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Coupling impedances of small discontinuities: A general approach
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A general theory of the beam interaction with small discontinuities of the vacuum chamber of an
accelerator is developed taking into account the reaction of radiated waves back on the discontinuity.
The reactive impedance calculated earlier is reproduced as the erst order and the resistive one as
the second order of a perturbation theory based on this general approach. The theory also gives,
in an easy and natural way, the analytical results for the frequencies and coupling impedances of
the trapped modes due to small discontinuities on the vacuum chamber of a general cross section.
Formulas for two important particular cases—a circular and a rectangular chamber —are presented.

PACS number(s): 41.75.—i 41.20.—q

I. INTRODUCTION

A common tendency in the design of modern acceler-
ators is to minimize beam-chamber coupling imped. ances
to avoid beam instabilities and reduce heating. Even
contributions &om tiny discontinuities such as pump-
ing holes have to be accounted for, due to their large
number, which makes analytical methods for calculating
the impedances of small discontinuities very important.
According to the Bethe theory of difFraction by small
holes [1], the fields diffracted by a hole can be found as
those radiated by eH'ective electric and magnetic dipoles.
The coupling impedance of pumping holes in the vacuum
chamber walls has been calculated earlier [2—4] using this
idea. The imaginary part of the impedance is propor-
tional to the difFerence of hole polarizabilities (@ —y),
where the magnetic susceptibility @ and the electric po-
larizability y are small compared to the cubed typical
dimension 6 of the chamber cross section. Prom con-
siderations of the energy radiated into the chamber and
through the hole, the real part of the hole impedance
comes out to be proportional to (@z + g2), being usually
much smaller than the reactance.

In the present article we develop this analytical ap-
proach by taking into account the reaction of radiated
waves back on the discontinuity. It leads to a more gen-
eral theory, which provides us with a general picture, in
a wide frequency range, of the coupling impedance of a
small discontinuity on the vacuum chamber with an ar-
bitrary cross section. The theory gives analytical expres-
sions for the real and the imaginary part of the coupling
impedance. It also reproduces easily all previous results,
including those about trapped modes due to small dis-
continuities of a circular waveguide [5].

While our consideration here is restricted to small
holes, it can be readily applied to other small discontinu-
ities such as enlargements or irises. The method remains
valid because the idea of efFective polarizabilities works
equally well in these cases also, as shown in Ref. [6].

The paper is organized as follows. A general analysis
of the fields in the chamber with a small discontinuity
is given in Sec. II. Section III presents results for the
coupling impedance and Sec. IV deals with the trapped
modes. The formulas for the two particular cases of the
vacuum chamber —with a circular cross section and with
a rectangular one —are derived in Appendixes A and B.

II. FIELDS

Let us consider an infinite cylindrical pipe with an ar-
bitrary cross section S and perfectly conducting walls.
The z axis is directed along the pipe axis, a hole is lo-

cated at the point (b, z = 0), and a typical hole size h
satisfies 6 &( b. To evaluate the coupling impedance one
has to calculate the fields induced in the chamber by a
given current. If an ultrarelativistic point charge q moves
parallel to the chamber axis with the transverse offset s
&om the axis, the fields harmonics E~, H produced by
this charge on the chamber wall without hole would be

E„(s,z; u) = ZoII (s, z; u) (1)
= —Zoqe'"' ) k„e„(s)V'„e„(b),

(V'+k„' ).„=O, e BS (2)

Here V is the 2D gradient in plane S, k = u/c, v xneans

an outward normal unit vector, v. is a unit vector tangent
to the boundary OS of the chamber cross section S, and.

A A A

(v, v, z) form a right-handed basis. The eigenvalues and
EFs for particular cross sections are given in Appendixes
A and B.

where Zo ——120m 0 is the impedance of &ee space and
kz, e„(r) are eigenvalues and orthonormalized eigen-
functions (EFs) of the two-dimensional (2D) boundary
problem in S
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At distances 3 such that h (( l && b, the fields radiated
by the hole into the pipe are equal to those produced by
effective dipoles [1,7]

~s,E."/2, M. = (q..H."+@.,H,")/2,
M, = (vP, H" + g, H,")/2, (3)

with

ikZp
nm p ~2 v ~my— 2. . 6 = V'e„

2epk2

(8)

where the superscript h means that the 6elds are taken at
the hole. Polarizabilities Q, y are related to the effective
ones a„n used in [7,2] as a, = —y/2 and cI = vj/2,
so that for a circular hole of radius a, in a thin mall

@ = 8cI /3 and y = 4a /3 [1]. In general, @ is a sym-
metric 2D tensor, which can be diagonalized. If the hole
is symmetric and its symmetry axis is parallel to z, the
skew terms vanish, i.e., @, = g, = 0. In a more gen-
eral case of a nonzero tilt angle n between the major
symmetry axis and z,

= 'lP~ COS Cl + @~~ SII1 Ck,

(@~~
—lj6~) SIII CX COS CI

'lit = @~ S111 Ck + g~~ COS CI,

(4)

where E means either E or H, superscripts + denote
waves radiated, respectively, in the positive (+, z ) 0)
or negative (—,z ( 0) direction, and e(z) is the Heaviside

step function. The fields I" of (n, m)th TM eigenmode
in Eq. (5) are expressed [7] in terms of EFs (2)

E+ = k e exp(+r z),
EI+ = +r„ve„exp(+r z),

i&-
HI+ = z x V'e exp(+r z),

0

0+ =0,z

where @~~ is the longitudinal magnetic susceptibility (for
the external magnetic field along the major axis) and g~
is the transverse one (the field is transverse to the major
axis of the hole). When the efFective dipoles are obtained,
e.g. , by substituting beam fields (1) into Eqs. (3), one can
calculate the fields in the chamber as a sum of waveguide
eigenmodes excited in the chamber by the dipoles and
6nd the impedance. This approach has been carried out
for a circular pipe in [2] and for an arbitrary chamber in
[81

However, a more refined theory should take into ac-
count the reaction of radiated waves back on the hole.
The radiated Gelds in the chamber can be expanded in a
series in TM and TE eigenmodes [7] as

The fields E„ofthe TE„eigenmode in Eq. (5) are

E+=0,zH+ = k„' h„exp(+r„' z),
HI+ =+r„' Vh, „exp(+r„' z),
E~+ = —ikZOZ x V'h„exp(+r„' z),

with propagation factors I" = (k'2 —kz) I~ replaced
by iP' =——i(k2 —k z )I z when k ) k„' . Here EFs
h satisfy the boundary problem (2) with the Neumann
boundary condition V'„h lss ——0 and k'2 are the cor-
responding eigenvalues; see Appendixes A and B. The
TE-mode excitation coefficients in the expansion (5) for
the radiated fields are

B =+C mM~+d Pv+qnmMz (10)

where

V' 6„
2~n~

gh'"- =
2r„

ik
Z P] $/2 fjTA2

VE„+Q, Z' ZpH + Q, Z' ZSH,
1 —y(ZI —Z' )

Hs + @,(Zz —Z2)H,

yZ'E„/Zp+ @, Z'sH

1 —@,Zs

where (s = (n, m) is a generalized index)

(13)

(14)

.r, (v'„e.")'

(V.a.")'
I"k'2

8 8

Z'. =i—) h."V.I."
I /

k' (V...")'
4 ~- r.A2

8

.r'. (v.I.")'
4 J~

8 8

.k."(~.")'
3 4 g

8 8
(15)

Since this consideration works at distances larger than
h, one should restrict the summation in Eq. (15) to the
values of s = (n, m) such that k, h ( 1 and k', h ( 1.

Now we can add corrections to the beam fields (1) due
to the radiated waves in the vicinity of the hole. It gives

where propagation factors I'„= (kz —k2)l~z should
be replaced by iP with—P = (k —k ) ~ for
k ) k . For given values of dipoles (3) the unknown
coefficients A~ can be found [2,8] using the I,orentz reci-
procity theorem

(7)

III. IMPEDANCE

A. Longitudinal impedance

The generalized longitudinal impedance of the hole de-
pends on the transverse offsets from the chamber axis s
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of the leading particle and t of the test particle and is
defined [9] as

ikZpe„(s )e„(t )Z k;S, tj =—
2

(17)

TT

1 —g (Z —Z')

1 —~(z, —z', )

where

(-) E.' ~ - ( )&- (b)

8

(18)

is merely the normalized electrostatic field produced at
the hole location by the filament charge displaced &om
the chamber axis by the distance i; cf. Eq. (1). In
practice, we are interested only in the monopole term
Z(k) = Z(k; 0, 0) and will mostly use below Eq. (17) with
the replacement e„(s)e„(t ) ~ e2, where e„=e„(0). In
deriving Eq. (17) we have neglected the coupling terms
between E„,H, and H, [cf. Eqs. (12)—(14)], which con-
tribute to the third order of an expansion discussed be-
low, and also have taken into account that @,= @,

For a small discontinuity, polarizabilities g, y = O(h )
and are small compared to 6 . If we expand the
impedance (17) in a perturbation series in polarizabili-
ties, the first order gives

Z(k; s, t ) = —— dze '"'E, (t, z; (u),
q

where the longitudinal field E, (t, z;ur) is taken along
the test particle path. The displacements from the axis
are assumed to be small 8 « 6 and t « b. The
impedance Z(k; s, t) includes higher multipole longitudi-
nal impedances and in the limit 8, t ~ 0 gives the usual
monopole one Z(k) = Z(k; 0, 0). To calculate E, (t, z; ~),
we use Eq. (5) with coefficients (7) and (10) in which
the corrected near-hoLe fields (12)—(14) are substituted
[a dependence on s enters via beam fields (1)]. It yields

which at &equencies above the chamber cutoK has both
a real and an imaginary part. The real part of the
impedance is

ReZ2(k) =
8 -~- k2p

8 8

(~ h)2 ( pI (~ hh)2

8

p (~ eh) (~ hh)

Plk ~
8 8 8 8 8

n(k) —k + O(k),
4m

where S is the area of the cross section. Using this
property and taking into account that V'„e", oc k,e," and
V' h," oc k', h,", we replace sums on the right-hand side

(rhs) of Eq. (21) by integrals as p, ~ J' dksshn(k).
It turns out that all sums in Eq. (21) have the same
asymptotic behavior, being linear in k, and as a result,
Re Z oc k . Obtaining the exact coeKcient in this depen-
dence seems rather involved for a general S, but it can be
easily done for a rectangular chamber; see Appendix B.
The result is

Z k4e'
ReZ= "(Q + vP, +y ) . (22)

where the sums include only a finite number of the eigen-
modes propagating in the chamber at a given &equency,
i.e., those with k, ( k or k,' ( k.

The dependence of Re Z on &equency is rather compli-
cated; it has sharp peaks near the cutouts of all propagat-
ing eigenmodes of the chamber and increases on average
with the frequency increase. Well above the chamber
cutofF, i.e. , when kb )& 1 (but still kh (( 1 to justify
the Bethe approach), this dependence can be derived as
follows. If the waveguide cross section S is a simply con-
nected region, the average number n(k) of the eigenvalues
k, (or k', ) which are less than k for kb &) 1, is propor-
tional to k2 [10]:

(19)

[y.'.(z, —z', ) @.',z',

+ x'(Zi —Zi)

(20)

which is exactly the inductive impedance obtained in
[8] for an arbitrary cross section of the chamber. For
a particular case of a circular pipe, Rom either direct
summation in (1) or applying the Gauss law, we get
e„= 1/(2mb), the substitution of which into Eq. (19)
leads to a well-known result [2,3]. From a physical point
of view, keeping only the first-order term (19) corre-
sponds to dropping all radiation corrections in Eqs. (12)—
(14)

These corrections first reveal themselves in the second-
order term

Remarkably, the same answer (for @,= 0) has been ob-
tained in Ref. [8] simply by calculating the energy radi-
ated by the dipoles into a half-space. The physical reason
for this coincidence is clear: at frequencies well above the
cuto8' the effective dipoles radiate into the waveguide the
same energy as into an open half-space.

Strictly speaking, the real part of impedance is non-
zero even below the chamber cutoK, due to radiation
outside. In the case of a thin wall, Re Z below the cut-
ofF can be estimated by Eq. (22) and twice that for high
frequencies kb )& 1. For a thick wall, the contribution of
the radiation outside to Re Z is still given by Eq. (22),
but with the outside polarizabilities substituted, and it
decreases exponentially with the thickness increase [3].

The real part of the impedance is related to the power
P scattered by the hole into the beam pipe as Re Z =
2P/q . These energy considerations can be used as an
alternative way for the impedance calculation. The radi-
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ated power is

B. Transverse impedance

We will make use of the expression for the generalized
longitudinal impedance Z(k; s, t), Eq. (17). According to
the Panofsky-Wenzel theorem, the transverse impedance
can be derived as Z~ (k; s, t) = V'Z(k; s, t)/(ks); see, e.g. ,

[9] for details. This way leads to the expression

iZpe~'P(s)Ve„(t )
28

(23)

TT

1 —@ (Z2 —Z12)

j,2 x
V'wz 3 1 (g gg )

where e~P (s ) = s V'e (s ).
Going to the limit s ~ t ~ 0, we get the usual dipole

transverse impedance

P = &. ~.P.~ l + H. P.~ l,
S

where we sum over all propagating modes in both direc-
tions and P, means the time-averaged power radiated in
the 8th eigenmode:

P~ l = kP, k, /(2Zp), P~ i = ZpkP,'k', /2 .

Substituting beam fields (1) into Eqs. (7)—(11) for the
coeKcients A, and B, and performing calculations gives
us exactly the result (21). Such an alternative derivation
of the real part has been carried out in Ref. [4] for a
circular pipe with a symmetric untilted hole (@, = 0).
Our result (21) coincides, in this particular case, with
that of Ref. [4]. It is appropriate to mention also that in
this case at high 6.equencies the series has been summed
approximately [4] using asymptotic expressions for roots
of the Bessel functions and the result, of course, agrees
with Eq. (22).

One should note that the additional g2, term in
Eq. (21) is important in some particular cases. For exam-
ple, this skew term gives a leading contribution to Re Z
for a long and slightly tilted slot because g, can be much
larger than @ in this case since @~~ )) @~, cf. Eqs. (4).

d„/ d2 + d2. It is seen from Eq. (24) that the angle p~
shows the direction of the transverse-impedance vector
Z~ and therefore of the beam-defIecting force. Moreover,
the value of Z~ is maximal when the beam is defIected
along this direction and vanishes when the beam ofFset
is perpendicular to it. For a circular pipe, yd ——yg and
the de6ecting force is directed toward (or opposite to)
the hole. For a general cross section, this is not the case;
see [8] for rectangular and elliptic chambers.

Equation (24) includes the corrections due to waves ra-
diated by the hole into the chamber in exactly the same
way as Eq. (17) for the longitudinal impedance. If we ex-
pand it in a series in the polarizabilities, the 6rst order of
the square brackets in (24) gives (@ —g) and the result-
ing inductive impedance coincides with that obtained in
[8]. The second-order term includes Re Z~, cf. Sec. III A.

IV. TRAPPED MODES

So far we considered the perturbation expansion of
Eq. (17) implicitly assuming that correction terms O(g)
and O(y) in the denominators of its rhs are small com-
pared to 1. Under certain conditions this assumption
is incorrect and this situation leads to some nonpertur-
bative results. Indeed, at frequencies slightly below the
chamber cutoffs 0 ( k, —k « k, (or the same with re-
placement k, ~ k,'), a single term in sums Zi, E2, or Z3
becomes very large, due to very small I', = (k2 —kz)i~2

(or I",) in its denominator, and then the "corrections"
gZ or yE can be of the order of 1. As a result, one
of the denominators of the rhs of Eq. (17) can van-
ish, which corresponds to a resonance of the coupling
impedance. On the other hand, vanishing denominators
in Eqs. (12)—(14) mean the existence of nonperturbative
eigenmodes of the chamber with a hole, since nontriv-
ial solutions E, H g 0 exist even for vanishing external
(beam) fields E~, H~ = 0. These eigenmodes are noth-
ing but the trapped modes studied in [5] for a circular
waveguide with a small discontinuity. In our approach,
one can easily derive parameters of trapped modes for
waveguides with an arbitrary cross section.

A. Frequency shifts

Z~(k) = —iZp(d + d„) /2agcos((pi, —pd) (24) Let us for brevity restrict ourselves to the case vP, = 0
and consider Eq. (13) in more detail. For H~ = 0 we have

TT

1 —vp (Z2 —
K~2)

/, 2 x++7 z 3

k2 (V„e.")'
H. 1 —@.. .' +. =0,

8 8
(25)

Here x, y are the horizontal and vertical coordinates in
the chamber cross section; d = 0 e„(0), d„= O„e„(0);
pg ——p, = yq is the azimuthal angle of the beam position
in the cross-section plane; and ag ——a cos yg + a„sin pg
is a unit vector in this plane in direction yg, which is

defined by conditions cosy' = d / d2 + d2,

sining

=

where s:—{n,m) is the generalized index, and the ellip-
sis denotes all other terms of the series Z2, Z2. At fre-
quency 0, slightly below the cutofF frequency ~, = k, c
of the TM, mode, the &action in Eq. (25) is large due
to small I', in its denominator and one can neglect the
other terms. Then the condition for a nontrivial solution
H g 0 to exist is
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r. = -y..(v...")' . (26)

In other words, there is a solution of the homogeneous,
i.e., without external currents, Maxwell equations for the
chamber with the hole, having the &equency 0, & u„
the sth trapped TM mode. When Eq. (26) is satisfied,
the series (5) is obviously dominated by the single term
A, I', ; hence the fields of the trapped mode have the
form [cf. Eq. (6)]

Z, = k, e, exp( —r, ~z~), &, = 0,

fi ——sgn(z) I', Ve, exp( —I', ]z]),
Zpgi ——ikZ x Ve, exp( —l, ~z]),

(27)

(28)

In the case of a small hole this frequency shift is very
small and for the trapped inode (27) to exist, the width
of the resonance should be smaller than Lu, . Contribu-
tions to the resonance width come &om energy dissipa-
tion in the waveguide wall due to its finite conductivity
and &om energy radiation inside the waveguide and out-
side, through the hole. Radiation escaping through the
hole is easy to estimate [5] and for a thick wall it is ex-
ponentially small; see, e.g. , [3]. The damping rate due
to a finite conductivity is p = P/(2W), where P is the
time-averaged power dissipation and W is the total field
energy in the trapped mode, which yields

up to some arbitrary amplitude. Strictly speaking, these
expressions are valid at distances ~z~ ) b from the dis-
continuity. Typically, g = O(h ) and V„e," = O(1/b)
and, as a result, I', b && 1. It follows that the field of
the trapped mode extends along the vacuum chamber
over the distance 1/I'„which is large compared to the
chamber transverse dimension b.

The existence of the trapped modes in a circular wave-
guide with a small hole was proved in [5] and conditions
similar to Eq. (26) for this particular case were obtained
in [5,11] using the Lorentz reciprocity theorem. From
the general approach presented here for the waveguide
with an arbitrary cross section, their existence follows
in a natural way. Moreover, in such a derivation, the
physical mechanism of this phenomenon becomes quite
clear: a tangential magnetic field induces a magnetic
moment on the hole and the induced magnetic moment
supports this field if the resonance condition (26) is satis-
fied, so that the mode can exist even without an external
source. One should also note that the induced electric
moment P„ is negligible for the trapped TM mode since
P„=O(I', b)M, as follows from Eq. (27).

Equation (26) gives the frequency shift b u, = ur, —0,
of the trapped 8th TM mode down &om the cutoff ~,

the chamber at given &equency 0, is also straightforward
[4] if one makes use of the coefFicients of mode excitation
by effective dipoles on the hole Eqs. (7)—(ll). The cor-
responding damping rate pn = O(vjs) is small compared
to Lu, . For instance, if there is only one TE„mode
with the &equency below that for the lowest TM, mode,
like in a circular waveguide (Hii has a lower cutoff than
@01)

I
~a @ -Pp (v qa)2
~s

r'„=- @„k„" (I„" ) —~(v.h, „" )

which gives the &equency of the trapped TE mode,
provided the rhs of Eq. (31) is positive.

B. Impedance

The trapped mode (27) gives a resonance contribution
to the longitudinal coupling impedance at ~ 0,

2iBsPBRd
(u' —(0, —i7, )2 ' (32)

where the shunt impedance B, can be calculated as that
for a cavity with given eigenmodes, e.g. [9],

R, =
zd f dz exp( zAz/z)d(z)— , ,

f dele'-I'
(33)

The integral in the denominator is taken over the inner
wall surface and we assume here that the power losses
due to its finite conductivity dominate. Integrating in
the numerator one should include all TM modes gener-
ated by the effective magnetic moment on the hole us-
ing Eqs. (7)—(ll), in spite of a large amplitude of only
the trapped TM, mode. While all other amplitudes are
suppressed by a factor I', b &( 1, their contributions are
comparable to that &om TM, because this integration
produces the factor I ~b for any TM~ mode. The inte-
gral in the denominator is obviously dominated by TM, .
Performing calculations yields

where P' (k2 —k„'2)i)2 because k k, .
One can easily see that denominator [1 —y(Zi —Zi)]

in Eq. (12) does not vanish because singular terms in Zi
have the "wrong" sign. However, due to the coupling
between E„and H„a nontrivial solution E„,H, g 0
of simultaneous equations (12) and (14) can exist, even
when E = 0. The corresponding condition has the form

dl (v„e,)~s 4k

where b is the skin depth at &equency 0, and the inte-
gration is along the boundary BS. The evaluation of the
radiation into the lower waveguide modes propagating in

Zpe2gs k, (V„e,")
8b dl V e,

where e„=e„(0) is defined by Eq. (18).
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Results for a particular shape of the chamber cross sec-
tion can be obtained &om the equations above by substi-
tuting the corresponding eigenfunctions (see Appendixes
A and B).

One should note that typically the peak value R, of
the impedance resonance due to one small hole is rather
small except for the limit of a perfectly conducting wall
h —+ 0; indeed, B, oc (h/b)sb/6and 'h « b. However, for
many not-so-far separated holes, the resulting impedance
can be much larger. The trapped modes for many dis-
continuities on a circular waveguide have been studied
in Ref. [11] and the results can be readily transferred to
the considered case of an arbitrary shape of the chamber
cross section. In particular, it was demonstrated that
the resonance impedance in the extreme case can be as
large as N times that for a single discontinuity, where
N is the number of discontinuities. It strongly depends
on the distribution of discontinuities, or on the distance
between them if a regular array is considered.

remain qualitatively the same for an arbitrary cross sec-
tion and the results mentioned can be easily transferred
to this case.
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APPENDIX A: CIRCULAR CHAMBER

J~(4~&) cos np

gN„
(Al)

For a circular cross section of radius b the eigenval-
ues k„= p, /b, where p is mth zero of the Bessel
function J (x) and the normalized EFs are

V. DISCUSSION

The analytical approach developed above provides a
general picture for the coupling impedance of a small dis-
continuity on the vacuum chamber in a wide &equency
range, up to &equencies well above the cutoff. The up-
per limit on the &equency is imposed by the applicability
of the Bethe theory: the wavelength must be large com-
pared to the typical size of the discontinuity.

The developed theory gives the real and the imaginary
part of the impedance, as well as trapped modes. Re-
sults for speci6c shapes of the chamber cross section can
be derived &om the formulas obtained by substituting
corresponding EFs; see Appendixes A and B for circu-
lar and rectangular cross sections, respectively. For a
more complicated shape, the impedance dependence on
the hole position can be easily obtained numerically by
solving a 2D electrostatic problem for e; cf., for example,
in Ref. [8] for an elliptical pipe.

We have not considered explicitly efFects of the wall
thickness, assuming that the hole polarizabilities are the
inside ones [3] and they include these effects. We also
briefiy discussed the radiation escaping through the hole,
of which contributions to the real part of the impedance
are estimated [2,3,5] and usually are very small.

At high frequencies (above the chamber cutoff) the mu-
tual interaction of many holes is important because it can
cause resonances when the hole pattern is periodic. The
effect strongly depends on the periodicity of the hole dis-
tribution in the longitudinal direction and even small ran-
dom violations of the periodicity damp these resonances;
see in [12,4]. The trapped modes in circular waveguides
with many discontinuities have been studied in [11]. It
was shown that the interaction of identical discontinuities
can increase the resonances due to the trapped modes
essentially, but the resonance strength is reduced drasti-
cally by a small randomization of the parameters of the
discontinuities (such as the hole size or slot length, or
the area of the longitudinal cross section for axisymmet-
ric enlargements). The effects of the mutual interaction

with N@ = 7rb2e J„+z(p )/2, where eo ——2 and e„= 1
for n g 0. For TE modes k' = p' /b with J'(p, '

) =
0 and

A(k' r) cosn&pr
giiiz sinn' ) (A2)

where NH = zb2e„(1 —n /p'„) J2(p, ' )/2. In this case
e„= 1/(2mb), which also follows &om the Gauss law,
and formula (19) for the inductive impedance takes an
especially simple form; cf. [2,3].

Assuming the hole is located at p = 0, we get, for the
trapped modes &om Eq. (26),

2
I 4'rr p~~

2' e„b4 (A3)

and &om Eq. (34)

~0@rrPn~
ebs (A4)

For TE modes, &om Eq. (31),

I4
Pzz pnm

2m'„b (p' —n )
' (A5)

APPENDIX B: RECTANGULAR CHAMBER

For a rectangular chamber of width a and height b the
eigenvalues are k = aran~/a~+m~/b2, with n, m =

Note that only the modes with cos np can be trapped,
while sine modes just do not "see" the hole.

The results of this section coincide with those of [5,11],
except R, in [5], where the contribution of only the
trapped mode to Eq. (33) was taken into account. For-
mulas for an axisyxnmetric enlargement with area A of
the longitudinal cross section are easily obtained from
Eqs. (A3) and (A4) with n = 0 by the substitution

—+ 4n. bA
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1, 2, . . ., and the normalized EFs are

2 . 7l Ax . 7cmge„(x,y) = sin sin
ab a

with 0 & x & a and 0 & y & b. Let a hole be located in
the sidewall at x = a, y = yh. From Eq. (18), after some
algebra, follows

(B2)

where

m2+y ={kb/7I.) X2
dXdg

Q 0 X2 + y2 )gal ~ 2 X2 y2

It is easily evaluated using polar coordinates (p, P) such
that 2: = pcosp, y = psinp, with 0 & p & kb/7r and
0 & P & vr/2, and the result is

~. (&.e.")
P k2 2vr

8

In a similar way„

).(—1)' sin[a. (2l + 1)v]

cosh[a(2l + l)u/2]
(B3)

P.' (V.h.")' P. (V„..")'
I 2A. "2 ~ - I 2I 2 6~'

8 8 8 8

is a fast converging series; the behavior of Z(u, v) versus
v for different values of the aspect ratio u is plotted in
Ref. [8]. Substituting (B2) into the formulas of Sec. III
gives the impedance of the hole in a rectangular chamber.

For a rectangular chamber, it is easy to derive the
asymptotics of Re Z at high &equencies kb )) 1. Let
us take for simplicity a = b and the hole be in the mid-
dle of the wall yh = b/2. Then the sums on the rhs of
Eq. (21) take the form

. (v.z.")'
P,'k', 2 2vr

'
.k'.2 (h".)'

k2p' 3m
8 8

w n, , (zmyq)
2 2

I' = sin (B4)

Substituting these asymptotics into Eq. (21) leads to
Eq. (22).

For the trapped modes, Eq. (26) gives

(& ")' 4- '
P k2 b ~ m2+n2

8 8 m)fL 1

sin (m m/2)

g(kb/~) 2 —m2 n2 '—
and from Eq. (34) the impedance is

~ @3 ~3n2+n2b2 + m2a2

2ha4b2(n2bs + m2a3) (B5)

where the sum is restricted to m2 + n2 & (kb/vr)2. For
large values of kb, one can replace sin (arm/2) by 1/2
(only odd m's contribute) and approximate the remain-
ing sum by an integral

Both the &equency shift and especially the impedance
decrease very fast if the hole is displaced closer to the
corners of the chamber, i.e., when yh —+ 6 or yh —+ 0.
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