PHYSICAL REVIEW E

VOLUME 52, NUMBER 4

Interaction of solitons with a strong inhomogeneity in a nonlinear optical fiber

Sergey Burtsev* and D.J. Kaup!

Institute for Nonlinear Studies and Department of Mathematics, Clarkson University, Potsdam, New York 18699-5815

Boris A. Malomed?
Department of Applied Mathematics, School of Mathematical Sciences,

Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel

(Received 4 January 1995; revised manuscript received 15 May 1995)

We consider the interaction of fundamental and higher-order solitons with a strong localized inho-
mogeneity of the dispersion or nonlinear coefficient in a nonlinear optical fiber. The inhomogeneities
are modeled by § functions in the corresponding nonlinear Schrédinger equations, but they are not
treated as small perturbations. Actually, they could also represent long pieces of, respectively, (i)
linear or (ii) zero-dispersion fiber inserted into the bulk fiber, which is of wider interest for ap-
plications than the inhomogeneities proper. We obtain analytically a pulse transformed by the
inhomogeneity and then calculate its soliton content by means of numerical solution of the corre-
sponding Zakharov-Shabat equations. It is found that an inhomogeneity in the nonlinearity can split
the incoming fundamental soliton (1-soliton) into a symmetric pair of separating small-amplitude
solitons, although the larger part of the initial energy will be lost in this case in the generation
of dispersive waves (continuous radiation). In contrast to this, an inhomogeneity in the dispersion
only attenuates the output soliton but never splits it. We obtain a more interesting result upon
considering the interaction of 2-solitons with the nonlinearity inhomogeneity: a moderately strong
inhomogeneity can split the 2-soliton into a symmetric pair of separating fundamental solitons, gen-
erating only a fairly small amount of dispersive waves. (Here, an n soliton is a solitary pulse with
an amplitude n times that of a soliton but with the same width.) This result may be important for
applications, as it is well known that the soliton lasers generate pulses in the form of 2-solitons. We
thus predict that an inserted piece of the zero-dispersion fiber can effectively transform 2-solitons
into equal and separating fundamental solitons of good quality. For comparison, we also consider
the same problem for the 1.5- and 2.5-solitons; in the latter case, a third soliton may be generated.
The results obtained can be applied as well to nonlinear waveguides of other physical origin, e.g.,
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guides for internal waves in the ocean.
PACS number(s): 42.81.Dp, 47.35.+i, 03.40.Kf

I. INTRODUCTION

A recent development in technology allows one to fab-
ricate silica fibers with a well-controlled variable cross
section [1]. These fibers can be used as nonlinear light-
guides with a variable dispersion coefficient, which is why
they were given the name “dispersion-decreasing fibers”
(DDF’s). As early as 1987, it had been proposed to use
DDF’s for the pulse compression [2]. Experiments with
ultrashort (subpicosecond) optical pulses launched into
the DDF [3] have demonstrated that they indeed provide
an effective compression of the pulses, practically without
disturbing their solitonic shape.
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However, DDF’s can be used for more sophisticated ap-
plications than simple pulse compression, e.g., for the im-
proved soliton reshaping in a very long lossy optical cable
[4] and for the high-repetition-rate generation of an array
of solitons from a continuous wave [5]. Another interest-
ing application is the propagation of an ultrashort soliton
in a fiber with a periodically modulated dispersion coef-
ficient. This problem was considered semianalytically in
Ref. [6] by means of the variational approximation, which
was first developed for the model of the homogeneous
(constant-dispersion) fiber [7] and later extended to the
DDF in Ref. [8]. There it was predicted that, for a given
initial energy of the soliton, there would exist a critical
value of the modulation amplitude beyond which the soli-
ton would be suddenly destroyed after it had propagated
for a certain period. Very recently, direct systematic sim-
ulations of this model have corroborated this prediction
qualitatively and, in a part, even quantitatively [9] (see
also Ref. [10]). However, another fundamental fact re-
vealed by these simulations is that the above-mentioned
destruction mode does not actually destroy the soliton.
Rather the soliton splits into two secondary solitons, ac-
companied by a burst of dispersive waves (continuous
radiation). (This particular decay mode could not have
been modeled with the simple ansatz employed in Ref.
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[6]. The only destructive mode allowed by that ansatz
was, as a matter of fact, a sudden decay of the soliton
into radiation.)

The above works were concerned with the physics of
solitons when very gradual changes occurred. Here we
shall look at the extreme opposite case when such changes
are very sharp. Perhaps surprisingly, we find some
similarities (as well as differences), indicating perhaps
some universal behavior of solitonlike systems. Also, the
physics of these processes is just as interesting as in the
gradual case. Here we will consider the opposite limit:
the interaction of a soliton with a strongly localized in-
homogeneity. First, we consider an inhomogeneity in the
fiber’s nonlinear (Kerr) coefficient and then an inhomo-
geneity of its dispersion coefficient. In each case, we can
allow the inhomogeneity to be strong such that one would
not expect perturbative expansions in the strength of the
inhomogeneity to be valid. These problems are of inter-
est in themselves since they represent a fundamental type
of dynamical behavior in real nonlinear inhomogeneous
optical fibers and, more generally, in real inhomogeneous
nonlinear waveguides of an arbitrary physical nature (one
example of which is the natural waveguides for internal
gravity waves in the ocean [11]). Naturally, it will also
be feasible to observe these interactions experimentally.
Indeed, a localized inhomogeneity of the dispersion in
the optical fiber can easily be created by means of the
above-mentioned technique (see Ref. [12], in which it
was demonstrated that, in real tapered silica fibers, a de-
pendence of the effective dispersion coefficient upon the
fiber’s diameter can sometimes be extremely sharp; thus
one then has a strongly localized inhomogeneity). Sim-
ilarly, an inhomogeneity of the Kerr coefficient can also
be induced by tapering the fiber [12]. Alternatively, an
inhomogeneity in the Kerr coefficient can be fabricated
by simply doping a segment of the fiber with a resonant
dopant, tuned to the carrier wave length of the soliton
(see, e.g., Ref. [13]).

The problem considered in this work has actually a
more general purport, as it may be applied to inhomoge-
neous nonlinear wave guides of an arbitrary physical na-
ture. A well-known example different from optical fibers
is furnished by natural guides for internal waves in the
ocean [11]. These waveguides are quite inhomogeneous
and the guided internal waves are frequently nonlinear
[11].

Returning to the optical-fiber model, the same pertur-
bation has an alternative physical interpretation, which
is actually essentially more important than the simple
local inhomogeneity. This alternative interpretation is
simply that perturbations of the nonlinear and dispersion
coefficients proportional to the § function are equivalent
to arbitrarily long pieces of the, respectively, (i) zero-
dispersion (purely nonlinear) and (ii) purely linear fibers
inserted into the standard bulk fiber. If the inserted piece
is long enough, the equivalent é-like perturbation will be
strong, but it will keep the same functional form. As will
be shown in this work, the former case, i.e., an inserted
segment of the dispersion-shifted fiber with a nearly zero
value of the effective dispersion coefficient, may have a
real application in photonics: it can readily transform a
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2-soliton into a symmetric pair of separating fundamen-
tal solitons (1-solitons) with a very low level of radiative
losses. This application is important because, as is well
known (see [14] and references therein), a soliton laser,
which is a standard soliton source, usually produces 2-
soliton (an n soliton is a solitary pulse with an amplitude
n times that of a soliton, but with the same width as the
soliton), while one needs fundamental solitons for the use
in the soliton-based communication lines and logic chips.
Thus one can employ the above technique to split each
2-soliton into a pair of equal fundamental solitons. Be-
sides that, it is relevant to mention that the study of
soliton dynamics in nonlinear fibers operating near the
zero-dispersion point is an interesting subject in itself
[14].

The remainder of the paper is organized as follows.
In Sec. IT we start with the analysis for the case when
the coefficient of nonlinearity has a local inhomogeneity
approximated by the § function, with the incoming pulse
being a fundamental soliton. Outside of the inhomogene-
ity region (which is formally a single point), the system is
governed by the nonlinear Schrédinger (NLS) equation.
Using this approximation, we then find the exact solution
of the evolution equation in the infinitesimal vicinity of
the inhomogeneity. Thus, given an input pulse, we can
exactly determine the output pulse. When the output
pulse reenters the bulk fiber, it will not be a pure soliton.
So we apply the direct scattering transform to the out-
put pulse in order to determine its soliton and radiation
content. We find that, when the input is a fundamental
soliton, the amplitude of the output soliton rapidly de-
creases with increasing inhomogeneity strength and, at a
critical point, it bifurcates. Beyond this critical point, a
pair of symmetric separating solitons appears. With in-
creasing strength of the inhomogeneity, their amplitude
initially increases slightly, reaching a rather small maxi-
mum value, but then quickly decays with further increase
of the strength.

In Sec. III we consider the same problem for a lo-
calized inhomogeneity in the dispersion. In this case, a
single output soliton is always produced. Its amplitude
gradually decays as the strength of the inhomogeneity is
increased. In both cases, the eventual result is indepen-
dent of the sign of the inhomogeneity. (The reason for
this is that a d-function-like inhomogeneity always dom-
inates all other coefficients.)

In Sec. IV we return to the case where there is an
inhomogeneity in the nonlinearity, but this time we con-
sider more general input pulses than a single fundamental
soliton. As was mentioned above, a particularly interest-
ing problem is when the input pulse is a 2-soliton pulse.
When such a pulse passes through the inhomogeneity, the
interaction with the inhomogeneity changes the eigenval-
ues of the two constituent solitons, causing the imaginary
parts of the eigenvalues to move closer together. There is
a critical value of the nonlinear inhomogeneity parameter
(this value is not very large, being close to 0.5), at which a
bifurcation takes place. When this occurs, the imaginary
parts of the two eigenvalues become equal (and remain
equal beyond the bifurcation point) and simultaneously
the real parts of the eigenvalues become equal in mag-
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nitude but opposite in sign. Thus the former 2-soliton
pulse is split into two separating fundamental solitons.
Now there is a crucial difference between this bifurcation
and that for an input consisting of only a single funda-
mental soliton. This process for a single fundamental
soliton is accompanied by strong generation of dispersive
waves. However, for the 2-soliton pulse, at the bifurca-
tion point, the energy lost in the generation of radiation
is not more than 0.5%. This can have some very im-
portant applications in photonics. Even at a value of
the inhomogeneity parameter that is twice as large as
that at the bifurcation point, the share of the radiative
losses still stays below 10%. We then extend the analy-
sis to consider 1.5- and 2.5-solitons. For the case of the
1.5-soliton, the results prove to be quite similar to those
obtained for the 2-soliton, more so than that for the fun-
damental soliton. On the other hand, for the 2.5-soliton,
we find that not only do we have a similar bifurcation,
but also a new feature appears: namely, the generation of
a third soliton of a very small amplitude. Based on these
results, we can conclude that the splitting of a 2-soliton
state into two separating soltions should be quite stable
against variations of the input.

II. INTERACTION OF THE FUNDAMENTAL
SOLITON WITH AN INHOMOGENEITY
IN THE NONLINEARITY

We will start the analysis from the case when the non-
linear (Kerr) coefficient of the fiber has a strong localized
inhomogeneity. The simplest model of this system is the
NLS equation with a perturbation term proportional to
the § function:

i, + Urr + 2\ul?u = —elul?ud(z). (1)
Here, as usual, z and 7 stand for, respectively, the prop-
agation distance and the retarded time, u(z,7) is the
complex envelope of the propagating waves, and proper
nondimensionalization of all the coefficients in the NLS
equations is implied.

If the perturbation on the right-hand side of Eq. (1) is
interpreted literally as a local inhomogeneity, using the
6 function implies that an actual length of the segment
with the altered value of the nonlinear coefficient is much
smaller than the dispersion length of the soliton (which is
also called the soliton period). In nonlinear silica fibers,
for instance, typical subpicosecond solitons, which should
be appropriate candidates for the experimental realiza-
tion of this problem, can have soliton periods on the order
of hundreds of meters. Thus a segment of the fiber no
longer than several dozen meters, doped (or changed oth-
erwise) so as to have a different Kerr coefficient, can be
described by Eq. (1) with the § function perturbation.

On the other hand, the same perturbation on the right-
hand side of Eq. (1) effectively describes an inserted seg-
ment of a dispersion-shifted fiber, provided its effective
dispersion coeflicient is negligibly small and the higher-
order dispersion [14] can be neglected also. Let the length
of the inserted segment be L and its Kerr coefficient be
K. Then it is straightforward to see that insertion of
such a segment is exactly equivalent to adding the per-
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turbation term on the right-hand side of Eq. (1) with
e = KL. (1)

Proceeding, it is necessary to stress that we do not
assume the perturbation parameter € to be small and,
accordingly, the perturbation is not assumed to be small
or weak in any sense. We will find, both in this section
and later in Sec. IV, that we can obtain results valid
for arbitrary (nonsmall) values of €. To fully justify us-
ing the model with the é function, one should, strictly
speaking, verify that the results obtained for the ¢ func-
tion are equivalent to a limit of a narrow but finite-length
perturbation when the length tends to zero. This can be
done easily.

In this section, the input pulse will be taken to be a
fundamental soliton

u_(T) = 2nsech(2n7), (2)

where 7 is the amplitude of the soliton (in the fiber optics,
a more important physical characteristic is the soliton’s
peak power 47?) and the subscript “—” implies that the
soliton is taken at z = 07, i.e., just before interacting
with the §-like inhomogeneity. The soliton at z = 0~
can be given an additional parameter, viz., a central fre-
quency w, so that the wave form (2) is replaced by

u_(T) = 2nsech(2n7T) e ™. (2"

However, because the perturbed NLS equation (1) re-
mains Galilean invariant, we may transform to the
Galilean frame where w is zero, perform the analysis,
and then transform back. The net result is that we may
ignore the parameter w.

Straightforward integration of Eq. (1) over an infinites-
imal vicinity of the point z = 0 (obviously, only the first
term on the left-hand side and the perturbation term
on the right-hand side remain important in this vicinity)
yields the following for the output wave form at z = 07:

uy (1) = 2nsech(2n7) exp [~4i6772560h2(2777)] . (3)

The output wave form (3) is a combination of soliton(s)
and continuous radiation. The latter would separate
away from the soliton and disperse away as the output
pulse reenters and propagates down the bulk fiber. Thus
the most physically interesting issue is to find soliton
content of the output. A straightforward way to solve
this problem is to apply the inverse scattering transform
(IST) [15] to the output pulse. As is well known, the
IST for the NLS equation is based on the auxiliary lin-
ear Zakharov-Shabat SZS) equations for a two-component
Jost function (1/)(1),1/) 2):

PO +idpM —uyp® = 0, (4a)

P8 —ixp® 1wy =0, (4b)

where ) is the spectral parameter and the asterisk stands
for the complex conjugation.

Inserting a given wave form [e.g., that given by Eq. (3)]
into Egs. (4), one would search for discrete eigenvalues
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of A lying in the upper half of the complex plane. Each
eigenvalue corresponds to a soliton that will asymptoti-
cally (as 2 — oo) separate out from the given initial wave
form. The imaginary and real parts of the eigenvalue are
proportional, respectively, to the soliton’s amplitude and
central frequency.

For the output wave form (3), the ZS equations can-
not be solved analytically. However, a numerical solu-
tion is possible in this case. Implementing the numeri-
cal solution, we will concentrate on finding the complex
eigenvalues of A. The imaginary and real parts of the
eigenvalue(s) will be functions of two parameters, viz.,
the input soliton’s amplitude n and the inhomogeneity
strength e. However, using the scale invariance of Eq.
(1), one may set n = 1, which we will do. Thus we are
left with only the single nontrivial parameter, e.

In Fig. 1 we display the dependence of the amplitude
and central frequency of the soliton(s), found in the out-
put wave form by means of the numerical solution of the
ZS equations (4) vs the perturbation strength €. In the
region 0 < € < 0.6, we find exactly one soliton with a
zero central frequency (obviously, if the soliton is single,
its central frequency must be zero due to the symmetry
of the problem). The soliton’s amplitude monotonically
decreases with increase of €, vanishing at € =~ 0.6. With
the decrease of the soliton’s amplitude, the remaining
part of the initial energy appears as continuous radiation
generated in the output wave field.

At € = 0.6, a bifurcation takes place: at the same value
of € (close to 0.6) at which the amplitude of the soliton
vanishes, a pair of new symmetric solitons appears with
an infinitesimal amplitude. Beyond the bifurcation point,
these solitons each have a nonzero central frequency (due

inhomogeneity of nonlinearity
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FIG. 1. Characteristics of the output solitons produced

from the input fundamental soliton by the nonlinear pertur-
bation vs the perturbation strength e: the amplitude of the
output soliton(s) (the upper portion of the plot) and their cen-
tral frequencies (the lower portion). The central frequency w
defined as per Eq. (2) is twice the quantity displayed in the
lower portion of Fig. 1.
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to the symmetry, the amplitudes of the two solitons are
exactly equal, while their central frequencies are exactly
opposite). With a further increase of €, the central fre-
quencies monotonically increase, while the amplitudes at-
tain a rather small maximum value (less than 10% of that
of the input soliton) at € =~ 0.8 and then decrease again,
vanishing for all practical purposes beyond ¢ > 1.0.

This bifurcation is different from the one analyzed re-
cently in the context of another problem, viz., the split-
ting of a pulse governed by the unperturbed NLS equa-
tion into two solitons under the action of a chirp, i.e.,
a phase with a variable frequency [16]. In that case, it
was shown that the amplitude of the soliton produced by
an initial box-shaped pulse decreased with increase of the
chirp, but, at a certain point, a new soliton was produced.
The new soliton appeared with a zero amplitude. With
further growth of the chirp, its amplitude increased while
that of the original soliton kept decreasing until the two
amplitudes merged at the bifurcation point. Beyond this
point, the amplitudes remained equal, but the solitons
had opposite central frequencies.

Another feature of this problem is also noteworthy.
Generally speaking, opposite signs of € in Eq. (1) are
not equivalent. However, the results obtained in this
section do not depend upon the sign of €. Indeed, as
it immediately follows from Eq. (3), the change of the
sign amounts to complex conjugation of uy (7). Next, it
follows from the ZS equations (4) that, in turn, the com-
plex conjugation of u leads to the following change of
the eigenvalues: A (u*) = —A* (u). So we conclude that
changing the sign of € does not affect the amplitude(s)
of the resultant soliton(s), which are proportional to the
imaginary part of the eigenvalue, but reverses the sign of
the central frequency, which is proportional to the real
part. However, the latter change is immaterial since we
always obtain either a single soliton with a zero central
frequency or two symmetric solitons with equal but op-
posite central frequencies.

The results presented in this section are universal in
the sense that they completely describe all possible in-
teractions of the fundamental soliton with the §-function-
like inhomogeneity of the Kerr coefficient. In Sec. IV, it
will be demonstrated that the transformation of a higher-
order soliton under the action of the the same perturba-
tion leads to altogether different results.

III. INHOMOGENEITY IN THE DISPERSION

The simplest model taking into account a localized in-
homogeneity in the dispersion coefficient has the form [cf.

Eq. (1)]

iUy + Urr + 2Jul?u = —eu 6(2), (5)

where again, the perturbation coefficient € is actually a
product of the change of the local dispersion coefficient
and the length of the segment with the altered disper-
sion coefficient. An alternative realization of this per-
turbation is a segment of a purely linear fiber of length
L, with a dispersion coefficient D, spliced into the bulk
fiber. It is easy to see that this is equivalent to the term
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on the right-hand side of Eq. (5) with e = DL; cf. Eq.
(1'). The results we obtain below are less interesting
than the above: we will see simply a gradual degrada-
tion of the soliton with increase of ¢ and no bifurcation
will take place. Like in the preceding section, we do not
assume the parameter € to be small and it can be easily
demonstrated that the results to be obtained below for
an arbitrary value of € are equivalent to the limit that
can be obtained from a regularized perturbation expan-
sion with a finite support when the length of the support
tends to zero.

The input pulse is again taken to be a fundamental
soliton (2). If it is taken in the more general form (2'),
the transformation

u(z,7) = @ (z,7) exp [—iwT — iw?z + iew?0(2)], (6)

=74 2wz — 2ewb(z2), (7

where 6(z) is the step function, brings the input soliton
back into the form (2); according to Egs. (6) and (7), a
nonzero central frequency of the input soliton gives rise
to shifts in the phase and position of the output pulse,
but, obviously, it does not alter its soliton content.

To find the output pulse in the present case, Eq. (5)
should be solved in an infinitesimal vicinity of the point
z = 0 by means of the Fourier transformation. Before
doing this, we can again set n = 1 for the input pulse,
using the scale invariance of Eq. (5). Finally, the output
pulse can be obtained in the integral form produced by
the inverse Fourier transformation:

1 oo oo ) o
uy(r) = = dw dr'eiw(r—T")Fiew? sech(27'),
m
- 00 — 00

(8)

which in general is complex. The shape of the real part of
the output pulse (8), obtained by the numerical compu-
tation of the integral (8), is displayed in Fig. 2 for € = 1.

FIG. 2.
input fundamental soliton by the dispersion inhomogeneity at
e=1.

Shape of the output pulse (8) produced from the
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inhomogeneity of dispersion

1
1
i
0.9F —-==—-~- e

I i
i i
i i
S, -
! | !
i i i
* 1 1 1
0.8F--—-——--- e it B -
x | i |
i i i
0.7F====~x KT it -
1 1 I
0.6 X : :

FIG. 3.

Amplitude of the output soliton produced from
the input fundamental soliton by the dispersion inhomogene-
ity vs the perturbation strength e.

Solving the ZS equations (4) with the potential uy (7)
defined by Eq. (8), we have that, in contrast to the case
considered in Sec. II, the output pulse always contains
only a single soliton plus dispersive waves, with the soli-
ton’s central frequency equal to zero. The dependence
of the amplitude of this soliton upon the inhomogeneity
parameter € is displayed in Fig. 3. The amplitude slowly
and smoothly goes to zero as € increases.

IV. TRANSFORMATION OF A HIGHER-ORDER
SOLITON BY AN INHOMOGENEITY
IN THE NONLINEARITY

In this section, we will return to the model (1), assum-
ing that the inhomogeneity is produced by an inserted
segment of a zero-dispersion nonlinear fiber according to
Eq. (1'). However, unlike what was done above in Sec.
II, here we will consider input pulses different from the
fundamental soliton (2):

u_(1) = 2N sech(27), (9)

where we have set, as above, n = 1 [c¢f. Eq. (2)] and
the number N is usually called the order of the higher-
order soliton [14]. As mentioned in the Introduction, the
case N = 2, i.e., the so-called 2-soliton state, is of spe-
cial interest for applications because the soliton lasers,
which are standard sources of high-quality solitons, usu-
ally generate pulses exactly in the form of the 2-solitons
[14].

The subsequent procedure is quite similar to that em-
ployed in Sec. II: one can first easily solve Eq. (1) in the
infinitesimal vicinity of the point z = 0 [see Eq. (3)] and
then the soliton content of the resultant output pulse can
be found numerically by means of the ZS equations (4).
The results are displayed in Fig. 4.

For the N-soliton (9), the optical energy (number of
photons)
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inhomogeneity of nonlinearity; 2-soliton
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FIG. 4. Characteristics of the output solitons produced

from the input 2-soliton by the nonlinear perturbation. The
upper and central portions have the same meaning as in Fig.
1; the lower portion displays the share of the radiation energy
vs the perturbation strength e.

E= / ()P (10)

—0o0

takes the value 4N2. In particular, for the 2-soliton the
energy is 16. On the other hand, each discrete eigenvalue
with the imaginary part 7 corresponds to a fundamental
soliton carrying the energy 47. Looking at the upper
portion of Fig. 4, one notices that, at ¢ = 0, the two
values of 77 are 3 and 1, so that their net energy is indeed
equal 16.

With an increase of ¢, the two eigenvalues get closer,
remaining purely imaginary. This is accompanied by the
generation of some continuous radiation. The share S
of the total energy lost to continuous radiation can be
calculated, according to the above formulas, as § =1 —
(m1 +m2)/N?%, where n; and 7, are the amplitudes of the
output fundamental solitons. The lower portion of Fig.
4 displays the share S vs the perturbation parameter e.
Comparing this plot to Fig. 1, one immediately notices
a crucial difference between the present bifurcation and
that considered in Sec. II. In Sec. II, the radiative losses
dominated; now they are fairly small.

The bifurcation takes place at the critical value

€er & 0.47. (11)

Beyond the bifurcation point, the amplitudes of the two
solitons remain strictly equal, while they acquire equal
but opposite central frequencies, which, as well as in the
case of the bifurcation corresponding to Fig. 1, implies
that the two solitons are separating at a certain veloc-
ity. Thus the present bifurcation transforms the input
2-soliton into a pair of well-separated fundamental soli-
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tons. As mentioned in the Introduction, this process is of
definite interest for applications, as it allows one to trans-
form a higher-order soliton (say a 2-soliton produced by
the soliton laser) into a pair of fundamental solitons. This
transformation may be accomplished by a very simple
means, Vviz., a piece of a zero-dispersion fiber spliced into
the bulk fiber. The necessary length of the inserted piece
can be readily found from Fig. 4 and Eq. (11), using
the relation (1’). A very important asset of this transfor-
mation is the fact that, according to the data displayed
in the lower portion of Fig. 4, the radiative losses may
be kept to a very low level. In particular, exactly at the
bifurcation point, the share of the radiation energy is not
more than 0.5%. Even at the value of ¢, which is twice the
critical value (11), the radiation absorbs less than 10%
of the total energy. Thus this is a very efficient means of
generating two solitons of equal amplitude from a single
2-soliton pulse.

We have also considered the same problem for some
noninteger values (1.5 and 2.5) of the order N of the
input soliton. These provide information on the stability
of the above results for the 2-soliton case. In Fig. 5 we
display the results when the input is a 1.5-soliton. The
unperturbed pulse corresponding to N = 1.5 contains,
as follows from the well-known results of Satsuma and
Yajima [17], exactly one eigenvalue with n = 2, which
agrees with what is shown in Fig. 5 at ¢ = 0. The
main features of variation in the output with increase of
€ are clearly seen in Fig. 5. It is noteworthy that this
case, being intermediate between N = 1 (Fig. 1) and
N = 2 (Fig. 4), seems essentially closer to the latter
case. In particular, the bifurcation takes place at ¢ quite
close to the critical value (11). It is also interesting to
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FIG. 5. Characteristics of the output solitons produced

from the input 1.5-soliton by the nonlinear perturbation. The
upper, central, and lower portions have the same meaning as
in Fig. 4.
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compare the radiative losses in the case N = 1.5 with
those corresponding to N = 1 and NV = 2. As seen from
the lower portion of Fig. 5, the share of the radiation
energy is close to 10% at the bifurcation point, while it
is much larger at N = 1 (Fig. 1) and much smaller at
N =2 (Fig. 4).

Figure 6 displays the results for the 2.5-soliton. Notice,
first of all, that, according to the Satsuma-Yajima formu-
las [17], the unperturbed 2.5-soliton contains exactly two
eigenvalues with 71 = 4 and 7, = 2, which agrees with
Fig. 6 at ¢ = 0. (Actually, since 2.5 is a critical value,
a third soliton must appear just above 2.5. Thus, at 2.5,
strictly speaking, we also have a third soliton, but with
a zero amplitude.) At € > 0, these two eigenvalues ap-
proach each other, while a third small-amplitude soliton
now appears in the output (depicted by the dashed line
in Fig. 6). An interesting feature of these results for
N = 2.5 are the unresolved oscillations in the radiation
energy share vs the perturbation parameter € [see Fig.
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FIG. 6. Characteristics of the output solitons produced
from the input 2.5-soliton by the nonlinear perturbation:
the amplitudes and central frequencies of the output solitons
(shown, respectively, in the upper and middle portions of the
plot) vs the perturbation parameter €; the share of the ra-
diation energy (the middle lower portion) vs e. In the plots,
the dashed curve shows the characteristics of the third output
soliton.
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6(c)].

To conclude this section, note that the 2-soliton pulse,
being an unstable solution to the unperturbed NLS equa-
tion, can be easily split by almost any perturbation into
two fundamental solitons, with final amplitudes close to
3 and 1, which correspond to the two eigenvalues in the
unperturbed 2-soliton pulse. An example of this is found
in recent work [18] where this type of a splitting was
simulated within the framework of the NLS equation by
using a periodically modulated dispersion coefficient (cf.
the work [6]). The principal difference between that and
the splitting mechanism considered here is that our mech-
anism performs a “deep processing” of the input 2-soliton
pulse, splitting it into two symmetric fundamental soli-
tons with equal amplitudes.

V. CONCLUSION

In this work, we have considered the transformation
of fundamental and higher-order solitons in a nonlin-
ear optical fiber under the action of two fundamental
types of local inhomogeneities, viz., inhomogeneities in
the nonlinearity and in the dispersion. In both cases, the
inhomogeneities were treated by using the assumption
that the length of the inhomogeneous section was much
smaller than the soliton’s dispersion length, so that the
inhomogeneity could be approximated by a ¢ function,
but at the same time, we did not assume the inhomogene-
ity to be a small perturbation. We have also considered
an alternative (and more important physically) interpre-
tation of the same perturbations, in the form of arbitrar-
ily long pieces of (i) zero-dispersion or (ii) purely linear
fiber spliced into the bulk fiber. The adopted model was
based on the NLS equation with an additional term rep-
resenting the local inhomogeneity. The solution of the
problem was obtained by the exact integration of the evo-
lution equation across the inhomogeneity and then appli-
cation of the IST to the resultant output pulse in order
to find its soliton content. Using the scaling invariance of
the models, in each case we were able to bring them into
a single-parameter form. We found that the inhomogene-
ity of the nonlinear (Kerr) coefficient can cause the input
fundamental soliton to split into two small-amplitude sec-
ondary solitons; however, most of the initial energy would
be expended on the generation of radiation. In contrast
to this, the dispersion inhomogeneity never splits the in-
coming fundamental soliton, but merely induces a partial
decay into continuous radiation. In both cases, although
the full equations are not invariant with respect to change
of sign in front of the inhomogeneous term, the obtained
results do not depend upon this sign.

Consideration of 2-soliton input pulses with a non-
linear inhomogeneity yields altogether different results.
It was demonstrated that, provided the perturbation
strength € exceeded a critical value that is not really
large, this perturbation effectively transforms the 2-
soliton into a pair of fundamental solitons with equal am-
plitudes and with the radiative losses being very small.
Approximately the same result can be obtained with 1.5-
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and 2.5-soliton pulses. In particular, the 2.5-soliton input
pulse contained an additional (third) small-amplitude
soliton. Thus one would want to keep N < 2.5. This
result is of definite interest for applications since it opens
an effective way to transform N-soliton pulses (N close
to 2) into two fundamental standard solitons.

One could also consider a more general case, wherein
one would combine the local inhomogeneities of both the
nonlinearity and dispersion (note that tapering a real op-
tical fiber is apt to produce such a combined inhomogene-
ity [12]). However, now the treatment of this problem is
no longer as simple as has been done here. The above
two cases reduce to linear equations. The general com-
bined case is a fully nonlinear case. One can easily see
that by the following argument. If we interpret the per-
turbation as an inserted segment of fiber with arbitrary
parameters, it now has both dispersion and nonlinear co-
efficients. Thus, in this small segment, a pulse would
propagate according to a NLS equation, however, with
different coeflicients. Thus a soliton in the bulk fiber will
not be a soliton in the inserted segment. In particular,
any pulse put into the segment will have, in terms of
the IST, different scattering data in the segment than
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in the pulse. Thus, in the segment, a different propaga-
tion will occur. However, in the segment, the pulse will
propagate according to a NLS equation, although with
different coefficients. Thus one must use the full IST for
this new NLS in order to determine the propagation in-
side the segment. Then, at the end of the segment, one
must take the output pulse and decompose it according
to the IST for the NLS equation in the bulk fiber, in or-
der to determine the soliton content that will exist upon
reentering the bulk fiber. Clearly, these more general
results will now be a function of three parameters (the
dispersion and nonlinearity of the segment, as well as the
segment length). This will be much more complex than
the two limits considered here (and is also clearly beyond
the scope of this work). Of course, in this case the possi-
ble effects could be more complex. However, these effects
would still have to approach the results obtained here in
the appropriate limits.
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