolation thresholds of the same systems. As de-
scribed above, the configuration is generated sequentially
by ‘“throwing in” new objects at random locations. If
overlap of the hard cores occurs, the last thrown object is
removed and another is thrown in its place. This goes on
until a spanning cluster appears in the system. The con-
centration at which this happens, p_, is then the percola-
tion threshold. The sample space volume is usually nor-
malized to unity and the critical concentration is numeri-
cally equal to the critical number of objects in the system,
N,. In all our runs, the size of the objects was chosen so
that N, was about 20000. It is usual [4,12] to eliminate
dependence on objects’ size by measuring the percolation
threshold in dimensionless units. We chose to measure
(47 /3)p.d? in the case of a system of spheres and 7p,d>
in the case of disks. These normalizations were chosen to
accord with accepted usage in the limit of zero hard core
radius, i.e., permeable objects [11]. In this case it is usual
to use the quantity B, defined as p_ V., ., where V. is the
excluded volume around every object. In the present
case, this corresponds to (47/3)d 3 in three dimensions
and 7d? in two. Figures 1(a) and 1(b) present the result
of our random-adding method for the case of a system of
spheres with a hard core and a system of disks with a
hard core, respectively. We compare our results with
those obtained by the Metropolis procedure of Ref. [4].
The “hard core” diameter is o and the “soft shell” diam-
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eter is d. The normalized percolation threshold is
presented as a function of the ratio of these two quanti-
ties, i.e., =0 /d. This is to facilitate comparison with
the results of Ref. [4], which were presented in this form.
The physical explanation for the dependence of the
threshold on 77 was given in Ref. [4] and thus will not be
repeated here. For the present purpose, what matters is
the striking agreement between our random-adding re-
sults and the Metropolis results. This is an impressive
confirmation of the conjecture that random-adding gen-
erated configurations have the same thresholds as true
equilibrium configurations. Moreover, in this case our
simple algorithm is very quick, while by comparison, the
Metropolis procedure is very inefficient and uses a much
larger amount of computer time. It should be noted how-
ever that random-adding algorithms exhibit “jamming”
above some densities [30], namely, no more objects may
be thrown into the system for lack of available space. If
jamming occurs, before percolation is reached, the
threshold cannot be determined even though it may be
well defined. Jamming is another ‘“historical” property
of random-adding algorithms and does not necessarily
represent a true property of the equilibrium system [29].
Nonetheless, Fig. 1 shows that jamming only occurs at
high values of n (specifically at %> 0.84 for disks, and
n>0.9 for spheres), where Metropolis runs are also
difficult to perform. For most practical purposes there-
fore, the random-adding procedure is adequate.

These results show that the “historical bias” intro-
duced into the random-adding procedure by its sequential
addition character is unimportant for determining per-
colation thresholds below the jamming density. This
raises the question of whether or not such a procedure
can be adapted to other more generic interactions. Such
a generic interaction should include an attractive ‘“tail”
as well as a short range (hard core type) repulsive term.
Let us take the heuristic position that percolation thresh-
olds are insensitive to the historical bias of random-adding
algorithms, for all interactions. We shall have to demon-
strate this assertion, but we temporarily adopt it without
proof. This leaves the question of the physical effect of
the interaction, namely that not all allowed
configurations are equally probable even in true equilibri-
um. We shall show presently that this can be taken into
account by modifying and extending the removal cri-
terion. To be specific, we shall work with the square-well
potential model used by the authors of Ref. [4]. Before we
can describe the actual computer simulation procedure,
however, we need to derive a criterion for the equilibrium
configuration of the interacting system. According to our
heuristic principle, we shall then assume that this cri-
terion can be applied to the random-adding algorithm
without further concern for the sequential “historical
bias.”

IV. DEVELOPMENT OF THE REJECTION CRITERION
FOR THERMAL EQUILIBRIUM

In Ref. [1] we have suggested a rejection criterion
based on the simple picture of a central-particle potential
neglecting the many particle interactions to which the
particles are subjected. Here, we systematically derive
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the criterion which justifies the heuristic approach taken
in Ref. [1].

We consider a system of N + 1 spherical particles, with
an interparticle interaction that consists of an infinitely
repulsive hard core of diameter o and a square-well at-
tractive term of range o(1+A), where A is a fixed param-
eter. The interaction potential u (7) between two parti-
cles, the centers of which are a distance »(=|r|) apart, is
given by

w©w, r<o

—(kgT)e, o<r<o(l+A) (1)
0, 0'(1+A)<ra

u(r)=

where T is the temperature, k; is Boltzmann’s constant,
and € is a parameter that defines the attractive
interaction’s strength. This is the potential used by the
authors of Ref. [4]. Clearly, because of the interaction
the particles are not distributed randomly in the system.
We seek then a characterization of the distribution of
particles in the system at thermal equilibrium. To find it,
we select an arbitrary particle, denoted hereafter as parti-
cle 0, and consider how the remaining N particles are dis-
tributed around it. We expect that the attractive interac-
tion will cause a clustering of particles around particle 0.
More formally, let p(r) be the local particle density at a
distance r from particle 0. Because of the attractive in-
teraction, we expect that p(r) will be greater, on average,
in the range o<r<o(l+A) than in the range
r >o(1+A). We calculate this effect by determining how
many particles will fall in the range o <r <o (1+A1), on
average.

To this end, we calculate the probability of finding &
particles at positions r;,r,, ..., Iy, all within the attrac-
tive  interaction range, that is, such that
o <|r;|<o(1+A) for j=1,2,...,k. The probability of
finding N particles at positions ry, . . . ,ry relative to par-
ticle O is given in the canonical ensemble [31] by

P(1,...,N)=(1/Qy)exp[—BH(1,...,N)], (2)

where B=1/kp T, H is the system’s Hamiltonian, and Qp
is the configuration integral, defined [31] as

Oy=[d1...dNexp[—BH(1,...,N)], 3)

where all the integrations are performed over the entire
volume of the system, denoted ().

The probability of finding k particles at positions
ry,...,r, within the interaction range of particle 0, so
that all remaining particles are outside this range, is now

P(1,2,...,k)= fd(k+1)...dNP(1,...,N),

N
k

4

where the combinatorial factor ({') is the number of ways
of selecting k particles out of &, and all the integrations
are performed over the positions outside the interaction
range of particle 0. We now break up the Hamiltonian
into four parts in the following way:
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H(,...,k,k+1,...,N)=E(,...,k)+W(l,...,k)
+¢ (k+1,...,N)
+V(k+1,...,N),

where

k
E(l,...,k)=3u(0,i),

i=1

k
w,..., k)= ulij,

i
iz
N k ®
Sk +1,...,N)= 3 | Sulij)],
j=k+1|i=1

N
Vik+1,...,N)= 3 u(ij).
i>j
i=k+1

Physically, E is the interaction energy of the k particles
1,2, ...,k with particle 0. W is the mutual interaction
energy of these k particles among themselves. ¢, is the
interaction energy of the other N —k particles, denoted
k+1,...,N, with the above k particles 1, . . ., k. Final-
ly, V is the mutual interaction energy of the N —k parti-
cles k +1,...,N among themselves. We note that since
o <|r;l <o(1+4) for j =1,2,.. ., k, we have that

E(1,...,k)=—ke/B. (6)

We introduce two notations: the volume of the attractive
well around particle O is denoted V,, while the volume
outside this range is ¥,. Thus, in three dimensions

V,=(4r/3){[c(1+M)]P =03},

(7a)
V,=Q—(47/3)a(1+M)]?,
and in two dimensions
V,=m{lo(1+A)]*—0?},
(7b)

V,=Q—m[o(1+1)]*.

Using Eq. (6), we rewrite Eq. (4) in the following form:

P(1,... (1/Qy)explke—BW(1,...,k)]

N
k)= k

xfd(k +1)---dNexp[ —B(¢+ V)] '®)
8

where all integrations are performed over the volume ¥,
defined in Egs. (7). We concentrate on the integral on the
right-hand side of Eq. (8), i.e., on

Oy—i=[dk+1)---dNexp[—B(g+M]. (9

Comparison with Eq. (3) shows that this is the
configuration integral of a system of volume ¥V, contain-
ing N —k particles which mutually interact via an inter-
nal potential ¥ and subject to an exterior field ¢, that de-
pends on k external parameters, 1y, ..., ;. The field ¢,
however, is short ranged, as is obvious from its definition
[Egs. (5)]. It acts only near the surface of the volume ¥V,
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that is, near the surface |r|=c(1+A). In the thermo-
dynamic limit, such surface terms are negligible [32].
Therefore, we can safely approximate Eq. (9) as

Qy—i=[d(k+1)---dN exp(—BV) 10

which is exact in the thermodynamic limit. In this limit,
we can define the reduced configuration integral, g, as

g= lim (Qn/7Q%) . (11)

Q— o

The reduced configuration integral is independent of Q
and N. It depends only on the density of the particles, p,
the temperature, and the details of the microscopic in-
teraction [32]. These parameters are identical for the
original system of volume  and for the system of N —k
particles in the volume ¥,. Therefore, we have that

Ov—k=qV) 7", (12)
Hence,
QN_k/QN=(V0/Q)NVa~k . (13)

Using Eq. (13) and writing () explicitly as
N(N—1):--+(N—k+1)/k! and approximating it as
N*/k1, we can finally recast Eq. (8) in the form

P(1,...,k)=P(0)[N exple)/V,1%1/k!)
Xexp[—BWI(1,...,k)], (14)

where P(0)=(V,/Q)N.
The probability P (k) of finding exactly k particles any-
where in the range V,, is now

P(k)= [, d1---dk P(1,... k). (15)
We introduce now the following notations:
T, =(1/V,)* [ d1---dkexp[—BW(L,..., k)]
b
and
A=pexp(e)V, , (16)

where p is the average density of the particles in the sys-
tem. We define T, =1. Since (N /V,)=p for large N, Eq.
(15) becomes

P(k)=[P(0)/k!]AFT, . 17

The average number of particles in the range ¥V, (k ), is
now given by

(kY= S kP(k)/ S, P(k) . (18)
k=0 k=0

This result is more suggestive when expressed through
the ratio of the following two densities: (k) /¥, which
we denote p,, is the average density of particles within
the interaction range (¥,) of particle 0. (N —<{k))/V,,
which we denote p,, is the average density of particles
outside the interaction range of particle 0. Simple alge-
bra and use of the definition of A [Eq. (16)] then yields
that



52 APPLICATION OF THE CENTRAL-PARTICLE-POTENTIAL ... 4487

Po/pp=A exp(—e), (19)

where A=[14+AT;+(A2/2)T,+ -+ - 1/[T,+AT,
+(AZ/20T3+ -+ 1.

Equation (19) can be checked for a particular physical
situation. Let us assume that W (1,...,k)=0 in Eq. (5).
This means that the system is an ideal gas subject only to
the field of particle O; while this is not a realizable physi-
cal situation, it is a convenient check of Eq. (19). In this
case, we have that T;=1 for all i’s, and therefore 4 =1.
Hence in this case p,/p, =exp(—e), which corresponds
to the Boltzmann distribution for an ideal gas subjected
to an external force field [32] (here originating in particle
0). It is now remarkable that A4 is in fact not markedly
different from 1, even when the mutual energy interaction
W(1,...,k) is correctly taken into account. A precise
calculation of A4 is quite difficult to carry out, but as we
show presently, it is also unnecessary. We define an “ A4
series” as follows:

A, =(1+AT)/T,,
A,=(1+AT,+0.5AT,) /(T +AT,) ,
L= 1+AT + - - +(A//jNT;

LT AT+, - A TG =T

(20)

Every term 4; is defined by the j quantities Ty, ..., T;.
In the limit j— o0, 4; approaches 4. To evaluate this
limit we calculate the first terms in the { 4;} series and
use the Shanks-Wynn € algorithm extrapolation scheme
[33] to approximate the contribution of the remaining
terms. The term T is trivial, since obviously W =0,
there being only one particle in the volume V,. Thus
T,=1. T, is slightly more complicated and the details

can be found in Appendix A. The final result is given by
T,=1—a+bf, 21

where a=(1/V}[I,—2I,+1,], b=(1/V})[I,—3I,
+31,—1,], the I j’s refer to the integrals in Table I, and
S =exp(e).

Equation (21) can be given a simple geometric interpre-

FIG. 2. The configuration of particles corresponding to the
term T,. Only particles O and 1 are depicted. Particle 3 may be
located either in the shaded or in the cross-hatched areas.

tation which we present in Fig. 2. In this figure we have
depicted particle O and particle 1. Particle 2 is not shown,
but it can now be positioned only in the shaded or in the
cross-hatched areas, if it is to fall in the interaction range
of particle 0, as required for T,. In the shaded area
exp[—Bu(1,2)]=1, while in the cross-hatched area
exp[ —Bu(1,2)]=f [according to Eq. (A3)]. The inter-
pretation of Eq. (21) is now immediate: the shaded area
is ¥V, (1—a) and the cross-hatched area is ¥V, b. This can
be confirmed by a direct calculation of the corresponding
areas. We note that aV, is the area “cut out” from V;, by
the total interaction range of particle 1 [the interaction
range is a sphere or disk of radius o(1+A)]. This
geometric interpretation is important for the evaluations
of T';. The integrals defining T'; are notoriously difficult
to calculate analytically [34]. However, for small values
of A (thin interaction shells), the above geometric argu-
ments can provide a very good evaluation. Fortunately,
the authors of Ref. [4] used A=0.1. Since we are in-
terested ultimately in comparing our random-adding re-
sults with the Metropolis results of Ref. [4], we need only
evaluate T; for the A=0.1 case. Our geometric method
is expected to yield the correct T'; value to within 10%.
This turns out to be quite sufficient for our purpose (see

TABLE 1. The integrals needed to calculate T, [Eq. (21)].

Three dimensions

I,=(57%/6)c*
(1672 /9)0¢ if 1+A>2
1

L=m0 [ (1+AP —(1+1)2+ L]
I,=(572/6)(1+1)°0"

2T | PoS [ e (14+AP —(1+1)*+ 5 (1+2)°] otherwise

Two dimensions

I,=(7—3V3/4)rc*
w0t if 1+A>2

L= o {1+ 12— (m/)[(1+A)+2(1+ M)V 4—(1+A?)+27{1—(1+A)*] arcsin[(1+1)/2]} otherwise
L=0*{m2(1+A)?—(7/4)[1+2(1+ 1)1V 4(1+1)*—1+27(1+A)[(1+A)*—1]arcsin[2/(1+1)]}

I,=(m—3V3/4)ro*(1+1)* .
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Sec. V). The detailed arguments for the calculation of T'5
are presented in Appendix B. Here we merely quote the
final results:

Ty=1—3a+2.25a*+0.5(ab —b?)
+f[3b —4.5ab +0.75b2]+ f2[1.25b%] . (22)

Hence, for the case A=0.1 we can sum up the results, us-
ing Egs. (21) and (22) and Table I. We obtain then that in
two dimensions

T,=1,

T,=0.684+0.035f , (23a)
T,=0.258+0.056f +0.001512 ,
and in three dimensions
T,=1,
T,=0.774+0.048f , (23b)

T5=0.441+0.096f +0.00282 .

This allows us to calculate the terms 4,, 4,, 4, in the
series defined in Eq. (20). Using the € algorithm, we can
obtain an estimate for the limit of the series, hereafter
denoted by A4.. This estimate is given [33] by

A=A, +[(A,— A A~ A,)/(24,— A, — 45)] .
(24)

The behavior of 4, as a function of the parameter A is
presented in Fig. 3(a) for two dimensions with €=2.0,
and in Fig. 3(b) for three dimensions with €=2.08 (these
values for € were used by the authors of Ref. [4]). The
figures show that A4_ varies quite slowly with A, and
remains fairly close to 1. We note that from Egs. (16) and
(19) it follows that A=~ Ap,V, (since p=~p,). Because
psVy is the average number of particles in the interaction

T T T T 1T T 1
L D=2 (a) |
€=2.0
20 |- A=01 7]
Ac ;—//
1.0 -
’,. 4
0.0 | L | L 1 I | I |
T I ! [ T { T T
L D=2 (b)/
€=2.08
2.0 A=0.1 T
Ac r =
o ,_\___/
0.0 W L | L | I | L 1
0.0 1.0 2.0 3.0 4.0

FIG. 3. The dependence of A4, on the parameter A for a
two-dimensional system of disks with €=2.0 and A=0.1 (a), and
for a three-dimensional system of spheres with €=2.08 and
A=0.1 (b).
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shell of particle O, A must be of the order of unity. Thus,
as shown by Fig. 3, for such values of A, 4, remains
quite close to 1. Equation (19) can now be approximated
by

po/Pp=Acexp(—e) . 25)

Equation (25) is the equilibrium criterion we use in our
computer simulation. Basically, our algorithm removes
newly added particles if hard core overlap occurs or if Eq.
(25) is violated. We now describe its implementation.

V. THE RANDOM-ADDING SIMULATION ALGORITHM

Following the development of the rather general cri-
terion we are in a position to apply it to actual simula-
tions for the determination of the percolation threshold.
For this purpose we define the following quantities:

N, =average number of particles
such that o <r <o(1+A),
(26)
N,=average number of particles
such that r >o(1+A),

where in both cases 7 is the distance between the particles
in question and particle 0. Therefore, we have that

szNb/Vb s
Po=N,/V, .

27

We cannot require, however, that Eq. (25) be verified as
such, since the probability of obtaining an exact equality
is negligible. We must therefore require an inequality, i.e.,

Po/pPp = A exp(—e) . (28)

The reason we chose this particular inequality rather
than the reverse = sign is as follows: Consider the alter-
native to Eq. (28), namely p,/p, = A, exp(—e€). This is
an upper bound on p, of the form p,<p, exple)4..
Now, our algorithm works by random addition. Thus,
left to itself, it tends to produce values of p,/p, quite
close to 1. As a result, if € is large enough, the upper
bound on p, is always satisfied by a simple hard core
random-adding algorithm. This, however, produces re-
sult adequate for e=0, but not for large €’s. Thus, the
upper bound does not represent an adequate restriction
on the algorithm’s workings. Equation (28), on the other
hand, is a lower bound on p, and as such should produce
the expected rise in p, as the interaction (the parameter
€) is increased.

Our algorithm proceeds as follows: First a “particle”
is thrown into the system and a second one is added in
such a way that it falls within the first one’s attractive
shell. This is to ensure that N, is not zero, since other-
wise, Eq. (28) is violated and the particle is always reject-
ed.

At each step, a new particle is randomly thrown into
the system and the total number of particles (a counter I)
is increased by 1. The program then makes two sweeps
of the sample and checks several criteria. In the first
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sweep, the algorithm checks whether the new particle’s
hard core overlaps the hard core of any other particle.
This step is made more efficient by dividing the sample
space into subregions and checking only subregions
where intersection is possible [12]. If such an overlap
occurs the particle is removed, I is decreased by one, and
a new particle is thrown in. If after the first sweep, the
particle is (temporarily) accepted, a second sweep is made
in which the algorithm checks the distance r between the
new object and all other (previously thrown in) objects.
For each such pair, if 0 <r <o(1+A), a counter X is in-
cremented by 1. The averages N, and N, [Eq. (26)] are
calculated recursively in the following way:

N,=[(I —1)N,(previous)+K]/I ,
N,=[(I —1)N,(previous)+I —1—K]/I .

(29)

These expressions are recursive equivalent to calculating
N, and N, by the expressions

N
N, b= 2 n i /. T N
=1
o (30)
Ne=3T—=1=ny)/I,
ji=1
where n; is the number of particles located within the at-
tractive shell of particle j. Equations (30) are clearly
equivalent to Egs. (26), and therefore, so are Egs. (29).

After completing the second sweep, the algorithm calcu-
lates A anew by

A=1IV, exp(e)/Q , (31)

where () is the volume of the sample space.

The program then calculates 4, according to Egs. (20),
(23), and (24). Hence, A, assumes a different value after
each successful throw, because the density changes and
therefore A changes. Note that T';,T,,T; depend only
on € and A and are therefore fixed during the entire run.
Finally, one should note that 4, does not depend on the
parameter 7, i.e., on the binding criterion. This is as it
should be, since 4, only characterizes the interactions in
the system, independently of whether any connectivity
property is present or not. The implementation of the
criterion, given by Eq. (28), now takes the following
form: if (N,/V,)/(Ny,/V,)> A, exp(—e), the new parti-
cle is rejected, I is reduced by 1, N, and N, are returned
to their previous values, and a new particle is thrown in;
if not, the new particle is accepted. Each time a newly
added particle is accepted, the program checks for the
onset of percolation. This is done by a continuum version
[12,13] of the Hoshen-Kopelman [28] algorithm. The I
value at which this onset takes place is the critical num-
ber of particles, N, and the threshold is p, =N, /Q.

VI. RESULTS OF THE SIMULATIONS FOR €>0

We have compared our random-adding generated re-
sults with the Metropolis results of Ref. [4]. Hence we
used the same parameters as those used there, i.e., in Eq.
(1) we took A=0.1, and varied €. All the percolation
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thresholds were measured as in the e=0 case (Fig. 1), i.e.,
(47/3)p.d? in three dimensions and mp,d? in two dimen-
sions. As in Ref. [4], these quantities are plotted as a
function of the ratio n=o0 /d where o is the hard core di-
ameter and d the soft shell diameter. Two particles are
bound if their centers are distant by less than d. In all
our runs, N, was between 10000 and 15 000. Every result
plotted in the figures is the average of five independent
runs performed with the same parameters every time.
The statistical variations between the five runs were up to
15%. While this may seem a rather large variation, the
average over five runs is quite stable, in the sense that
when we made ten runs of the program, for a few cases,
the average over ten runs differed from the average over
five runs by only about 5%, with a maximum deviation of
10%.

The results for three dimensions and €=2.08 are
presented in Fig. 4, and those for two dimensions and
€=2.0 in Fig. 5. The agreement with the Metropolis re-
sults is excellent. The slight discrepancies between our re-
sults and those of Ref. [4] are not greater than between
different runs of simulations of identical systems with
identical methods. In all these systems we note that, as in
the €e=0 case, jamming occurs only at high values of 7.
The situation is different for higher values of €. Figure 6
presents our results for e=2.86 in two dimensions. Here
jamming occurs very early on (at 7=0.3) and we could
not obtain results for higher values of €. Nonetheless the
behavior of the threshold for small 7 follows the trend of
the Metropolis method. We checked this tendency by re-
ducing € until jamming occurred at sufficiently high
values of 7 to exhibit the detailed behavior of the thresh-
old. We found that a value of e=2.2 fulfills this require-

T T T T T T
D=3
€=2.08
A=0.1
3.0 ° o -
o
.0 hd °* L ] °
L]
- ° ~
o - —
é 2.0 . o °
< %
o
L . &
L]
L]
1.0 —
o Metropolis (Ref.4)
® Present Method
0.0 | 1 L | I | L | L
0.0 0.2 0.4 0.6 0.8 1.0

n

FIG. 4. Percolation thresholds as a function of the ratio i for
a three-dimensional system of spheres with €e=2.08 and A=0.1.
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FIG. 5. Percolation thresholds as a function of the ratio 7 for
a two-dimensional system of disks with €=2.00 and A=0.1.

ment in two dimensions. The results obtained for this
case are shown in Fig. 7. In this case we had no Metrop-
olis results to compare our results to, but the qualitative
dependence of the threshold on the parameter 7 is strik-
ingly similar to the one exhibited by the Metropolis re-
sults for e=2.86 (Fig. 6). This behavior is far from trivial
and accidental agreement is excluded. Clearly, as long as

T I T T T ] T T
D=2
8.0 -
% ° €=2.86 i
o A=0.1
70 -
6.0 |- . ° .
o o
s o
e 50 + —
[ L ° o J
4.0 —
30 o Metropolis (Ref. 4) o N
- ® Present Method |
o
2.0 —
o -
1.0 L I | L 1 L
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 6. Percolation thresholds as a function of the ratio n for
a two-dimensional system of disks with €=2.86 and A=0. 1.

n

FIG. 7. Percolation thresholds as a function of the ratio n for
a two-dimensional system of disks with €=2.2 and A=0.1.

we are below the jamming density, our random-adding al-
gorithm reproduces faithfully the Metropolis results.

Finally, we checked the sensitivity of our method to
the value of A4, in the criterion given by Eq. (28). Since
we could only evaluate the correct value of A4, it is impor-
tant to assess how A4 dependent the method is. As we
showed in Fig. 3, A itself does not change much from
unity. Thus it would appear that its exact value is not
very important. We verified this conjecture by running
our random-adding algorithm with 4,=1 in criterion
(28). Indeed the comparison made in Figs. 8(a) and 8(b)
shows that the results obtained with 4,=1 and with the
correct criterion [Eq. (28)] are remarkably consistent.
This verifies our conjecture that the method is insensitive
to the precise value of A, and gives a posteriori
justification to the approximations used in calculating T’
(see Appendix B).

VII. CONCLUSIONS

We have presented a random-adding algorithm that
reproduces the percolation thresholds of interacting sys-
tems (under the jamming density). This is in spite of the
known fact that other statistical equilibrium properties of
the system are not correctly reproduced by random-
adding algorithms evern for the e=0 case. This points to
an intriguing aspect of connectivity that sets it apart
from other equilibrium properties. Clearly, the class of
configurations which share the same connectivity proper-
ty is larger than the class of equilibrium configuration.
This could be because connectivity is less sensitive to the
details of the configurations or for some other reason un-
known to us. We did not address here the question of
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what makes connectivity a ‘“more general” property, in
some sense, than other equilibrium properties. Our work
does show however that this is certainly the case. The
elucidation of this aspect of connectivity could deepen
our understanding of this property.

From the more practical point of view, we have shown
that the random-adding algorithm can be routinely used
for simulations of percolation systems at equilibrium
where interparticle interactions take place. The insensi-
tivity of the results to the prefactor which describes the
deviation from the single particle central potential model,
[ A(e)], to the details of the multiple particle interactions
indicates that the present simulation method can be used
for getting good estimates of the percolation threshold.
This applies even for complicated equilibrium systems for
which it is difficult to calculate the above prefactor.

APPENDIX A

We wish to calculate the quantity

T,=(1/V}) [, d1d2exp[—Bu(1,2)] . (A1)
b
We define the two functions
)1, Ir] <o
F(O=1o, Ir>0,
(A2)
_ 1, Itl<o(14+1)
F0= 00, |e]>a(144) .
From Eq. (1) we have that
|

fdxFl(x)F,(x“y)= [o , lyl>20.

(4703 /3)[1—(3y /40)+ L (y/0)’],

exp[—Bu(r)]=1—(1+f)F(r)+ fF,(r), (A3)
where f =exp(€). Accordingly, T, is given now by
- 2 — —
TZ——(I/V,,)bedfobdy[l (1+f)F,(x—y)
+fF,(x—y)] . (A4)

We can now extend the integrations over the entire sys-
tem volume (2, by noting that

0, Irl<o
Fy(r)—F,(r)= {1, o<|r|<o(1+A)
0, c(1+A)<]r| .

(AS)

Consequently, we have that
T2=<1/V,})fgdxfndym(x)—Fl(xn[FZ(y)—Fl(y)]

X[1=(1+f)F (x—y)+ fF,(x—y)], (A6)
where the integration range is defined by the two F, —F,
functions. T, is now a sum of integrals of the form
J F/(x)F;(y)F,(x—y)dxdy where i,j,k only take the
values 1 or 2. By suitable changes of the integration vari-
ables, all these integrals can be reduced to the form
f[fdxF,-(x)F,-(x—y)]Fj(y)dy.

Kirkwood [35] calculated the integral
fdxFi(x)Fi(x—y) in 1935. His result for three dimen-
sions is

lyl <20
(A7)
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The corresponding expression for f dxF,(x)F,(x—y) is obtained from Eq. (A7) by replacing everywhere o with

o(1+A). Similarly, for two dimensions, we found

2_ A2 2 9.2 .
fFl(x)Fl(x—y)dx= mol—(y/2)V 402 —y2—20%arcsin(y /20) , |y| <20

0, lyl>20.

All the integrals necessary for calculating T, are easily
evaluated with the help of Eq. (A7) and Eq. (A8). The re-
sults are summarized in Table I. The final result for T, is

T,=1—a +bf , (A9)

where a=(1/V2)[I,—2I,+1,], b=(1/V})[I,—3I,
+31,—1,] and the I;’s refer to the integrals in Table I.

APPENDIX B

In this appendix we present the geometric arguments
used to calculate T’5, given in Eq. (16), i.e.,

Ty=1/V)) [ [ [d1d2d3exp{—Blu(1,2)+u(1,3)
+u(2,3)]} . (B1)

The geometric interpretation of T, for two dimensions is
presented in Fig. 2, which shows that T, =1—a +bf [see
Eq. (21)]. The figure depicts only particles O and 1. Par-
ticle 2 may “sit” in the shaded area [where Bu (1,2)=0]
or the cross-hatched area [where Bu (1,2)= —e¢]. The an-
gle 0 in the figure is given by

(A8)

cos(6)=|r,/2| /0 , (B2)

where r; is the position of particle 1’s center relative to
particle 0. Now o <|r;|<o(1+1). For small A’s, the
average of cos(0) is given by

(cos(6))=L+A/4. (B3)

Hence, for A=0.1, {0) =~0.3244. The exact value of {6)
is m(a —b). The dotted area is (0)V, /m. Similarly, the
average cross-hatched area is b¥},. For three dimensions,
the interpretation is similar.

We can now calculate T3 according to four different
configurations of particles O, 1, 2, and 3. Once again we
work in two dimensions, for the sake of simplicity. Fig-
ures 9(a)-9(d) present the four configurations required to
calculate 7';. In all the cases, we have depicted particles
0, 1, and 2. Particle 3 may then be placed in either the
shaded, cross-hatched, or black areas. The other areas
are forbidden because of excluded volume effects. We
define now the following function:

F(1,2,3)=exp[—Pu(1,2)—Pu(1,3)—Lu(2,3)] . (B4)

FIG. 9. The various configurations that
contribute to T;. Only particles 0,1,2 are de-
picted. Particle 3 may only be placed in the
shaded, cross-hatched, or black areas.
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Let us now consider the four possible configurations one

by one:

Case 1: Fig. 9(a). In this case Pu(1,2)=—e.
Hence F(1,2,3)=fexp[—Bu(1,3)—Pu(2,3)], where
f=exp(e). If particle 3 falls in the shaded area

F(1,2,3)=f, and if it is in the crosshatched area
F(1,2,3)=f2. By arguments similar to those applied for
T, [see Eq. (A3)], the average shaded areas is
(1—3a/2+b/2)V,. The cross-hatched area is b¥,. Fi-
nally, since Bu (1,2)= —g¢, particle 2 must fall in the in-
teraction shell of particle 1. Comparison with Fig. 2
shows that the average area available for such a
configuration is bV,. The total contribution of this
configuration T'; is therefore

(T3, =b[(1—3a/2+b/2)f +bf?] . (BS5)

Case 2: Fig. 9(b). In this case Bu(1,2)=0, hence
F(1,2,3)=exp[ —Bu(1,3)—Pu(2,3)]. If particle 3 falls
in the shaded area, F(1,2,3)=1; if it falls in the cross-
hatched area F(1,2,3)=f. The angle ¥ in the figure is,
to a first approximation, in the range 0<y < (), where
(@) is defined by Eq. (B3), and is equal to m(a —b) as
noted above. Therefore, the average shaded area is
[1—(3(8) /2m)—({y) /2m)—b]V,. A simple evalu-
ation for (y) is {(y)=~(6)/2. Therefore, using
(6)=m(a —b), we have for the shaded area the expres-
sion [1—(7a/4)+3b/4)]V,. The cross-hatched area is
bV,. Particle 2 may fall in an area of size {0)V, /7 or
(a —b)V,. The total contribution of this configuration to
T, is therefore

(T3),=(a —b)[1—(7a/4)+(3b/4)+bf] . (B6)
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Case 3: Fig. 9(c). In this case Bu(1,2)=0. If particle
3 falls in the shaded area F(1,2,3)=1; if it falls in the
cross-hatched area F(1,2,3)=f; and if it falls in the
black area F(1,2,3)=f2 If the black area is I" we have
that 0ST <bV, /2, and hence (I") ~bV, /4. The cross-
hatched area is about [3b/2— (T )]V,. The shaded area
is about (1—2a +(TI'))V¥,. Particle 2 may fall in an area
which is approximately of size bV,. The total contribu-
tion of this configuration to T'; is therefore

(T3);=b[1—2a +(b/4)+5bf /4+bf?/4] . (B7)

Case 4: Fig. 9(d). In this case Bu(1,2)=0. If particle
3 falls in the shaded area F(1,2,3)=1; if it falls in the
cross-hatched area F(1,2,3)=f. The average shaded area
is (1—2a)¥V,. The average cross-hatched areas is 2bV,,.
Particle 2 may fall in an area of size (1—2a)V,. The con-
tribution of this configuration to T'; is therefore

(Ty)y=(1—2a)[1—2a +2bf] . (B8)
Summing up Egs. (B5) to (B8), we finally obtain
T,=[1—3a +(9a%/4)+(ab/2)—(b%/2)]

+f[3b —(9ab/2)+3b%/4]+ f%(5b%/4) . (B9)

For the three-dimensional case, we still use (B9) but with
the appropriate values of a and b [see Eq. (21)].

The approximations we use to calculate T'; are rather
coarse, but the result is “self-consistent” in the sense that
A is not sensitive to the exact value of T';, and the com-
puter results are not sensitive to the exact value of 4..
Therefore the above approximations are expected to be
sufficient.

[1] A. Drory, I. Balberg, and B. Berkowitz, Phys. Rev. E 49,
R949 (1994).

[2] For a review, see 1. Balberg, Philos. Mag. B 56, 991 (1987).

[3] See, e.g., Physics and Chemistry of Porous Media, edited by
D. L. Johnson and P. N. Sen (AIP, New York, 1984).

[4] A. L. R. Bug, S. A. Safran, G. S. Grest, and 1. Webman,
Phys. Rev. Lett. 55, 1896 (1985); S. A. Safran, I. Webman,
and G. S. Grest, Phys. Rev. A 32, 506 (1985).

[5]J. Texeira, in Correlations and Connectivity, edited by H.
E. Stanley and N. Ostrowsky (Kluwer Academic, Dor-
drecht, 1990), p. 167.

[6] D. H. Heyes and J. R. Melrose, J. Phys. A 21, 4075 (1988).

[71 M. C. Barttelt and J. W. Evans, Phys. Rev. B 46, 12675
(1992).

[8] A. Chhabra, D. Matthews-Morgan, D. P. Landau, and H.
J. Herrmann, Phys. Rev. B 34, 4796 (1986).

[8] D. Stauffer and A. Aharony, Introduction to Percolation
Theory (Taylor and Francis, London, 1991).

[10] W. Haan and R. Zwanzig, J. Phys. A 10, 1547 (1977).

[11] U. Alon, A. Drory, and I. Balberg, Phys. Rev. B 42, 4634
(1990).

[12] A. Drory, I. Balberg, U. Alon, and B. Berkowitz, Phys.
Rev. A 43, 6604 (1991).

[13] 1. Balberg and N. Binenbaum, Phys. Rev. A 35, 5174
(1987).

[14] 1. Balberg and N. Binenbaum, Phys. Rev. B 28, 3799
(1983); I. Balberg, N. Binenbaum, and N. Wagner, Phys.
Rev. Lett. 52, 1465 (1984).

[15] T. deSimone, R. M. Stratt, and S. Demoulini, Phys. Rev.
Lett. 56, 1440 (1986).

[16] S. C. Netemeyer and J. D. Glandt, J. Chem. Phys. 85, 6054
(1986).

[17]J. Xu and G. Stell, J. Chem. Phys. 89, 1101 (1988).

[18] R. Kikuchi, J. Chem. Phys. 53, 2713 (1970).

[19] J. Herterz, B. K. Chakrabarti, and J. A. M. S. Duarte, J.
Phys. A 15, L13 (1982).

[20] D. E. Sanders and J. W. Evans, Phys. Rev. A 38, 4186
(1988); J. W. Evans, J. Phys. A 23, L197 (1990).

[21] S. R. Anderson and F. Family, Phys. Rev. A 38, 4198
(1988).

[22] For a general exposition and some applications, see Monte
Carlo Methods in Statistical Physics, edited by K. Binder
(Spring, Berlin, 1979), and references therein.

[23] H. Gould and I. Tobochnik, An Introduction to Computer
Simulation Methods (Addison-Wesley, Reading, MA,
1988), Chap. 16 and references therein.

[24] M. Lagues, J. Phys. Lett. 40, 1331 (1979).

[25] I. Balberg, Phys. Rev. B 33, 36 318 (1986).

[26] E. Cherlaix, E. Guyon, and S. Roux, Trans. Porous Media
2, 31(1987).



4494 A. DRORY, 1. BALBERG, AND B. BERKOWITZ 52

[27] A. S. Skal and B. J. Shklovskii, Fiz. Tekh. Poluprovodn. 7, [33] D. Shanks, J. Math. Phys. 34, 1 (1955); P. Wynn, Math.

1589 (1973) [Sov. Phys. Semicond. 7, 1058 (1974)]. Tables Aids Comput. 10, 91 (1956). For some uses, see M.
[28] J. Hoshen and R. Kopelman, Phys. Rev. B 14, 3438 (1976). V. Sangaranarayanan and S. K. Rangarayan, Chem. Phys.
[29] See, e.g., B Widom, J. Chem. Phys. 44, 3888 (1966), and Lett. 101, 49 (1983), and G. A. Baker and P. Graves
references therein. Morris, Pade Approximants (Addison-Wesley, New York,
[30] See, e.g., Hinrichsen, J. Stat. Phys. 44, 793 (1986). 1981).
[31]J. P. Hansen and I. R. McDonald, Theory of Simple [34] S. Katsura, Phys. Rev. 115, 1417 (1959); Phys. Rev. 118,
Liquids, 2nd ed. (Academic, London, 1986). 1667 (1960).

[32] K. Huang, Statistical Mechanics (Wiley, New York, 1963). [35] J. G. Kirkwood, J. Chem. Phys. 3, 300 (1935).



