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Focus wave mode solutions of the inhomogeneous n-dimensional scalar wave equation
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In the following focus wave mode solutions of the inhomogeneous n-dimensional scalar wave equation
are determined when the source term is of separable type (i.e., separable in the characteristic variables).
In this case the n-dimensional inhomogeneous wave equation is transformed into a formally equivalent
(n —1)-dimensional inhomogeneous diffusion equation having a complex longitudinal space-time in-

dependent variable. The unbounded space propagator of this diffusion equation and the Palmer-
Donnelly line source term generalized to n dimensions are used to obtain inhomogeneous wave equation
solutions in two, three, and four space dimensions. Localization of these solutions is shown to increase
as the dimensionality increases. An infinitely long line source with finite radius is also considered. As
the source radius increases past a certain point, the localization and amplitude of the central peak de-
crease dramatically.

PACS number(s): 41.20.Jb, 03.40.Kf, 02.30.Jr

I. INTRODUCTION

Until recently focus wave mode (FWM) or localized
wave (LW) solutions of the scalar wave [1—9], damped
wave [10—12], Klein-Gordon [9—14], London [15,16],
and Maxwell's [17—19] equations have been considered,
primarily when solving homogeneous partial differential
equations (PDEs). However, several attempts to solve
the scalar inhomogeneous wave equation to provide phys-
ical insight into launching mechanisms for such waves
have been made also [20—22]. These attempts have been
restricted to three (space) dimensions only.

In this paper we obtain explicit FWM solutions (when
n is two, three, and four) to the inhomogeneous n
dimensional scalar wave equation having a source term of
a given form. When the source term is of separable type
(separable referring to the characteristic variables), the
n-dimensional inhomogeneous wave equation can be
transformed to a PDE which is formally equivalent to a
( n -1 )-dimensional inhomogeneous difFusion (or heat)
equation with a complex longitudinal space-time indepen-
dent variable. The diffusion equation has a decided ad-
vantage over the wave equation in the following way. Its
propagator in unbounded space exhibits no important
formal differences between one, two, and n dimensions.
Furthermore, the diffusion equation propagator is simply
the envelope of the fundamental Gaussian LW solution of
the scalar wave equation and thus the fundamental
Gaussian solution can now be generalized to n dimen-
sions. This propagator is used to determine an appropri-
ate unbounded space Green's function which can then be
integrated (along with the source term) to obtain solu-
tions to the inhomogeneous scalar wave equation. The
Palmer-Donnelly source term [20] for the inhomogeneous
wave equation is used in two, three, and four dimensions
to compare the effects of dimensionality on the LW solu-
tions. This method offers an advantage over direct solu-
tion of the inhomogeneous wave equation: only a retard-
ed Green's function need be used, whereas the direct

method utilizes both retarded and advanced Green's
function components [20,21]. Thus in the present
method problems with causality are, hopefully, not as
likely to occur.

In Sec. II, we transform the n-dimensional wave equa-
tion into a ( n -1 )-dimensional diffusion equation
equivalent. In Sec. III, we use the unbounded space
propagator and the Palmer-Donnelly source term gen-
eralized to n dimensions to obtain inhomogeneous scalar
wave equation solutions in two, three, and four dimen-
sions. In Sec. IV we use an infinitely long line source
with finite radius (which is the idealization of a finite ra-
dius long wire with current very close to the surface) to
achieve a LW solution to the inhomogeneous wave equa-
tion. Section V contains the conclusions.

II. THE n-DIMENSIONAL SCALAR WAVE EQUATION

where

v2 a+a+ +a
ax

&
ax& ax

xo =ct, n can be any integer, and

fn (Xl &X2& ' ~ Xn )'

Using the characteristic variable substitution

(2)

Eq. (1) becomes

%(r„),g, g)=0 . (5)

We consider the n-dimensional scalar homogeneous
wave equation in Cartesian coordinates to be given by

a2
V„— 'P(r„,xo) =0,

ax 0
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If the solution, %(r„„g,q), is assumed to have the form

%(r„„g,ri) =f(r„„g)e'~",
then (5) becomes where

exp
—PR (14)

2
Vn —1 +4iP f(r„„g)=0,a

(7)
and

(15a)

and once f( (, g) is found, (Ii is immediately known.
In its present form, Eq. (7) is formally equivalent to a
Schrodinger equation, and further transformation, i.e.,

r=a, +i( (8)

reduces (7) to the equivalent form of a diffusion (or heat)
equation,

(9)

For the specific transformation (8), a) must be real and
positive while g=x„ct is rea—l also. Thus r is a complex
space-time independent variable with one "longitudinal"
spatial dimension xn separated from the remaining
"transverse" spatial variables. In (9), I/4P acts like a
constant diffusion coe%cient.

In the inhomogeneous wave equation case,

a2
4'(r„,xo) =s(r„,xo),

Bxo
(10)

if the source term has the general form, i.e., separable in
the characteristic variables g and g

s(r„,xo) =g(r'„„g)e'~",
then, using (8), (10) can be rewritten as

(12)

an ( n —1)-dimensional inhomogeneous diffusion equa-
tion, which does not explicitly involve g.

Returning to the homogeneous n-dimensional diffusion
equation in (9), we can use the unbounded space propaga-
tor of this equation to obtain solutions of both the homo-
geneous and inhomogeneous n-dimensional wave equa-
tion. The diffusion propagator Ko" "(r„„r;r'„„')r
in unbounded space is a solution of the homogeneous
PDE, given in (9), that satisfies the following conditions

g=r —r'=(a( —a', )+i(g —g') . (15b)

As long as ~r~ & ~r'~ so that ~g'~ &0, (14) is a solution to
the (n —1)-dimensional homogeneous diffusion equation
in unbounded space, and thus

I.I) '(R, g) =K' '(R, g)e'~'"

or, assuming that r 2
=r' =g'=0,

(17)

exp +i13rin(a(+if) (a) +i() (18)

(since r 2
=x f +x z2=p, r =a ) + i g) Equ. ation (18) is a

focus-wave-mode solution of the three-dimensional
homogeneous wave equation, and it is well known as the
fundamental Gaussian I3]. The fundamental Gaussian is
indeed fundamental in the sense that [excluding the
exp(if') factor], the diffusion equation propagator is the
fundamental Gaussian solution. Furthermore, once the
propagator (of one lower dimension) is known, any initial
value problem involving the diffusion equation may be
solved, and this solution can become a solution of the
wave equation of one higher dimension. For example, if
we wish to solve (9) (with n =3) subject to the initial con-
dition that

f(r2, ro) =a(
~ rq ~ ), (19)

where ~r2~ =p, r=oaoi+(zo —cto), then for ~r~ & ~ro~,

f(p, r) = I dp'p'Ko '(p, r p', ro)a(p'), (20)

which gives the solution to (9) subject to (19).
Also in the absence of boundaries, we would like to

solve the n-dimensional inhomogeneous wave equation,
provided its source term is separable in the characteristic
variables and thus obeys (11). When the source term
obeys (11), we can use the fact that the propagator of the
(n —1)-dimensional diff'usion equation is closely related
to the Green's function by

I (~) (R g)
—K(lt —1) (R g) tP(q —

) )7'

is a solution to the n-dimensional homogeneous wave
equation in unbounded space. Specifically the three-
dimensional (n =3) wave equation has the solution

K'" "(r„(,&'; r„—) & )=&(" —)

for [r) & /r'[, (13a)

(13b) =h(r r')K()" "(r„(,~,—r„', ,r'), (21)

(13c)0 as ~(r„

It is well known that the propagator for (9) is given by
[23]

where h (r—r') is the usual step function.
Ifg(r„„~)is the source term of the diffusion equation

as in (12), the general solution to the (n —1)-dimensional
inhomogeneous diffusion equation is



52 FOCUS-WAVE-MODE SOLUTIONS OF THE INHOMOGENEOUS. . . 4389

Xg(r„', ,~'), (22)

Using several variable transformations, (28) can be writ-
ten as

in the absence of boundaries and for zero initial condi-
tions with dV' as the source volume and ~+=~+a,
lim, or+ =s. Usually this limit is unnecessary and if no
sources exist and act before some initial space-time point
'ro then (22) can be written as [23]

f(p, r)= f du
7T7 ~p

exp

(1 —u)

where uo=~/(r —~0).
Upon integration [24], (29) becomes

(29)

Xg(r„' „r'), (23)
f(p, 7)= exp

7T7

O' —
E;

I'-iP'

'T 'T T 7Q

and the step function is unity in this region. Of course,
for l~l ( lr'l, f(r„„~)would be zero, thus carrying the
step function along is unnecessary.

In Sec. III we will use (23) to compute some focus-
wave-mode solutions of the inhomogeneous wave equa-
tion for two, three, and four dimensions.

(30)

where Ei is the exponential integral.
Using —Ei(x )=E&(—x)—im, letting co~ —oo, and

using (6),

III. FOCUS WAVE MODES AND DIMENSIONALITY

We assume a generalization of the infinitely long,
infinitesimally thin line source in free space introduced by
Palmer and Donnelly [20]. In n dimensions, we set

- exp

X exp(iPg),

+(p, r) =
77

(31)

5(r„,)
s(r„,xo) = . exp(igg),0)+l (24)

5(r„', )
X 7'

Substituting (14) into (25), we have
' (n —1)/2

f(r„„r)=
77

(n —1)/2

(25)

x f'dr f'dv PR
exp

5(r„' ) )
X (26)

with g and R as previously.
The most important case is n =3. When n =3, (26) be-

comes

f(p, r)= —f 'd~' fp'dp'dP'exp
—Plp —p 'I'

(r —~')

which satisfies (11). From Sec. II, we can write the solu-
tion to (12) as

5(x)s(r„x, ) = exp(iPg), (32)

and thus

which is essentially the Palmer-Donnelly solution [20] of
the wave equation, except for the constants and the fact
that a step function is missing. It is somewhat surprising
in the Palmer-Donnelly solution that the step function
occurs as an additive term rather than a product term
[21]. However, for our method, we have an explanation
as to why the step function occurs in the Palmer-
Donnelly solution and not in (31). They state that their
Green's function [20] [Ref. [20], Eq. (14)] contains both
retarded and advanced components and the step function
must be used to ensure that their formulation is causal.
However, using the diffusion equation allows us to have a
Green's function with a retarded component only and
thus, as shown by Eqs. (22) and (23), the step function is
not necessary in this capacity. Equation (31) can also be
obtained (with arbitrary constants) as a localized wave
solution of the second kind to the homogeneous three-
dimensional scalar wave equation [11] [Ref. 11, Eq. (30)]
when q = —1. Obtaining it via the line source in (24)
gives the solution much more physical significance [21]
(see Fig. 1).

When the dimensionality of the wave equation is two,
the line source in two dimensions is

5(p')
(2n. )p'r'( r —r' )

or after the 6-function integration,

(27)

f(x,~)=
1/2

f'dr'f dx

exp
—P(x —x')

(r—~')

f (p, ~) = —f d~'
7T +p

J

~'(r r')—(28)

2

exp (r v')— X5(x') . (33)

After the 5-function integration and several variable
transformations
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Re[f] Re[f)
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FIG. 1. Focus-wave-mode solution envelope of the three-
dimensional wave equation assuming an infinite line source of
separable type (/3= 1, a, =0.5).

FIG. 2. Focus-wave-mode solution envelope of the two-
dimensional wave equation assuming an infinite line source of
separable type (/3= 1, a, =0.5).

f(x, r)= i— t 1/2
x

du exp
7

&u (u+1)
where we have let ro —+ —~, and (34) becomes [25]

1/2

(34)

where erfc is the complementary error function. Equa-
tion (35) (when the e'~" factor is included) gives a local-
ized wave two-dimensional solution to the inhomogene-
ous wave equation when the source term is a line source.
The real part off (x, r) is plotted in Fig. 2.

The case of the four-dimensional wave equation is very
interesting also. Let

f(x, r)= i—
'7

exp 5(r)
s(r4, xo) = exp(i/3g),

4mr ~
(36)

Xerfc (35) where lr3l=(x&+x2+x3)' =r Usin. g standard spheri-
cal coordinates for this case,

f(r, r)=
3/2

f 'd r' f ' f f "r'sine'dr'd e'd y'
3/2

5(r')
4mr' ~'

—Plr —r'I'
exp (r r')— (37)

or (37) becomes

f(r, r)=
3/2

r 2exp, d7
7 —7'

(3&)

f(r, r)=
3/2

f "dy exp
0 (y2 —1)

(39)

As previously with so~ —oo, (38) can be put into the
form

f (r„&,r), is greatly increased as the dimensionality n in-

creases. Using the same parameters in each plot a1=0.5

and /3= 1, the two-dimensional solution extends along the
transverse direction and is not very localized (focused
near x =0) at all. The three-dimensional solution is
much better, peaking at /=0, p very close to zero, with
some much smaller magnitude ripples as p increases. The
four-dimensional solution is extremely localized near
r =0 and is the best LW solution of the three.

which integrates to [24]

f(r, r)=

X erfc

3/2

exp

1/2
r

(40)

Re[f]

15

When f(r, r ) in (40) is multiplied by e'~", we have a local-
ized wave or focus-wave-mode solution to the four-
dimensional inhomogeneous wave equation. The real
part of (40) is shown in Fig. 3.

A comparison of Figs. 1, 2, and 3 indicates that the lo-
calization property of the real part of the envelopes,

FIG. 3. Focus-wave-mode solution envelope of the four-
dimensional wave equation assuming an infinite line source of
separable type (P=1, a, =0.5).
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IV. LINE SGURCE WITH FINITE RADIUS

When the d'dimensionality of the wave equation is three,
and we assume an infinitely long source with a finite ra-

1us Q

(41)s(r3 xo)= exp(ip )
5(p —a )

where Ir l=(x'+x'""=2, = &
2', =p, the solution to the inhomo-

geneous diffusion equation becomes

f(p, r) =—f 'dr' f 'f "p'dp'dP'

X exp

&(p' —a )
2rrr'( r r' )p'—

Performing the 5-function integration first

(42)

f(p, r)=, f 'dr f '"dy'
2~ 0 0

exp
—P(p +a —2pa cos(()')

(r r')—
r'(r r')— (43)

Considering the ([' integral, we get

f 2~d~, 2/3pa cosp
o (r—r')

2Ppa
(44)

Re[fj

where Io is a modified Bessel function. Using (44) in (43),

f(p, r) =— dr'
7T Q

exp
2Ppa

0

(45)

When R a/~ isRp / is small, we can use the series forro of I0,
1.e.,

oo
( 2y4)k

I =o (k')

or (45) becomes (allowing ro~ —00 )

2 ll

(46) Re[i]

f(p, r)=
(n!)

—p(p +a )x

(x —1)

(47)

Using —Ei x)=E ( —x —''
g

— )=E,( x) im, upon—int—egration, (47) be-
comes (Ref. [24), No. 3.353.5)

2&i

Re[fl

f(p, r)=
r

vra
~ exp( —w)[E, ( —w) in.]—

271—g (k —l)!(w) FIG. 4. Focu-cus-wave-mode solution envelope of the th
dimensi

e ree-
e sional wave equation assuming a fi 't d'ni e ra ius in nitely

long source of separable type (p= 1, a, =0.5). (a) pa =0.01, (b)
Pa =0.075, (c) Pa =0.15.
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where

P(p +a )W= (49)

The real part of (48) is plotted versus p and g in Fig. 4 for
various values of the source radius, a. When a is still
small, i.e., a =0.01, the finite radius source and the
three-dimensional infinitesimal line source shown in Fig.
1 are almost identical. As a increases to 0.075, the mag-
nitude of the pulse is smaller and a "trough" is beginning
to form just behind the pulse peak. Finally for a =0.15,
the pulse peak is much smaller and less localized. Thus
the localization is not very good as a continues to in-
crease.

V. CONCLUSIONS

We have obtained localized wave solutions to the n-
dimensional inhomogeneous scalar wave equation provid-
ed the source term has a specific form which is separable
in the characteristic variables, allowing reduction to an
equivalent inhomogeneous (n —1)-dimensional diffusion
equation. Two-, three-, and four-dimensional inhomo-
geneous solutions were determined, and localization is
shown to increase as the dimensionality increases. A
finite radius line source in three dimensions was con-
sidered also. Its localization amplitude characteristics
are dependent on the magnitude of the source radius.
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