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van der Pol behavior of relaxation oscillations
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The nonlinear dynamics of the frequency entrainment process in periodically driven, self-
oscillating thermionic discharges is investigated experimentally. The periodically interrupted fre-
quency entrainment process, known as periodic pulling, is demonstrated to be an essential feature of
the transition region between the quasiperiodic state and the entrained state. A detailed comparison
of experimental findings with the analytical and numerical study of the driven van der Pol equation
z —e(1 —Pz )~ox + ~oz = ~DE cos(~;t) confirms the relevance of this dynamical model for non-
linear plasma oscillations. A physical explanation is developed based on results from particle-in-cell
simulations of periodic pulling in thermionic discharges.

PACS number(s): 52.35.—g, 52.75.Fk, 05.45.+b

I. INTRODUCTION

Simple mathematical models are often helpful for the
understanding of nonlinear dynamical phenomena of
physical systems. In particular, the detailed dynamical
behavior of oscillatory unstable systems is generally well
described by an appropriately chosen nonlinear oscillator
model (see Ref. [1] for an overview on recent experimen-
tal and theoretical work). A classical nonlinear oscillator
model is the van der Pol (vdP) model [2]. It is described
by a second-order differential equation with a nonlinear
friction term. As one of its most prominent features, sta-
ble limit cycles in phase space are established. , emerging
from a subtle balance between energy gain and dissipa-
tion. This belongs to a time evolution characterized by
a self-excited relaxation oscillation process governed by
two distinct time scales: a slow Ailing phase and, after a
certain threshold condition is met, a rapid reorganization
of the initial state. van der Pol already has considered the
periodically forced variant of his model [3], whose dynarn-
ical behavior is mainly characterized by quasiperiodicity
and frequency entrainment [4]. Frequency entrainment
allows the oscillation frequency to shift to that of an ex-
ternal periodic driving force and many technical applica-
tions have been found (cf., for example, [5]). Recently,
the nonlinear dynamics of the periodically driven vdP os-
cillator has attracted new attention. The occurrence of
a blue sky catastrophe [6], the devil's staircase [7], and
period-doubling bifurcations towards chaos in synchro-
nized states [7,8] are only a few examples of its newly
discovered more complex dynamical features.

The interpretation of resonance eÃects in externally
modulated gas discharge systems has often benefited by
comparison with the driven vdP model. For periodically
driven collisional ion sound waves, the vdP equation has
been derived starting from the basic set of ion Quid equa-

tions [9,10]. Other examples for the successful applica-
tion of the driven vdP model to resonance phenomena in
plasma physics are beam-plasma systems [11—13], ioniza-
tion waves [14,15], and potential relaxation oscillations
[16,17]. However, even the vdP model has its limitations
and in some cases, considerable modifications are nec-
essary for a convincing agreement between experimental
observation and the oscillator model [18,19].

A rarely noticed but nevertheless important dynamical
feature of the driven vdP model is the so-called periodic-
pulling phenomenon [20]. Briefly described, it is a peri-
odically repeated incomplete frequency entrainment pro-
cess. This leads to significant modifications of the result-
ing time series, power spectra, and phase-space structure
[21]. As discussed in Ref. [22], this can give rise to mis-
leading or incorrect interpretations as sideband suppres-
sion or intermittency. The periodic-pulling phenomenon
has been demonstrated to be of great importance for the
dynamical behavior of unijunction transistor oscillators
[21], microwave oscillators [5], neon bulb relaxation os-
cillators [23], but also different kinds of plasma waves
in laboratory [22,24—26] and Quctuations in the earth' s
magnetosphere [27].

In this paper we present a detailed numerical
and experimental investigation of the periodic-pulling
phenomenon in a periodically driven self-oscillating
thermionic discharge. In a certain operation regime, the
thermionic low-pressure discharge with volume ioniza-
tion performs strong, relaxationlike current oscillations
that can be classified as a close relative of the poten-
tial relaxation instability [28,29]. Recently, the nonlin-
ear dynamics of such self-excited plasma oscillations have
been studied in detail by a comparison between computer
simulation and experiment [30—32]. In these papers a
model description for the self-oscillations has been estab-
lished. This model reveals the physical mechanisms of the
nonlinear dynamical behavior of the periodically forced
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thermionic discharge. Period-doubling bifurcations and
frequency entrainment of the oscillating discharge have
been studied and have been compared with the theory
of sine circle map dynamics. However, the nonlinear dy-
namical phenomena related to frequency entrainment are
much more subtle than described by the circle map. The
rich behavior observed in the experiment needs the more
careful analysis presented in this paper: The analytical
treatment of periodic pulling (Sec. II) is completed by a
numerical solution of the vdP equation (Sec. III). The
self-oscillating thermionic discharge is investigated exper-
imentally (Sec. IV) and the physical mechanism of the
observed dynamical phenoma is discussed on the basis of
particle-in-cell simulations (Sec. V). The present study
provides a detailed understanding of the dynamical be-
havior of a periodically driven discharge plasma.

sionless entrainment parameter

E
2a ((up/cu;) —1 (4)

Eq. (3b) can be rewritten in the form

dP—= Op [1 —o. sin P] .
dt (5)

E'——1 ——
(dp 2a (6)

In an entrained state, the relative phase P is independent
of time. This implies the condition [o,

~

& 1. The vdP
oscillator is entrained by the external force if a reaches
unity if

II. ANALYTICAL TREATMENT
OF PERIODIC PULLING

As already outlined above, the van der Pol oscillator
is a model for nonlinear relaxation oscillators. The peri-
odically driven vdP oscillator is given by the equation

d2x
2 dX 2=2

dt2
—e (1 —Px ) Mp —+ M x = M E cos(Edit), (1)

dt 0 0

x(t) = a(t) sin[(u, t —P(t)], (2)

includes the time evolution of both amplitude a(t) and
relative phase P(t) between the driving force and the
system response. Lashinsky [20] has derived difFerential
equations for slowly varying a(t) and P(t) and weak non-
linearity e using the method of harmonic balance [33].
A simplification is possible if the driving frequency is
restricted to small deviations from the free-running fre-
quency, (up —u, )/2ur, w, —wp. The result is found to
be

da
dt

2
eupa a1—

2 (ap)
E (dp+ ——cos P,
2 4J'

where e is a parameter that determines the degree of
nonlinearity, P characterizes the degree of nonlinear sat-
uration, and fp = (c)p/2vr is the frequency of the free-
running oscillator. The (injected) driving force has fre-
quency f; = cu, /2m with amplitude E. The trial solution
of Eq. (1),

tan = gl —n2 tan(Ap gl —n2t/2) + n .~(t)
2

The beat frequency 0 of P(t) is obtained from the peri-
odicity of tan(P/2),

0 = Op Ql —n2 = Opal —(E/E, )2,

where E, —:2aOp/up is the forcing amplitude associated
with the onset of entrainment, a relationship recently
verified by experiment [21]. The complex phase factor
exp(ig) with P given by Eq. (7) can be expressed in the
form [35]

exp[i/(t)] =
i tan:

2

1 —tan 2 0
X 2

1 —itan(2) exp i(At+ 8)

where 0 is fixed by the relations 0 = Op cos0 and
sinO = o.. Expression (9) is the phase factor of the
complex continuation of Eq. (2),

x(t) = aexpi[&u;t+ P(t)j, (10)

For nonzero driving force E entrainment occurs for u; g
cdp. The entrainment condition (6) is met either by in-
creasing the driving force E or by decreasing the fre-
quency diKerence Op. Equation (5) has been derived in-
dependently by Adler [34] using arguments from system
theory. It can be integrated analytically and the solution
1S

dP E ~p= 0p ———S111P .
dt 2a w,

(3b)
and can be developed into a Fourier series

Here, ap ——2/~P denotes the equilibrium amplitude of
the kee-running vdP oscillator, and Op = ca)' —up is the
conventional beat frequency. By introducing the dimen-

I

' 0
i tan—2

(1 —tan' —) (i tan —)"e'~"+'~

exp i/(t) = ) c„expi(n+ 1)Ot

for w, ) wp (w; & wp) with the coefBcients

for n& —1 (n&0)
for n= —1 (n= —1)
for n) 0 (n & —1).

(12)
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Here c is the nth component of a sideband structure
= w; + (n + 1)Q = 27rf, that is referenced to the

driving frequency ~;. The resulting power spectra and
the time evolution of the relative phase are shown in
Fig. 1(a) for different values of o.. According to Eq. (12),
the spectra are single sided with respect to cu, . (In con-
trast, the sidebands ~,

„
in the spectrum of an ordinary

quasiperiodic state are symmetric. ) As ~a~ -+ 1, the beat
frequency 0 decreases and additional spectral lines ap-
pear. The amplitudes of c show a geometrical progres-
sion for n ) 0, which corresponds to a linear decrease on
the logarithmic scale. The time evolution of the relative
phase P(t) is shown in Fig. 1(b). For o. = 0 the phase de-
velopment would be linear, as expected for conventional
amplitude modulation. The increase of ~o.

~

increases the
nonlinearity in the evolution of the phase relation which
corresponds to an increasing nonsinusoidal modulation
in frequency, a property recently demonstrated by ex-
periment [36]. Close to ~a~ = 1, the phase evolution
can be subdivided into a slow and a fast part. The syn-
chronous modulation of the amplitude and the &equency
in the system response of a periodically forced nonlinear
oscillator is a primary characteristic of this asymmetric

spectral broadening process, known as periodic pulling,
as emphasized by Koepke and Hartley [21].

III. NUMERICAL TREATMENT
OF vdP EQUATION

dxy

dt 2) (13a)

dX2 2:E cos(vr) + 6(1 —'Pxi)x2 —xy,

is solved numerically, where the variable v = (d /(alp

denotes the normalized frequency and 7 = capt is the
dimensionless time scale. The two-dimensional pro-
jection of the phase-space trajectory is directly ob-

The numerical solution of the periodically driven vdP
equation (1) provides an independent characterization of
the periodic-pulling phenomenon. For this purpose, the
set of first-order di8'erential equations for xq ——x and
x2 ——dx/dt in dimensionless notation,

(b)
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FIG. 1. Analytic theory of
periodic pulling. Shown are the
power spectra of the response
signal on a logarithmic scale (a)
and the time evolution of the
relative phase between driver
and response signal (b) for dif-
ferent values of the entrain-
ment parameter o.. From top
to bottom, the periodic-pulling
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tained by plotting xq versus x2. The stroboscopic
mapping (xq(nT), xq((n + l)T)) is sampled at times
0, T, 2T, . . . , nT, where T = 2m /tu; is the period of the
driving force. For the dynamical system under investiga-
tion, the stroboscopic mapping is topologically equivalent
to the Poincare map [37].

The bifurcation structure of the periodically forced
vdP oscillator has been studied by numerical methods
[7,8]. Different bifurcation classes have been found and
two of the most important are saddle-node bifurcations
between quasiperiodic and entrained states in the weakly
driven case and period-doubling bifurcations in entrained
states for the strongly driven case [8]. Areas in the
(v, E) plane for which the system is entrained (i.e. , mode
locked) are known as Arnol'd tongues [37]. The winding
number n allows one to distinguish between entrained
and quasiperiodic states. If the vdP oscillator is en-
trained by the driving force, the winding number re-
mains constant m = p/q (p, q are positive integers) over
some range of u;. In principle, between each two locking
ranges with winding numbers to = p/q and w' = p'/q',
there exists another entrained state with winding num-
ber ur" = (p+ p')/(q+ q'). This hierarchy is known as
Farey's sequence [37]. For the strongly driven, entrained
oscillator, period-doubling bifurcations have been found
[7,8]

In the immediate vicinity of Arnol d tongues, periodic-
pulling efFects are most evident. This is illustrated by a
diagram in the (v, E) parameter plane for the vicinity
of an Arnol d tongue of periodicity one (Fig. 2). Lines
of equal periodic pulling are given by Eq. (4) and are
shown for different values of the entrainment parame-
ter n. Without loss of generality 2a is set to unity. For
]a.

~

~ 1, the oscillator performs a saddle-node bifurcation
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to an entrained state of periodicity one (shaded region
in Fig. 2). The transition from weak to strong periodic
pulling in the quasiperiodic regime, however, is smooth
and should not be considered as a separate type of bi-
furcation. For this reason, periodic pulling is not usually
recognized by commonly used bifurcation analysis tools
[38], although it is an essential feature of the vdP dy-
namics.

In Figs. 3—5, the numerical solution of Eqs. (13a) and
(13b) is shown for three different values of v while E is
kept constant. As indicated by the arrow in Fig. 2, the
driving frequency v is varied to study both weak and
strong periodic pulling and the entrained state. Fig-
ures 3—5 include the two-dimensional representation of
the phase space, the stroboscopic mapping, the time se-
ries of the driving force Ec os(m;t) and system response
x(t), the power spectrum S(f) of the system response,
and the time evolution of the phase relationship P(t).
In Fig. 3 the phase-space diagram of the quasiperiodic
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FIG. 2. Arnol'd tongue for the frequency-entrained states
of periodicity one (shaded region). The dashed lines corre-
spond to difFerent entrainment parameters o. and indicate
lines of equally marked periodic pulling. The numerical
and experimental investigations of the periodic-pulling phe-
nomenon are performed by decreasing the driving frequency
while the driving force is kept constant, as indicated by the
arrow.

FIG. 3. Numerical solution of the forced vdP equation (13)
for the case of weak periodic pulling (c = 0.4, P = 0.1,
E = 1.5, v = 1.2157): Shown are (a) the two-dimensional
projection of the phase space $x, x), (b) the stroboscopic
mapping, (c) the time series of the system response (trace
below) and driving force (trace above, vertically shifted for
clarity), (d) the time evolution of the relative phase between
driver signal and system response, and (e) the response power
spectrum.
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state shows the projection of a two-torus. Consequently,
the stroboscopic mapping is a closed cycle. The sys-
tem response shows a moderate amplitude modulation
of = 63%%uo for the ratio of minumum to maximum of the
wave envelope. In the power spectrum, a spectral fea-
ture at f,o associated with and appoximately equal to
the free-running frequency fo is found. The driving &e-
quency f, is seen, as well as sidebands f, due to the
nonlinear interaction.

If the driving frequency is chosen close to an Arnol'd
tongue, pronounced periodic pulling is found in the dy-
namical behavior of the system, as indicated in Fig. 4.
The phase-space trajectory no longer homogeneously
covers the surface of the two-torus but instead fills its cen-
ter. Accordingly, the stroboscopic mapping has regions
with significantly diferent point densities. The system's
response now shows both amplitude and &equency mod-
ulation. The amplitude modulation is strongly nonsinu-
soidal and the modulation depth has strongly increased,
while the driving force amplitude E has remained Axed.
This exaggerated. amplitude modulation is a consequence

of the rapid readjustment of phase during the inter-
ruption of the frequency pulling process between each
beat cycle. Such a phase readjustment can be recog-
nized in the system response in Fig. 4(c) at t = 35, 185,
and 335 ms, where the readjustment eliminates approxi-
mately 180 of relative phase with respect to the driving
force as indicated in the phase evolution in Fig. 4(d).
The power spectrum is asymmetric with respect to f, ,

consistent with the analytical results outlined earlier. In
Fig. 5, entrainment is achieved by decreasing the driving
frequency. The phase-space trajectory is a limit cycle,
the stroboscopic mapping is a Axed point, modulation is
absent in the system response, and the power spectrum
indicates only monochromatic harmonics of f,o ——f,

Apart from the well-understood. bifurcation structure,
the periodic-pulling phenomenon plays an important role
in the transition regime between quasiperiodic and en-
trained states of the vdP oscillator. The analytical and
numerical results are completely consistent. Thus the
vdP oscillator can be considered as a paradigm for driven
relaxation oscillations in experimental situations. Such a
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FIG. 4. Numerical solution of the forced vdP equation (13)
for the case of strong periodic pulling. (e = 0.4, P = 0.1,
E = 1.5, v = 1.09): (a) the phase space (x, x), (b) the
stroboscopic mapping, (c) the time series of the system re-
sponse (below) and driving force (above, vertically shifted for
clarity), (d) the phase evolution, and (e) the response power
spectrum.

FIG. 5. Numerical solution of the forced vdP equation (13)
for the case of entrainment. (e = 0.4, P = 0.1, E
v = 1.05): (a) the phase space 12:,x), (b) the stroboscopic
mapping, (c) the time series of the system response (below)
and driving force (above, vertically shifted for clarity), (d) the
phase evolution, and (e) the response power spectrum.
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pulling becomes more evident as the Arnol'd tongue is ap-
proached: The triangular power spectrum in Fig. 10(a)
is more asymmetric with respect to f; The s nc ro-.

amp i u e and phase modulation, responsible for
the sideband cancellation effect described in Sec. II, is
revealed in the t ime series of the system response and
the phase evolution P(t) [Figs. 10(b) and 10(c)). As pre-
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z, t e zeroth-order
sideband is located at f,e = 707 H Shz. own are (a) the
time-averaged power spectrum of th d' ho e isc arge current Quc-
tuations, b time series of the driver signaligna superimposed on

e isc arge current ashe discharge voltage (top trace) and th d' h
t e system's response (bottom trace), and (c) the time evo-
u ion of the relative phase between d ' deen river signa and reponse

signal. No evidence for periodic pulling is found in the power
spectrum, the time series and in th hn e p ase evo ution.
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The homogeneity with which the he p ase-space two-torus

the no
ig. corresponds to thep the very small amplitude of
e nodes of the distorted beats. The beat fr

y q. (8), is determined from the observed

&e u
power spectra. It is compared with thi e conventional beat

cu ~&i.e., or constant modu-
a ion egree ~jacross an Arnol'd tongue and its nei hbor-i s neig or-

for constant drivin
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perimental uncertainty due to st h
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e riven system, the ex crimp
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ent agrees much bett
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wi v theory o periodic pulling than w th l
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i a inc ar

e rno tongue.

V. SIMULATIONS

Particle-in-cell ~PIC~ simul
or t e physical interpretation of the nonlinear d na

above, the descriptive model [31 of 1
'

se ~ o re axation oscillations
o e ow-pressure thermionic discharge with filament
cathode has been developed &o PIC
model is also suitable to

om simulations. is

of ent
e o provide a physical understandin

n this section simulation result fs o peno ic- ullin

-t-
ose y as possi e, except for a low

ion- o-e ectron mass ratio, p = m, m = 1

e ore that d nay mical features of the simulated disch
s ra e

remain unaffected b the
u a e isc arge

e y the choice of the mass ratio 46 31].
In the simulatiou ation, the plasma potential is sli htl

t e system's response. One reason for thor is pre erence is
formation it provides on th t h'

potential structures. As in the ex crim
e ime astor of loca

e experiment, the discharge

nally at a fre uenc
is mo u ate exter-

a a requency f; with a moderate modulation de-
gree. The time series and th e corresponding power s ec-
trum are shown in Fi . 14. Theig. . e modulation of the plasma
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potential is nonsinusoidal and has an asymmetric spec-
trum. As expected Rom theory, the number and height
of sidebands are larger on one side of f; than on the other
side, causing the spectrum to become more asymmetric.
The detailed structure of the power spectra is slightly
obscured by the inherent low coherency of the simulated
self-oscillation process. Nevertheless, the average beat
period is given by 2vr/O. The properties of the time se-
ries and the power spectrum are unambiguous signatures
of periodic pulling in the simulated discharge system.

A more detailed view of two beat cycles for the same
simulation parameters as of Fig. 14(b) is shown in Fig. 15.
To make clear the phase evolution of the system response,
the appropriately scaled driving-force is included in the
diagram as a dashed line. Each beat cycle has the length
of Ave driving force periods. The sharp peaks in the
time series of the potential indicate the sudden rise of
a transient double layer in the discharge, that causes

a steep increase of the discharge current (see Sec. IV).
In Fig. 15, the arrows de6ne the beginning and end of
a particular beat cycle. At the beginning of a cycle,
peaks in the plasma potential occur with a frequency that
is pulled toward the driving frequency without reaching
it. The residual frequency difFerence results in a phase
difI'erence that slowly accumulates throughout the beat
cycle. When the phase difI'erence is suKciently large,
the frequency pulling is interrupted and the phase differ-
ence rapidly readjusts to repeat the process. In Fig. 15,
this readjustment occurs between the fourth and the fifth
driving-force periods. This process corresponds to a non-
sinusoidal frequency modulation of the system response.

The most pronounced event during each beat cycle is
indicated in Fig. 15 also by the arrows. During period
5, the instability in the potential structure occurs at the
maximum in discharge voltage magnitude. This particu-
lar phase relation is always observed in entrained states
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(b) is still too weak to control the total particle numbers
beyond one driving-force period. Consequently, the se-
quence described above repeats periodically. Temporal
evolution in this descriptive model parallels that of the

0 -----------eaeee. act
I I I I

600 650 700 750 800
driving frequency (Hz)

0.00 .01 .02 .03 .04 .05
modulation degree

fso

FIG. 13. (a) Beat frequency 0 for a horizontal cut gm-
l'd tcrease of the driving frequency) across the Arnol d tongue

with peno icz y = ad' 't P = 1 and theoretical prediction (solid line)
'onalas calculated from Eq. (8). For comparison, the conventiona

served shift of the beat frequency 0 as the Arnol'd tongue is
approached by an increase of the driving voltage. For compar-

b E. ,8,ison, the theoretically predicted dependence, given y q. ,
is included in the graph (solid line). The conventional beat
frequency is indicated by the dashed line.

of the driven discharge [31]. This fact is demonstrated
in Fig. 16(a) where the time series of an entrained state
with perio ici y oneh

' d' t are compiled with a common time
axis (external driving voltage, discharge current, plasma
potential, and total particle numbers). Both plasma po-
tential and discharge current maintain a constant p ase
relative to the driving force, with the maxima in Id an

force. The oscillation of the total particle numbers has
a fairly small amplitude and is entrained to the driving
force.

It is revealing to compare the set of time series of en-

ing one beat cycle, the phase relationships between the
driving force and both discharge current and plasma po-
t t' 1 t nuously shift until the characteristic phase
condition for entrained states is fullfilled again ~c .
period). The key information provided by the simulation
calculations is the temporal evolution of the total partic e

force periods, the phase relationship between the externa
driver and the self-oscillation causes a strong variation
in the total particle numbers (about 15%%uq for electrons
and 20% for ions). At the fourth driving-force period,
the relative phase between the external modulation and.
the internal oscillation results in a reduced particle oss
in the discharge. Hence the subsequent refilling proce-
dure leads to signi6cantly higher particle numbers an
the conditions for the instability of the potential struc-
ture are met much earlier [31,32]. Between the fourth and
fifth driving-force periods, the development of each Huc-
tuating quan i y ma c est't t hes the behavior associated with
the entrained case shown in Fig. 16(a). However, the en-
trained state is not preserved because the driving orce
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FIG. 14. Particle-in-cell simulation of the perzodlcally
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' th mionic discharge shows a c ear 'nindication of eri-riven er
o the Arnol'dodic pulling. (a) Strong periodic pulling close to the rno

t Th power spectrum of the system's response (top) is
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(b) Less pronounced periodic pulling. The power spectrum
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as interpreted using analytical vdP theory. The experi-
mentally measured distortion in the beat frequency due
to the nonlinear process is in good agreement with pre-
dictions from vdP theory. The results Rom computer
simulations reinforce the interpretation of the experiment
and provide insight into the microphysics of the nonlinear
process. On the one hand, both experimental data and

FIG. 15. A typical single beat cycle of pronounced periodic
pulling as obtained from the particle-in-cell simulation of the
thermionic discharge. The driving signal (dashed line) and
the index number of full periods per beat cycle are included
in the diagram. The arrovrs indicate the end of each beat
cycle.

experimental observations and thus may be a viable ex-
planation of periodic pulling in the driven thermionic dis-
charge.

The undriven self-oscillation process involves a syn-
chronization of several plasma and discharge parameters,
i.e. , plasma length, total ion number, and the electron
drift velocity. During each current oscillation cycle, these
parameters develop in a well-de6ned way until a par-
ticular instability criterion is met [31]. Because of the
interrelationship of these time-dependent parameters, it
is diKcult to judge the relative importance of each of
them with respect to the onset of the instability. With
a periodic modulation of the discharge voltage, at a fre-
quency close to the frequency of the self-oscillation, the
instability of the plasma can also be triggered by the ex-
ternal force. Basically, this process is independent from
the time evolution of the set of parameters mentioned
above. Thus the analysis of periodic pulling via com-
puter simulations presents one with a unique opportu-
nity to recognize which criteria are always met preceding
the instability and which conditions only appear criti-
cal from viewing the undriven and entrained systems.
From the analysis presented above, it is apparent that the
properties of the electron distribution function are more
strongly correlated with the onset of the instability than
other parameters. The inspection of the time evolution
of parameters [Fig. 16(a), entrained state and Fig. 16(b),
periodic-pulling state] clearly demonstrates that periodic
pulling consists of a quasiperiodic regime followed by a
transition to an entrained state, as predicted by the vdP
model (cf. also Fig. 4).

VI. SUMMARY AND CONCLUSIONS

—14-~ —16
x 18—20

-22
0

1.5~ 1.00 0.5—
—12-
—15
—18
—21-
2.0—
1.8
1.6
1.6—

1.4—
1 02

0.315

(b)

—16
x —180

I@I 20

1.5
1.0
0.5

—10
15

—20

2.0—
1.8
1.6—
1.6—
1.4

CO

1.2—

g ~

0.32 0.325
time (ms)

0.01 5 0.03
time (ms)

0.33

0.045

The periodic-pulling phenomenon is observed for a
potential-relaxation oscillation in a thermionic discharge,
both in an experiment and in a PIC simulation. The dy-
namics of (strong) periodic pulling are distinguished from
the dynamics of quasiperiodicity (weak periodic pulling)
and entrainment by inspection of the time series, power
spectrum, phase evolution, and stroboscopic mapping,

FIC. 16. Time series generated by the particle-in-cell sim-
ulation. Prom top to bottom: external driving signal 4',„(t),
discharge current Iq(t), midplane plasma potential 4(t), total
number of electron superparticles ¹(t), and total number of
ion superparticles N;(t). Shown are a frequency entrainment
(a) and periodic pulling (b). The numbers in (b) correspond
to the numbering of full periods in Fig. 15.
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computer simulation exhibit the primary characteristic of
nonsinusoidal frequency modulation (in the appearances
of spikes in discharge current Id and midplane plasma
potential P ) and the asymmetric power spectrum. On
the other hand, the computer simulation shows how the
process of particle accumulation and loss and the creation
of temporary structures in the electrostatic potential ex-
plain the physics of periodic pulling in the thermionic
discharge.

ACKNOWLEDGMENTS

This work was performed under the auspices of DFG
Sonderforschungsbereich 198/A8 "Kinetik partiell ion-
isierter Plasmen" and the U.S. National Science Foun-
dation. One author (M.E.K.) would like to acknowledge
travel support &om these agencies and the kind hospital-
ity of the Kiel plasma physics group during his stay.

[1] T. Kapitaniak, Chaotic Oscillators (World Scientific, Sin-
gapore, 1992).

[2] B. van der Pol, Philos. Mag. 43, 700 (1922).
[3] B. van der Pol, Philos. Mag. 3, 65 (1927).
[4] C. Hayashi, Nonlinear Oscillations in Physical Systems

(Princeton University Press, Princeton, NJ, 1964).
[5] K. Kurokawa, Proc. IEEE Bl, 1386 (1973).
[6] R. H. Abraham and H. B. Stewart, Physica D 21, 394

(1986).
[7] U. Parlitz and W. Lauterborn, Phys. Rev. A 3B, 1428

(1987).
[8] R. Mettin, U. Parlitz, and W. Lauterborn, Int. J. Bifur-

cation Chaos 3, 1529 (1993).
[9] B. E. Keen and W. H. W. Fletcher, Phys. Rev. Lett. 23,

760 (1969).
[10] B. E. Keen and W. H. W. Fletcher, J. Phys. D 3, 1868

(1970).
[11] Y. Nakamura, J. Phys. Soc. Jpn. 25, 1315 (1970).
[12] Y. Nakamura, J. Phys. Soc. Jpn. 31, 273 (1971).
[13] T. Tsuru, J. Phys. Soc. Jpn. 40, 548 (1976).
[14] K. Ohe and S. Takeda, Jpn. J. Appl. Phys. 11, 11?3

(1972).
[15] K. Ohe and S. Takeda, Beitr. Plasma Phys. 14, 55 (1974).
[16] P. Michelsen, H. L. Pecseli, J. J. Rasmussen, and R.

Schrittwieser, Plasma Phys. 21, 61 (1979).
[17] T. Gyergyek, M. Cercek, N. Jelic, and M. Stanojevic,

Phys. Lett. A 177, 54 (1993).
[18] H. Amemiya, Beitr. Plasma Phys. 21, 195 (1981).
[19] H. Amemiya, Plasma Phys. 25, 735 (1983).
[20] H. Lashinsky, in Symposium on Turbulence of Fluids and

Plasmas, Polytechnic Institute of Brooklyn, edited by J.
Fox (Polytechnic Press, New York, 1968), pp. 29—46.

[21] M. E. Koepke and D. M. Hartley, Phys. Rev. A 44, 6877
(1991).

[22] M. E. Koepke, T. E. Sheridan, and M. J. Alport, in
Physics of Space Plasmas (1992), edited by T. Chang,
G. B. Crew, and J. R. Jasperse (Scientific, Cambridge,
MA, 1993), pp. 551—558.

[23] T. E. Sheridan, M. E. Koepke, C. A. Selcher, and T. N.
Good, Proc. SPIE 2039, 158 (1993).

[24] R. H. Abrams, E. J. Yadlowsky, and H. Lashinsky, Phys.
Rev. Lett. 22, 275 (1969).

[25] M. E. Koepke, M. J. Alport, T. E. Sheridan, W. E. Am-
atucci, and J. J. Carroll III, Geophys. Res. Lett. 21, 1011
(1994).

[26] T. Klinger, A. Piel, F. Seddighi, and C. Wilke, Phys.
Lett. A 182, 312 (1993).

[27] H. Lashinsky, T. J. Rosenberg, and D. L. Detrick, Geo-
phys. Res. Lett. 7, 837 (1980).

[28] S. Iizuka et aL, Phys. Rev. Lett. 48, 145 (1982).
[29] F. Bauer and H. Schamel, Physica D 54, 235 (1992).
[30 F. Greiner, T. Klinger, H. Klostermann, and A. Piel,

Phys. Rev. Lett. 70, 3071 (1993).
[31] F. Greiner, T. Klinger, and A. Piel, Phys. Plasmas 2,

1810 (1995).
[32] T. Klinger, F. Greiner, A. Rohde, and A. Piel, Phys.

Plasmas 2, 1822 (1995).
[33] N. N. Bogoljubow and J. A. Mitropolski, Asymptotic

Methods in the Theory of Nonlinear Oscillations (Gor-
don and Breach, New York, 1961).

[34] R. Adler, Proc. IRE 34, 351 (1946).
[35] M. Armand, Proc. IEEE 57, 798 (1969).
[36] M. E. Koepke, in Physics of Space Plasmas (1991),edited

by T. Chang, G. B. Crew, and J. R. Jasperse (Scientific,
Cambridge, MA, 1992), p. 393.

[37] E. A. Jackson, Perspectives of Nonlinear Dynamics
(Cambridge University Press, Cambridge, England,
1991), Vol. 1.

[38] R. Seydel, From Equilibrium to Chaos (Elsevier Science
Publishing, Amsterdam, 1988).

[39] N. Hershkowitz, in Plasma Diagnostics, edited by O. Au-
ciello and D. L. Flamm (Academic Press, New York,
1993), Vol. l.

[40] R. L. Merlino and S. L. Cartier, Appl. Phys. Lett. 44, 33
(1984).

[41) J. R. Pierce, J. Appl. Phys. 15, 721 (1944).
[42) P. Y. Cheung and A. Y. Wong, Phys. Rev. Lett. 59, 551

(1987).
[43] S. Kuhn, Contrib. Plasma Phys. 34, 495 (1994).
[44) C. K. Birdsall, IEEE Trans. Plasma Sci. 19, 65 (1991).
[45] J. Verbonccer, V. Vahedi, M. V. Aleves, and C. K.

Birdsall, PDP1 Plasma Device Planar i-Dimensional
Bounded Electrostatic Code (Plasma Physics and Sim-
ulation Group, University of California, Berkeley, 1990).

[46] F. Greiner, T. Klinger, A. Piel, and R. Timm, in Pro
ceedings of the Fourth Symposium on Double Layers and
Other Nonlinear Phenomena in Plasmas, edited by R. W.
Schrittwieser (World Scientific, Singapore, 1993), pp.
208-213.




