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High-gradient acceleration of electrons in a plasma-loaded wiggler
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The interaction of an electron beam with a transverse electromagnetic 6eld and a Langmuir wave in a

plasma loaded wiggler is described by a system of self-consistent nonlinear equations. We demonstrate

numerically and analytically that both beam-plasma and free-electron laser instabilities take place under

suitable resonance conditions. As a consequence, the system is able to generate high-amplitude Lang-

muir waves with phase velocities larger than the speed of light, which give rise to high gradient and high

energy acceleration of the electron beam.

PACS number(s): 41.85.—p, 52.40.Mj

I. INTRODUCTION

The idea of using a plasma in high-energy electron ac-
celeration devices has led, in past years, to the plasma
beat-wave acceleration scheme, in which two lasers beat
together in a plasma and excite resonantly an intense
Langmuir wave that accelerates the electrons of the beam
[1—5]. On the other hand, the idea of using the high-
energy concentration in a laser beam in the presence of a
rippled static magnetic field (wiggler) that breaks the
symmetry in the interaction with the electrons has led to
the inverse free-electron laser concept [6].

The combination of these two schemes was recently an-
alyzed by Bobin [7], who studied the possibility of ac-
celerating the electrons of a relativistic beam in a wiggler
loaded with a plasma [plasma —free-electron laser (FEL)]
and in the presence of a high-frequency electromagnetic
wave. One of the advantages presented by this system is
that the Langmuir wave that accelerates the electrons of
the beam is excited by a transverse wave injected into the
plasma, this last being directly coupled to the electrostat-
ic field by means of the wiggler magnetic field.

In this paper, we will show that large beam accelera-
tions can be obtained when the frequency co of the elec-
tromagnetic wave is of the order of the electron plasma
frequency of the ambient plasma co~=(4nne /m )'/.

(this was not the case considered by Bobin) and if the
phase velocity v& of the Langmuir wave and the intensity
and wavelength of the wiggler magnetic field satisfy the
condition ut =cSca~o/(2v'2), where c is the velocity of
light in vacuum and a~o is the characteristic parameter
of the wiggler. We will show that this is the proper reso-
nance condition of the plasma-FEL system, in the limit in
which a~0 is smaller than one.

In Sec. II we introduce the equations used and the
relevant plasma dispersion relation. In Sec. III the nu-
merical results obtained are shown and their interpreta-
tion is discussed. Possible applications and conclusions

are presented in Sec. IV, while the Appendix reports in
detail the derivation of the set of equations.

II. PLASMA-FEL MODEL AND EQUATIONS

The plasma-FEL system [8—11] consists of an intense
electron beam, which is injected inside the wiggler cavity
loaded with a plasma. A Langmuir wave, unstable in the
presence of the beam, develops inside the plasma and
couples with the transverse field excited in the wiggler by
the usual FEL instability. The simultaneous occurrence
of these two instabilities constitutes the principal feature
of this system.

The Langmuir electrostatic wave and the transverse
wave couple resonantly if their frequencies (respectively
cot and co&.) and wave nuinbers (kt and kz. ) satisfy the
usual matching conditions

cgt =cog~ kt =kz +kg,

where k~ is the wave number of the magnetic field of the
wiggler. The pseudowave associated with the rippled
magnetostatic (cos.=o) field of the wiggler is the third
partner in this parametric decay process. It is important
to note that if we call 8 z

= (kz +k~)z co trand-
6& =knez

—col t the phases of the electrons of the beam in
the transverse and longitudinal fields, respectively, the
above matching conditions (1) can be derived by impos-
ing that Oz- =81 for all z and t, so that a unique phase 0 is
present in the interaction process. We assume that the
electron density nb of the beam is much smaller than the
density n of the ambient plasma and that the frequencies
of both transverse and Langmuir waves are close to co,
the electron plasma frequency.

In the limit of small wiggler parameter a~os&1, the
dispersion relation of the Langmuir waves is—(3k 2u2 +F02 )I/2 —[3u2 (k +k )2+~2 ]1/2 where
u,h=(aT, /m)' (&c is the thermal velocity of the elec-
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where the index j runs from 1 to N, the number of elec-
trons of the beam in the wavelength A.L

=2m/kl .
8J.=(kT+k~)zj cozt=kLzj cut t i—s the p—hase of the
electrons in the fields of the two waves, while p~ =pjyj,
where pj = ut /c, vj. being the axial velocity and

—(1 P2 P2 )
—1/2 —[(1+ 2 )/(1 P2)]l/2

=(p'+1+a' )'/'

trons of the plasma (ii is the Boltzmann constant), while
that of the transverse waves is given by
eiT=(c kT+ai )' . The two frequencies tube and toL as
functions of k, as well as the matching conditions (1), are
represented in Fig. 1. It can be seen that the waves excit-
ed have frequencies coT=coL =[co~+3c u&zkii /(c
—v'3v~) ]'/ =to and wave numbers kT=&3v,hkii, /
( c —&3u,h ) =~3(v,h /c )k ii, for the transverse wave and
kL =ck~/(c —&3u,h ) =kii, for the longitudinal wave,
respectively. It also follows that it is possible to
excite Langmuir waves with phase velocities
coL /(kr+k~) =tv~/kii larger than the velocity of light c
when the condition ~ & ck~ is satisfied.

As we have already said, the present scheme differs
from that described by Bobin [7] in the following point:
we propose to excite a Langmuir wave with frequency
co& =co, while in Bobin's scheme the excited electrostatic
wave has a much larger frequency, i.e., tuL =kt ub (ub be-

ing the velocity of the injected electron beam) and a
phase velocity that is approximately equal to that of the
beam. As a consequence, the electric field associated
with this wave is primarily that produced by the pertur-
bation of the density of the beam, while the plasma plays
only a secondary role in the process [12].

As described in more details in the Appendix, we as-
sume an elicoidal wiggler and give the radiation field in
terms of its vector potential A, while the Langmuir wave
is given in terms of the associated density modulation
5n /n, where n is the unperturbed plasma density. Aspl P
shown in the Appendix, the dynamics of the physical sys-

tem is described by the following set of self-consistent
nonlinear equations:
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Qp +1+a
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FIG. I. Schematic representation of the dispersion relation co

vs k of the plasma modes coT(k) and coL (k).
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~ ~, ~'=cons~,
b b

(3)

where (p ) =(1/N)gz+ i pi is the average momentum of
the beam. It is easy to see that each physical element ap-
pearing in (3), i.e., the electron beam and the transverse
and longitudinal waves, can play the role of source and
therefore feed energy into the other ones. In this sense,
the plasma FEL is conventionally used to generate or am-
plify electromagnetic waves by transferring the kinetic
energy of the beam to the transverse field [8—11]. Con-
versely, the average momentum of the beam can be in-
creased at the expense of the energy stored in the fields
(the inverse plasma FEL).

the Lorentz factor of the electrons of the beam. Further-
more, the scaled time r is defined as r=c(kT+kii, )t
Si =Qi, awo/(4pii ), S2 =Qua~a/(4pii ), S3 =Qb/(2pii ),
and S~ =aii,o/(2pz ) are the coefficients of the equations,
with Qb =cob/[c(kT+kii, )], Q =tv /[c(kT+kii, )],
pti =coTI[c(kT+kii, )], and cvb =4mnbe /m the plasma

b b T W & p

frequency of the beam. Finally, (b ) =(1/N)g~, e
is the bunching factor of the electrons of the beam.

As shown in the Appendix, these equations can be de-
duced from the Maxwell equations, the Quid equations
describing a nearly cold plasma with fixed positive ions,
and the fully relativistic equations of motion of the elec-
trons of the beam. They give the slow time evolution of
the field amplitudes and of the dynamical variables of the
electrons of the beam in the framework of the slowly
varying amplitude approximation. It is important to
stress the fact that we do not impose any restrictions on
either the values or the variations in time of the Lorentz
factors yj. during the whole process. This allows us to
treat the dynamics of the beam also outside the usual
Compton limit [13].

One can show that Eqs. (2) admit the constant of
motion
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FIG. 5. Normalized distribution function f(y )

[ff(y )dy =1] vs y for the case of Fig. 3, at T= 3000 (solid line)

and ~=6900 (dashed line).

FIG. 4. Saturation value of (y) vs Q„ for Qb =2.36X10
a~0=0. 316, (Ar(0)( =0, and ~AL(0)~=0. 3.
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The equations for the electron phases 0 . can then be in-
tegrated, yielding 8.=(1—Pi()r+8jo, where 8 o are the
values of the phases at 7 7 p. The equation for A ~ gives

i~ S2S4 T c !t/S2S4T
2e

is3(1 —p~ )(b )oe

S,S4 —(1—Px )'

where C
&

and C2 are two suitable complex constants of
integration depending on the previous history of the sys-
tem. By inserting A~ into the equation for the momen-
tum p, averaging over all electrons, and considering that
S2S4 =Qza~o /(8' ), one finally gets

d (p ) p i(QS2S4+1 —ps )T= —Q Ce

time by the electrostatic wave (a), /k~)T„, plus or minus
half of a Langmuir wavelength k~/2.

When the resonance condition is satisfied, the accelera-
tion of the electrons is considerable. For instance,
in the case of Fig. 3, with a z p

=0.3 16 and
Q =I+a~o/(2V'2)=1. 112, the maximum value of (y)
is about 1800 and the acceleration gradient is about 130
MeV/m with a wiggler wavelength A, ii of 1 cm.

Figure 5 gives the normalized distribution of energy of
the electrons of the beam versus y at ~=3000 and 6900,
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tively. If we take into account that for a nearly cold plas-
ma Pi( =Qz, the preceding two conditions can be cast in
the simpler form Q =I+a~o/(2&2). If we define the
Larrnor frequency of the electrons of the beam in the
plasma loaded wiggler as co„=e(B)4+BD )/(mc), where

BD is the diamagnetic rnagnetostatic field produced by
the equilibrium plasma, and T„=2m /cu„as the Larrnor
period, the above resonance conditions require that the
distance cT traveled by the electrons of the beam in the
cyclotron period equals the distance traveled in the same
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FIG. 6. Saturation value of (y) vs a~0 in the condition of
resonance for (a) ~Ar(0)~ =0 and ~AL(0)~=0. 3 and (b)

I A, (O) I'=0 04 and I AI .(0) [
=0.
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for the same parameters as in Fig. 3. It can be seen that
at r=6900, a large fraction, about 25%, of the electrons
of the beam acquires energies greater than 1.3 GeV, with
an acceleration gradient of about 0.2 GeV/m.

Figure 6 gives the saturation value of ( y ) at resonance
versus awo, in the case (a) of applied electrostatic field

~ AL (0)
~

=0.3 and
~ AT(0)

~

=0 and in the case (b) of ap-
plied transverse field

~
A z (0)

~

=0.04 and
~ AL (0)

~

=0. It
shows that there is an advantage in increasing the charac-
teristic parameter a~o of the wiggler. For agrp 1 how-
ever, the external magnetic 6eld of the wiggler modifies
considerably the dispersion of the plasma and the present
analysis loses its validity.

IV. CONCLUSIONS

BE,
=4m.p,z

where p=pb+p and

p =en —en,

(A4)

density, while Eq. (A3) gives the beam current density.
The electron beam is modeled here as an ensemble of uni-
formly charged sheets moving along the z axis, with

en—i the charge per unit surface of each sheet and U, (t)
the common velocity of all electrons that lie on the same
sheet.

To Eq. (Al} one must add the Poisson equation for the
axial component E, of the electric field

pi, = en'—+ 5(z —z, (t) ) . (A6)
We have demonstrated that a plasma-FEL system can

be conveniently used as a compact high-gradient ac-
celerator. The strong plasma wave that accelerates the
electrons of the beam can be excited by simply injecting
into the wiggler cavity a transverse wave with frequency
close to the plasma frequency ~ . If we work with not
very large plasma densities, e.g. , with n of the order of
10' cm, we can use transverse waves with frequencies
in the microwave region (co = 10 GHz).

We have also shown that there exist two resonance
conditions that are represented by the relation
P~ =I+awo/(2&2). When these relations are satisfied,
the electrons of the beam acquire energy from the elec-
trostatic field of the Langmuir waves in a cumulative
way. Although the process eventually saturates, the ac-
celeration reached in conditions of resonance is consider-
able, values of energy of about 0.1 GeV and more being
easily reached at saturation. For instance, with n~ =10'
cm, a wiggler wavelength of about 1 cm, and a wiggler
magnetic field of 0.3 T, we are able to obtain an accelera-
tion gradient of about 150 MeV/m. Moreover, from the
analysis of the energy distribution of the electrons of the
beam, we see that a large fraction, about 25% or more, of
the electrons possess an energy that is twice the average
value and this fraction can certainly be increased by pre-
paring the beam in a suitable way at the initial time of the
process.

APPENDIX: EQUATIONS OF THE MODEL

In these equations, n is the number per unit volume of
the fixed neutralizing ions of the plasma, while pb is the
beam charge density.

The plasma is described as a nearly cold electron Quid
by the two equations

n+ (nu, )=0,8 8
Bt Bz

8 8 e 8 8
a u. +u.

a u. = E*
a

n

(A7)

Uj =
mc

(A+Aw) . (A9)

Equations (Al), (A4), (A7), and (A8) constitute a closed
set for the description of the physical system once one
adds the (fully relativistic) equations of motion of each
single sheet in the beam, namely,

e 8
( A+ Aw) . (A8)

2m c
0

In (A8), Aw=(aw/~2)(ee +c.c. ) is the vector po-
tential of the helical magnetostatic field of the wiggler,
with e=(1/~2)(e„+ie„) and 8 = 3U,h, where
v,h =QT, /m is the thermal velocity of the electrons of
the plasma. As usual, uz, the transverse component of
the plasma speed, is written in terms of the total vector
potential as

We start with the usual wave equation for the (trans-
verse) vector potential A(z, t) in one dimension, namely,

z, (t)=U, (t),d
dt ' (A10)

B'
2

B'—c A(z, t) =4m.cJi,
Qzz

(A1) p, (r}=—. E,(z, t)+
m2' 'cy( )r

where J~ is the transverse component of the total current
density J=Jb+ Jp and

X (A+ A„)
Bz z =z, (t)

(A 1 1)

J& = —enu, (A2) where U, (t) =cP, (t) is the axial velocity, p, =P,y„ the y,
are the Lorentz factors of the electrons of the beam, and

Jb= en' g v—,(t)5(z —z, (t)) . (A3) e
v, i(t) = [ A+ Aw j =z, (t) ~

mcy, (t)
(A12)

Equation (A2), with n and u the plasma density and aver-
age speed, respectively, gives the usual plasma current We assume that the plasma is in equilibrium with the
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2 QW0 —'k 57(—co —e (A13)

8 8P (} + 2 5n

dt Bz P

4' nj g 5(z-z, (t))
Ptl

where

2

+c — (e 5Ar+c. c. ),zawp () «~z
2 azz

(A14)

eQw 1
QW0

mc 1+m /'c
p W

(A15)

In the analysis that follows we shall suppose that the
right-hand sides of Eqs. (A13) and (A14) are to be con-
sidered small quantities due to the assumed smallness of
the wiggler parameter awo and of the ratio nb/n be-
tween the beam density and the plasma density. It is con-
venient, at this point, to apply a Fourier transform in
space to Eqs. (A13) and (A14) and discuss the time evolu-

static field of the wiggler before the injection of the beam,
with a constant density n =n, no average motion in the
axial direction u, =0, and no axial field E,=0, but with a
transverse diamagnetic vector potential Ad = —to /
(co~+c kw) Aw, whereto =4m.n e2/m.

The beam is then supposed to be so weak as to produce
only small deviations of all relevant parameters from the
equilibrium values. Disregarding nonlinear (bilin ear)
terms and writing the displacement of the vector poten-
tial in the wiggler reference system as 5 A=SA e+c.c., it
is rather straightforward to write the two equations for
the normalized displacements 5 A r =e /mc 5 A and
5n /nz, respectively,

a'
2

a'
2

—c
2 +Co& 5 AT()t' Bz'

4me n~awo 1
2

e 5(z —z, (t))
2m

tion of the spectrum of the radiation field 5AT and that
of the longitudinal field 5n /n .

We can simplify the treatment even further by disre-
garding all waves that propagate in the negative z direc-
tion and writing the two first-order equations for the pro-
gressive waves only,

+itoT(k) 5AT
()

Bt

247Te 7l gQ w0 -i(k~+k)z (t)
l E' IY s

2W2mtoT(k), y, (t)

Ee
~o) awo 5n 8(k+kw) —e 5AT,

2 2toT(k) n~ ()t)
(A16)

5 A,' '=aT(k, et )e

5n (0) —i co& (k)t
=aL (k, et)e

Plp

(A17)

and we may also eliminate all secular behaviors in the
first-order quantities by imposing that the slow time
behaviors of the two spectra az(k) and aL (k) are given
by

+ivor (k)
() . 5n
at ~

n,

4~e 6g —ikz (t)

2m')1 (k) ~
c kawo2 2

ie — [5A (k —k ) —5A'( —k —k )]2i/2~ (k) w

() 5n

Bti np

where toT(k)=+c k +co and coL(k)=(/8 k2+co . A
formal parameter of smallness e appears in these two
equations, in which we have also introduced the slow
time scale t&=et, as is customary in the multiple time
scale procedure. At zeroth order in the perturbation
treatment

2 24m.e n).awo —i 0, (t) . ~p a wo —i'[coa (k+ k w )—coT(k) ]tQT= l e ' i —aL (k+kw}e
dt, 2V 2m' (k), }',(t) 2~2co (k)

24~e +g —'[k, (t) — (k)t]

Bt) 2mtoL (k}~
ckaawp, i [coT(k —k~) co~—(k)]t — —([coT(k+k~) —co~(k)]t,

2 2col (k)

(A18)

where the angle 8, (t) is given by 8, (t) =(k+kw)z, (t) —toT(k)t. By applying the same procedure to Eqs. (A10)—(A12),
which give the dynamics of the beam, we may write the slow time evolution of the momentum p, of each single electron
as
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27M ng
p, = g sgn(z, (t)—z„(t))

Bt&
' mc

—i Idk(k+k)(, )e 'aT(k) c.—c.
2y . 2

cop dk i[kz, (i) coL—(k)t)

2&C
(A19)

i[krz —cor(kr )t )

Fquations (A18) and (A19) define the time behavior of the
Fourier spectra of both transverse and longitudinal sig-
nals.

We shall now assume that the two spectra aT(k) and
at (k) are very narrow and centered around some definite
values of k, say, kT and kL, respectively, in such a way
that, to dominant order,

8
+coL (kL ) ML

z (

~b2
l —pe

2coL (kL ) X,

(A22)
—iO. (t) ag PC kL

J

2&2coL(kL )

COb
2

P = l
Bt, ' 2ckL

—iO, (t) i 0.(t)
e ' e ' —c.c.

a a+co'„(kT) Mr
Bt) Bz)

2
~b~wo 1 1

2&2coT(kT) N, , y, (t)

M
co a

2&2coT(kL )

/pe i[knez
—co&(k& )t]

n

(A20) . ~wo
i —CkL

2

i8.(t)
e

MT —c.c.

kL =kT+k)i„coL (kL ) =cor(kT) . (A21)

At last, averaging over the smaller wavelength of the
problem, we get the equations in the Anal form

If we introduce the preceding hypothesis of narrow spec-
tra into the basic equations (A18) and (A19), it is possible
to rewrite them in a form that gives directly the time
behavior of the two amplitudes MT and ML. These equa-
tions in turn take a particularly simple form if we make
the additional hypotheses that

2
I.e.(t)

i —(e ' M —c.c. )
ck L

where the index j now runs over all electrons in a length
equal to the longitudinal wavelength A,L

= 2m /kL .
Furthermore, in (A22), z, =ez, co(, =4nn& e /m, .
8,(t)=(k+k)i, )z (t) coT(kT)t, and —co'r and coL are the
group velocities of the transverse and longitudinal wave
packets, respectively. Equations (2) in the text are ob-
tained from Eqs. (A22) by assuming that the amplitudes
MT and ML do not depend on z and change Anally to
AT=i(MT/v'2) and AL =iML
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