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Stochastic dynamics of quantum jumps
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The dynamics of an open quantum system coupled to an external reservoir is studied on the
basis of a recently proposed formulation of quantum statistical ensembles in terms of probability
distributions on projective Hilbert space. The previous result is generalized to include interaction
Hamiltonians of the form P, A., H;, where A, and B, are operators acting on the Hilbert space
of the reduced system and of the reservoir, respectively. The differential Chapman-Kolmogorov
equation governing the dynamics of the conditional transition probability of the reduced system
is derived from the underlying microscopic theory based on the Schrodinger equation for the total
system. The stochastic process turns out to be a piecewise deterministic Markovian jump process
in the projective Hilbert space of the reduced system. The sample paths are derived and shown to
be similar to those of the Monte Carlo wave function simulation methods proposed in the literature.
Finally, a diffusion-noise expansion of the Liouville master equation is performed and demonstrated
to yield a stochastic differential equation for the state vector of the open system.

PACS number(s): 05.30.—d, 03.65.Bz, 42.50.1 c

I. INTM3DUCTION

The dynamics of open quantum systems is convention-
ally described by means of the reduced density operator,
which is obtained &om the density operator of the to-
tal system by tracing over the variables of the external
reservoir. In order to eliminate the reservoir variables
&om the equation of motion, various approximations are
performed, leading to a closed equation of motion for the
density operator of the reduced system [1,2]. The most
famous approximation of this type is the Markov approx-
imation, which yields under some additional assumptions
the so-called quantum Markovian master equation [3—6]
generating a quantum dynamical semigroup [7—10] in the
space of statistical operators.

In recent years various interesting models have been
proposed that allow the formulation of the physics of
open quantum systems &om a completely different point
of view. These models suggest that the dynamics of open
quantum systems may be described in terms of a stochas-
tic process on the Hilbert space pertaining to the reduced
system. The basic idea is then to represent the wave func-
tion of the reduced system as a random variable in the
Hilbert space and to interpret its covariance matrix as
the density operator. Consequently, the dynamics of the
time-dependent wave function is defined by a stochastic
process in Hilbert space that is constructed such that the
equation of motion governing its covariance matrix is just
the quantum Markovian master equation for the reduced
density operator.

It is clear that the basic principle just described does
not lead to a unique stochastic representation of the
reduced system dynamics. This is due to the obvious
fact that the dynamic equation for the two-point corre-
lation function of a stochastic process alone does not fix
uniquely this process. This is true even if the Marko-

vian assumption is made. In fact, the most general form
for a Markov process on a given phase space consists of
a smooth deterministic time evolution, a discontinuous
juxnp process, and a difFusion process [11]. Accordingly,
the stochastic models discussed in the literature may be
subdivided into the class of diffusion-type processes with
continuous drift and the class of piecewise deterministic
jump processes.

The so-called quantum state diffusion model, for ex-
ample, belongs to the first type of models. Following
the work of Pearle [12], Gisin [13] and Gisin and Per-
cival [14] have developed this model, which is defined
by a stochastic differential equation for the state vec-
tor with nonlinear drift and multiplicative noise. This
stochastic differential equation is equivalent to a certain
(functional) Fokker-Planck equation [15] on the underly-
ing Hilbert space. The stochastic dynamics of the wave
function may also be described in terms of a stochastic
difFerential equation with linear drift [16].

In contrast to these diffusion-type processes there ex-
ists the possibility to represent the dynamics of the open
system wave function as a stochastic process whose real-
izations are piecewise deterministic paths [17]. The first
such method has been developed by Dalibard, Castin,
and Mglmer [18] and applied to some simple models of
quantum optics. This was a major step forward since
it offered a natural theoretical description of quantum
jumps that have been distinctly observed in experiments
with individual ions in radio-frequency traps [19—21] and
with single terrylene molecules [22] (see also the review
article [23] on quantum jumps by Cook). A short time
later Dum, Zoller, and Ritsch [24] suggested a Monte
Carlo simulation method of the quantum master equa-
tion, which is essentially the same algorithm as that of
Dalibard, Castin, and M@lmer, and formulated it in a
most general form in Ref. [25]. Independently, the idea of
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complementary unravelings of the quantum master equa-
tion in terms of diferent types of stochastic processes has
been developed by Carmichael [26]. Wiseman and Mil-
burn [27] have traced back three different unravelings of
the quantum optical master equation to three different
measurement schemes, i.e., to direct photodetection, ho-
modyne, and heterodyne detection. For the example of a
two-level atom, they have formulated the corresponding
stochastic processes by means of differential Chapman-
Kolmogorov equations on the Bloch sphere. In Ref. [28] a
stochastic process for the open system wave function has
been formulated by means of a Liouville master equation
for the corresponding probability distribution. Finally, a
piecewise determixiistic stochastic process has been con-
structed by Blanchard and Jadczyk [29] describing the
coupling of a quantum system to a classical system.

The great variety of these approaches clearly demon-
strates, as mentioned before, that it is not possible to
obtain a unique stochastic representation of the reduced
state vector only on the basis of the equation for the re-
duced density matrix. The question then arises whether
it is possible to derive a unique stochastic process for
the open system dynamics directly &om the underlying
microscopic theory without referring to the density op-
erator description. It is the aim of the present paper to
show that this is indeed possible. For a special case this
derivation is given in [30], whereas a short exposition of
the method is outlined in [31].

In Sec. II we shall first develop a formulation of quan-
tum ensembles in terms of probability distributions on
projective Hilbert space. This formulation provides a
classical statistical theory on the phase space that is given
by the space of rays of the Hilbert space of the systexn
under study. Within this formulation the dynamics of
closed systems is given by the Liouville equation, which
describes the unitary How corresponding to Schrodinger's
equation and is a first-order functional diÃerential equa-
tion for the probability distribution. Moreover, as will
be shown, the combination of two subsystems and the
reduction of a system to one of its subsystems may be
defined in terms of probability distributions on the pro-
jective Hilbert spaces of the corresponding systems.

On the basis of this formal setting we shall derive in
Sec. III an exact equation for the conditional transition
probability of the reduced system by starting from the
Liouville equation for the total (closed) system. Em-
ploying the Markov approximation of classical probabil-
ity theory, we then show that the conditional transition
probability obeys a differential Chapman-Kolmogorov
equation that defines a unique stochastic Markov pro-
cess in projective Hilbert space. This Markov process
is, in fact, a piecewise deterministic jump process. The
continuous Bow is described by the Liouville part of
the Chapxnan-Kolmogorov equation corresponding to a
nonlinear, norm-preserving Schrodinger-type equation,
whereas the jump process is defined in terms of a gain-
and-loss master equation for the probability distribution
of the reduced system. Furthermore, it is shown that
the realizations of the stochastic process correspond es-
sentially to the realizations generated by the algorithms
of the Monte Carlo wave function simulation methods

mentioned above.
We investigate furthermore the difFusion approxima-

tion of the difFerential Chapxnan-Kolmogorov equation.
It is shown that, under certain conditions, the difFeren-
tial Chapman-Kolmogorov equation admits an asymp-
totic expansion, which yields a functional Fokker-Planck
equation. The latter is then transformed to a stochastic
Schrodinger-type equation that is of the same form as
that of the quantuxn state difFusion model.

Finally, in Sec. IV we summarize our results.

II. PROBABILITY' DISTRIBUTIONS
ON PROJECTIVE HILBERT SPACE

In this section we shall develop a general formal setting
for the description of ensembles of quantum systems in
terms of probability distributions on the underlying pro-
jective Hilbert space. In Sec. IIA we deal with ensem-
bles of closed quantum systems and introduce the basic
notions of probability theory on Hilbert space. In partic-
ular, we shall formulate three postulates that imply that
these probability distributions are, in fact, distributions
on projective Hilbert space. In Sec. IIB we derive a kind
of tensor product for probability distributions that gives
the probability distribution of a system that is combined
&om two subsystems. Furthermore, a reduction formula
is constructed that defines the probability distribution
of a reduced system in terms of the distribution of the
total system. These expressions will enable us to derive
in Sec. III the stochastic process of the reduced system
dynamics.

A. Closed systems

Consider a closed quantum mechanical system S, the
states of which are given by wave functions @ in some
Hilbert space 'R. We write @ = @(x), where x denotes
a complete set of quantum numbers of the system under
study. The scalar product on 'R is written as

and the corresponding norm is denoted by

Assume that we have an ensemble that consists of a
large number of copies of the system S each member of
which is described by its own wave function. This ensem-
ble may be characterized by a probability distribution on
the Hilbert space 'R in the following way. The functional
volume element on 'R is defined by

d [Re@(x)]d [Im@(x)]

—d@(x)dg' (x),

where Re/(x) and Im@(x) are the real and the imagi-
nary part of @(x), respectively, and the product g ex-
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tends over all possible values of 2;, e.g. , over all points
of position space. The probability density P[g] corre-
sponding to the above ensemble may then be introduced
by defining P[@]D@D@*to be the probability of finding
the system in the volume element D@Dg' around @. It
should be clear that in the case of an infinite-dimensional
Hilbert space P[Q] is a functional on Hilbert space and
(2) is a functional measure. From a mathematical point
of view, our presentation will be rather formal. However,
we remark that a mathematically rigorous definition of
probability measures on Hilbert space and the construc-
tion of the underlying Borel algebra has been given in a
series of papers by Bach [32] (see also Ref. [33]).

It is important to note that the measure (2) is invariant
with respect to linear unitary transformations U R
W. This fact may be expressed by the equation

where H is the Hamiltonian of the system and choosing
appropriate units we have assumed h = 1. By the intro-
duction of an initial probability distribution Po[@],which
describes the initial state of the ensemble, @ becomes a
deterministic Markov process that is governed by a Liou-
ville equation. Denoting the time-dependent probability
distribution by P = P[g, t] we write

p]o]'O] = J &, 0o&0o &]o
' '@o —o]1&ogo] (10)

require that for the closed quantum system under consid-
eration each member of the ensemble evolves according
to the Schrodinger equation

where

~[U@] = ~[@] This equation expresses the fact that any initial vP]i

drawn &om the initial distribution Po evolves accord-
ing to Schrodinger's equation. Using (3) we obtain &om
Eq. (10) by integrating over @0

denotes the functional b function on the Hilbert space 'R

[h() is the ordinary h function]. According to the general
principles of quantum mechanics, the physical state of a
system S is completely described by a normalized wave
function and wave functions that differ by a phase factor
are equivalent. It is thus natural to require that P[@]
fulfills the following three postulates:

(i) P is normalized

(5)

(ii) the probability distribution is concentrated on the
unit sphere in Hilbert space defined by (gl@):—llvPII2 =
1, that is, there exists a functional Q[vP] such that

P[@]= ~(II+II —1)&[@l (6)

(iii) the probability distribution does not depend upon
the phase of the wave function, i.e., we have for all P g
[0, 2~)

P5' tl =P [ ~l.
DifFerentiating (ll) with respect to time and using the
fact that H is self-adjoint, we find the differential form
of the Liouville equation, which is a first-order functional
differential equation for the probability distribution:

P(g, i] = ido —:Hg(o) —g'(o)EI ),8 . hP , hP

(12)

where h/6@(x) and h'/bg'(2:) are functional Wirtinger
derivatives. Since the linear time-evolution operator
exp( —iIIt) is unitary, it is easily seen that the Liou-
ville equation (12) preserves the basic conditions (5)—(7),
i.e. , if Po[@] is a probability density on projective Hilbert
space so is P[@,t] for all t ) 0.

Another concept that will be important in the follow-
ing sections is provided by the interaction representation
of the time-dependent probability distribution on Hilbert
space. Assume that the total Hamiltonian takes the form

a = Ho+ III (13)

A representation of the projective Hilbert space is ob-
tained by taking the unit sphere in 'R and by identifying
those points on this sphere that differ by a phase factor.
Thus, by conditions (6) and (7), P[@] can in fact be re-
garded as a probability density on the space of rays, that
is, as a probability density on projective Hilbert space.

In terms of P[vj] the expectation value of any physi-
cal observable represented by a self-adjoint operator A.
is defined by the expectation of the quantum mechanical
expectation value

where Ho describes some &ee evolution and Hl denotes
the interaction Hamiltonian. We define the probability
distribution P[@,t] in the interaction representation by

At time t = to the Schrodinger and the interaction rep-
resentation coincide, that is, we have P[@,to] = P[t/~, tp].
The time evolution in the interaction representation is
therefore given by

(&) = ((@I&l@))

D D * dx *xA xP
P[@,t] = P[U,'(t, t, )g, to], (15)

We now turn to the description of the dynaxnics. We
where U'1(t, to) is the time-evolution operator in the in-

teraction picture.
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B. Combination and reduction of systems

A, = 'Ry I3'R2 . (16)

We first assume that we have two statistically inde-
pendent subsystems Sp and S2 described by their distri-
butions Pi[pi] and P2[@2]a respectively. The probability
density P[@] for the wave function @ p R is then ob-
tained by averaging over all possible ways to represent @
as a product vP = pi@2, that is, we have the equation

P[@]= (P, g P, ) [@]

x P2 [$2], (17)

where b[@] denotes the Dirac measure on 'R [see Eq. (4)].
This expression may be called a tensor product of prob-
ability distributions. It implies that for any self-adjoint
operator A on 'R of the form A = Aq A2, the following
equation holds:

This subsection is devoted to a formulation of the com-
bination of statistically independent subsystems and of
the reduction of a system to one of its subsystems in
terms of probability distributions on projective Hilbert
space. The physical situation we have in mind is the fol-
lowing one. Suppose that we have two systems S~ and
S2 with corresponding Hilbert spaces 'Rq and A2. Wave
functions in 'Ri are written as @1(xi)and wave functions
in 'R2 are denoted by @2(x2). Furthermore, throughout
the paper (unless stated otherwise) we use the convention
that all quantities that refer to system S, carry an index
i, where i = 1, 2. For example, (~)2 denotes the scalar
product on 'R2 and

~ ~ ~ ~i is the norm in 'Ri. According to
the general principles of quantum mechanics, the Hilbert
space 'R underlying the combined system S = Si + S2 is
given by the tensor product

(A}p,xJ', = f DdalDa}al f Da)'aDal'2

x (414'2 ~A1 A2 ~4'142) Pi [4'1]P2[A]

D& D&1 (&1IA1IA)iP1[&il
I

x
(

D@2D@2 (42 (A2 (42)2P2 [@2]
r

which is identical to Eq. (18).
I et us check whether the basic conditions (5)—(7) are

fulfilled for the tensor product. First, condition (5) fol-
lows from Eq. (18) by setting Ai ——A2 ——1, where 1
denotes the identity operator on the respective Hilbert
spaces. Condition (6) is obvious from the fact that P[g]
is nonzero only if g is the product of two normalized wave
functions. Finally, also condition (7) is fu1611ed since on
using (3) for the unitary transformation given by the mul-
tiplication with the phase factor exp(ig) we obtain

P[e'aQ] = f Da)aaDa)aa'f Da)aaDa)aa d [da —e 'adaaa)aa]

x Pi [vpi]P2 [Q2]

D gD ~ D 2D 2 b

xP1[e' gi]P2[$2]

and thus P[@] is phase invariant if Pi[@1] is so.
Let us turn to the reduction of a system to one of its

subsystems. Given a probability distribution P[@]for the
combined system S on 'R, the reduced probability distri-
bution Pi[@1] on Ri for the system Si can be obtained
as follows. If the total system S is in a pure state @ C 'R,
quantum mechanics tells us that the reduced system Sq
can be described by a mixture of the normalized states
(in 'Ri) given by

x [da](xa) = ae
'

'[a)a] f dxa aa'(xa)ad(x„xa)

with corresponding weights

(A)s, gs, = (Ai)s, (A2)s, , (18)
2

ae [a)a] = f dxa f dxa aa' (xa)d (xa, xa)

where the probability distributions by which the differ-
ent expectation values are defined have been indicated
as indices of the angular brackets. Equation (18) means
that for statistically independent systems Sz and S2 the
expectation value in the combined system S of any prod-
uct of operators is equal to the product of the expectation
values of Si and S2. In order to prove Eq. (18) we in-
sert the definition (17) for the tensor product into the
expression (8) for the expectation value of A to obtain

(&)p, xx f ~da~da f &daa&dai f &a)a &daa (d[A[ad)

X 8[@—(]F1@2]P1[@1]P2[()d2]

On integrating over @ we find

where (rp ) is a complete orthonormal basis of 'R2. Thus,
in the most general case, the reduced probability distri-
bution on 'R~ is obtained by averaging over the probabil-
ity distribution of the total system leading to the expres-
sion

(22)

where bi [1)'di] is the Dirac measure on the Hilbert space 'Ri
of the reduced system. It; should be clear that the reduced
probability distribution (22) depends on the choice of the
basis p . This dependence can, however, be removed by
integrating the right-hand side of Eq. (22) over the group
M of' unitary transformations U R2 m 'R2 and dividing
out a normalization factor N, that is, by replacing the
above reduction formula by
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»[d»] = —f D& fDODS') h-[dl

xbx[y [g] —gx]P[(1 S U)@] .

In order to keep things as simple as possible we will not
use here this basis-invariant form.

Again, it is easy to check that the basic conditions (5)—
(7) are fulfilled for the reduced probability distribution
provided they are satisfied for the distribution of the total
system. Furthermore, we have for any operator A~ acting
on R]:

In order to prove this relation we write the left-hand side
explicitly as

(Ai)h, = fDgiDgf f dhg Q[(hg) Aidg(hg)P&[dh]

D gD ~ D D 'P

~&1 y &1 +1 1 &1

(Ax)x, = (Ai (31)x . On integrating over gx we find

(A ) h, = fD@Dd'*P[d'[ f d*i ). .[d ]x'.[df(*.)A.x.[d ](*,)

Dd'Dd' P[d] f dh, dh~ h dQ~'( i,h)hA) y (h~)y'{h~) d(h, h~)
)

DgDg'P[4] f dhz dhq d'*(hi, h, ) (A, g l)d'(h, , h2)

= (A (g) 1)g

where in the penultimate step the completeness (in 'R2)
of the set (y ) has been used.

Finally, we mention the following fact (the proof can
be found in Ref. [30]). Suppose that we have given two
distributions P~ and P2 on their respective Hilbert spaces
and that we form the tensor product P = Pq g) P2 ac-
cording to Eq. (17). Applying then the reduction formula
Eq. (22), the original distribution Pi is recovered. Thus
the above equations yield a consistent description of the
combination and the reduction of quantum systems in
terms of probability distributions on Hilbert space.

I

@x) is considered to be the system of interest (simply re-
ferred to as the system), whereas S2 (Hilbert space 'Rq,
wave functions @2) is the external reservoir. The Hamil-
tonian H of the combined system S acting on the Hilbert
space 'R = 'Rq t3 'R2 is written as H = Hp + HI, where
Hl is the interaction Hamiltonian and

Hp ——Hg (3 1+1 |3H2

represents the &ee dynamics of the two subsystems Sz
(Hamiltonian Hi) and S2 (Hamiltonian H2). The xnost
general interaction Hamiltonian HI takes the form

III. REDUCED SYSTEM DYNAMICS AS
STOCHASTIC PROCESS IN PROJECTIVE

HILBERT SPACE

HI =) A;(SB;, (26)

In this section we shall investigate the dynamics' of an
open system that is coupled to an external reservoir. We
start &om a microscopic representation of the dynamics
by means of the Iiouville equation for the probability
distribution of the total system. Employing the basic
principles formulated in Sec. II, it is then possible to
derive within the Markov approximation an equation of
motion for the time-dependent probability distribution
pertaining to the reduced system. This derivation leads
to a unique stochastic process in the projective Hilbert
space of the reduced system.

A. Derivation of the differential
Chapman-Kolmogorov equation

where A; and B; are operators acting on 'R~ and 'R2,
respectively. In order to sixnplify the presentation we
assume in the following that the operators A, are eigen-
operators of Hi (which can always be achieved) with a
discrete, nondegenerate spectrum u;. This means that
we assume that the interaction Hamiltonian in the inter-
action picture can be written as

Hx(s) = e'~"Hle 'H" = ) e™sA,@B;(s), (27)

where B;(s):—exp(iH2s)B; ewp( —iH2s) and (D;

for i g j. Furthermore, we require that the diagonal
elements of B; in the H2 representation vanish.

The external reservoir is described by a probability
density P2[@2] on )xi2 given by

In the following we use the same notation as in Sec.
IIB. The system Si (Hilbert space 'Rx, wave functions

(28)
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where (p ) is an orthonormal eigenbasis of H2, H2p
s y, and p & 0, P p = 1. Thus P2[@2] represents
a probability density that is concentrated on the eigen-
states y of H2 with corresponding weigths p and is
constant along rays exp(ig)@2. The latter property im-
plies that P2 is a stationary solution of the Liouville equa-
tion (12) for the reservoir.

We now fix an arbitrary initial time to and a positive
time interval r, writing t = to+a. According to Eq. (15),
the probability distribution P[@,t] in the interaction rep-
resentation is given by

exact dynamics of the reduced probability distribution
turns out to be unafFected by these transformations if
the basis entering the reduction formula is identical to
the eigenbasis of the Hamiltonian of the reservoir.

Obviously, the kernel T[gi, t]@i,to] can be interpreted
as the conditional probability density for a transition
from the ray e'~@i to the ray e'4'@i during the time in-
terval [to t] under the condition that at time to the ray
e'4'gi is given. Since g io p = 1 and lim ~os p = b p
it is easy to verify that

P[lj, t]—:P[e ' ' @,t] = P[Ult(t, to)@, to] . (29)
DliD4'i T[@i tl@i, to] = I

The interaction picture time-evolution operator reads

UI(t, to) = 7 exp
~

i dsH—I(s) ~

0

2 74'

lim T[yi, to+[trito] = bi e* 4i —0i . (37)~~0
Q 271

&(0, 4) = /&A&42 f&A&4; 4 &2(4, 42)0 —0202

x Pi[pi, to]P2[vP2] . (31)

The reduced probability distribution Pi[@iit] in the in-
teraction picture in then obtained by applying the re-
duction formula (22) to Eq. (31). On using the reservoir
distribution (28) we have

where HI(s) is defined by Eq. (27) and 7 indicates
tizne ordering. Assuming the initial condition P[@,to] =
Pi[@i,to] P2[@2], we find Rom Eq. (29)

These equations express the fact that the total probabil-
ity for a transition to any state is equal to 1 and that at
time to the ray e'4@i is given. Note that by definition
the functional kernel T[gi, t~gi, to] acts on phase invari-
ant distributions that are concentrated on the unit sphere
in 'Ri. Thus one can always assume that ~]vPi~]i ——1 and
in the following we may omit the integration over P in
Eq. (33), keeping in mind that we have for all P E [0, 2vr)

T[e' gi, tl@i, tol = T(@i tie' trito] = T[@i tl@i, to] .

(38)

»(442, 4) = j&0 &0; &(442, 41442, 42)»(4)2, 42), (»)

where the functional kernel T is given by

T[y„t[@„to]

2' —) u) ppp bi e' iU p L p@i —gi . (33)

For any pair (n, P) the linear operator I p. 'Ri ~ 'Ri is
de6ned by

(( 1)222=22f24 2IP ( 1i22)U2( 2)24)2(2 14)2224(2'2) (34)

d» V.*(»)UI(t to)&i(») pp(»)

(35)

Up to now everything is exact. However, the expres-
sion that is obtained for the conditional transition prob-
ability T involves, of course, the reservoir variables. In
order to eliminate the latter we now invoke the Markov
approximation. To this end, it is assumed that there ex-
ists a time scale v such that 7~ (( 7 (( 7g, where 7~
is of the order of the reservoir correlation time and 7g
is of the order of the relaxation time of the reduced sys-
tem. The condition 7~ (( v implies that after a time
interval of order w, any reference to the precise initial
value at time to has been wiped out and that, therefore,
at time t = to + v the conditional transition probabil-
ity T takes on the same form as at time to (random
phase approximation). In other words, it follows that
the wave function gi of the reduced system represents a
stochastic Markov process (in the interaction represen-
tation) that is completely defined in terms of the condi-
tional transition probability T[gi, t2~@i, ti] for arbitrary
times t2 & tq. On the other hand, in view of the second
condition 7 (( vg it suKces to study, once the reservoir
variables have been eliminated, the short-time behavior
of the conditional transition probability T[gi, t2 ~pi, ti].

Employing second-order perturbation theory (weak
coupling assumption) we obtain

Note that we have chosen'. the eigenbasis p of H2 in
the reduction formula (22). This choice is justified by the
following. We have transformed the probability distribu-
tion to the interaction representation and will transform
back to the Schrodinger representation later on. The and

L p = b p+) f'pA;+ ) g*'pAtA, (39)
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+g f.pf.'p(~xIA! A, I~x) x,
~)2

(40)

xx) p = b p ( 1 —) ) f'*, f, (@xIA,.A Igx)x )

Similarly, we find to second order in the interaction

) p u) L = 1+ —) p;(gxIA, .A;Igx)x
a

+) ) g.'&.At. A,p. . (50)

where we have de6ned the quantities

a@Ps (8+8 )+44Pj8

7

f.'p =—-x dse' "(v -I&'(s) I~p).
0

g p
—— ds

(~-l&,'(s + ')&.(s) I~p)2 .

(41)

In the Appendix it is shown that for w~ &( ~ we have

I''j ———) 9.'.Jx- = -~
I
-7' + xs,

I
h

) (51)

where the p; are real and non-negative and the S, are
real [10]. Thus we find

Note that, since the diagonal elements of B; in the H2
representation are assumed to vanish, we have f' = 0
for all i and o.. We decompose the conditional transition
probability T into a diagonal part Td, and a nondiagonal
part T~ as

T[&x tl@„to] = T.[g„tl@x, to] + T-[&x, tlat„ to], (43)

where

&~ = ).~-p-~i[~ ~'L-A i —@x],

T„=) xx) pppbx[m p~ L p@x —gx] .
~WP

(44)

(45)

:A =).p ~ '~'L

As will be demonstrated next, Tg and T exhibit a diH'er-

ent short-time behavior corresponding to a deterministic
drift and a discontinuous jump process, respectively.

Equation (44) may be interpreted as follows. For each
xx the transition gx ', @x occurs within the time interval

[to, t] with probability ur p . Since the size of these
transitions becomes infinitesimally small for infinitesimal
w [see Eq. (39)] it is justified to replace the whole set of
these possible transitions by a single transition given by
the weighted sum

p xx) ~ I = 1+ —) p; (@xIA;A;I@x)x —A, A; l

—i~) SAtA, .

This finally yields the following expression for the short-
time behavior of the diagonal part of the conditional tran-
sition probability:

~ —~) .~*(0ilA.'A;lli)i)

~+ —) &' ((&~lA,'A'l~gi)i —A,'A*)

iv ) S;A—,. A;)@, —g, (53)

T = ). ).f'*pf'p (AIA,'A, IA)x

Q f'pA'4x
2

II X f'pA'&x lli
(54)

On using Eq. (39) and (40) we obtain for the nondiag-
onal part (45) to leading order

with corresponding transition probability g xo p
This xneans that we approximate (for w sxnall on the time
scale of the system dynamics) the diagonal part of the
conditional transition probability by the expression

According to Eq. (41) we have

f'p = ~
—i(ep —e —~, )~

(v. I&;I~p). . (55)

Tg= ) u) p bx ) p nr L @x —@x . (47)

It is shown in the Appendix that for w~ && v

(48)

Thus the secular terms in the sum over i in the argument
of the functional h function in Eq. (54) are precisely those
terms that fulfill the energy conservation ep ——e + ~,-.
Recall that we are considering the interaction time 7,
which is large (on the time scale of the reservoir) but
finite. Consequently, we have a finite energy uncertainty
A of order b. 1/w. As mentioned before, we assume
that the &equency spectrum u, is nondegenerate. We
now impose the additional assumption that for times of
order ~ the energy intervals

) xx) p = 1 —~ ) p, (@xIA,. A;Igx)x .
I~ =

[(A)~
—4, Cd~ + 4] (56)
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do not overlap and are well separated. Physically, this
means that for interaction times of order v, the corre-
sponding energy uncertainty is much smaller than the
differences between the &equencies u;. In other words,
within interaction times of order w it is possible to iden-
tify uniquely that interaction term that contributes to a
given transition of the reservoir. Note that the very same
assumption u~ —~; )) 1/w is needed for the determina-
tion of the correlation functions (see the Appendix). It is
therefore justified to take into account in (54) only those
terms (n, P) that satisfy the condition

short-time behavior of the conditional transition prob-
ability yields a differential Chapman-Kolmogorov equa-
tion leading to a Markovian jump process. Note that the
use of a projective Hilbert space enters the argument in
an essential manner.

Summarizing these arguments we 6nd for the non-
diagonal part of the conditional transition probability

(59)

~p —~~ & II (57)
where

for some k. If this condition is fulfilled the kth term in
the sum over i in the argument of the b functional in
Eq. (54) dominates and, due to the normalization factor,
the argument of the functional h function in (54) becomes

): f"pf'pJ p . (60)

It is shown in the Appendix that under the conditions
explained above

f p

If-"p I I l&i @i I li
(58)

(61)

Since the 6rst factor is a pure phase factor it can be
omitted by invoking the phase invariance of the transi-
tion probability [see Eq. (38)]. In other words, this factor
is irrelevant since we are working in projective Hilbert
space. Thus we see that the argument of the b func-
tional becomes time independent. We emphasize that it
is precisely this time independence that ensures that the

II

Hence we find

T„=~) p;(@ilAtA;I/i)i 8i ' ' —vji . (62)

Combining Eqs. (53) and (62) we finally obtain the fol-
lowing short-time behavior of the conditional transition
probability:

T]o]to, t]t]to, to] = lt —c) w;(tt, ]A,. A;]tt, ],)

+ ).~'(y l&t&'lq ) s (63)

As can be seen &om this expression, the short-time behavior of the conditional transition probability has in fact the
appropriate form that leads to a differential Chapman-Kolmogorov equation. The second term represents the gain
term of a discontinuous jump process whereas the erst term exhibits the short-time structure of a deterministic How

and of the loss term corresponding to the jump process. Note that the exact relations (36) and (37) remain true for
the approximate expression derived above.

Our final step consists of transforming to the Schrodinger picture and deriving &om the above short-time structure
of the conditional transition probability the equation of inotion for the reduced probability distribution Pi [@t,t] On.
using Eqs. (63) and (32) we obtain to first order in w

to]t('o, to+«] t ] ]«, t ]=otfott«o ( ) . (T (t]'o]A&]tto]o —~&A, —2iS&,.&) t]'oto]t]'o to]+ co
li

+ D 1D 1 ~ 1 1 +1 1)~0 ~ 1 1 +1 1yt0 (64)

~W il@i] = ) .~'ll&'&illi ~i (65)

where c.c. means complex conjugated and we have intro-
duced the transition functional

In the Schrodinger representation the reduced probabil-
ity distribution Pi[@i,t] on the Hilbert space 'Ri of the
reduced system is given by

Pi [gi, t] = Pi [e' ' Qi, t] .
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Inserting this equation into Eq. (64), dividing by ~, and
performing the limit 7 ', 0 finally yields the Liouville
master equation for the probability distribution Pi [pi, t]
of the reduced system:

t9 b—Pi[@i)&] = i «x G(@x)(&x)|9t b i xi

b
fGW»)l*(»))J'iW'i 'I

&1

due to the How induced by the nonlinear (deterministic)
Schrodinger-type equation

i~ A = G(@i) = Hx& +
2 ) „v'llA'0'x llx@x (72)

As is easily checked, the solution of Eq. (72) correspond-
ing to the normalized initial value @x(0) = vox is given
by

j.—iHgt 7.

D gD ~ lV g g Pg g)t @x(t) = (73)

&(@x) = Hx&x+ —) &'llA'@illi@x
z

(68)

where the linear, non-Hermitian operator Hq is given by

Hi ——Hi + hx ——) p;A)A; . (69)

—~f@il@il»W'i, '1) .

Here we have introduced the nonlinear and non-
Hermitian operator G R~ l—+ 'Rq defined by

Thus we see that the time evolution is generated by the
non-Hermitian operator Hq and that the nonlinear term
in Eq. (72) induces the constraint ll@xlli ——l.

The master part of Eq. (67) (given by the second terxn
on the right-hand side) describes the rate of change of Pi
due to discontinuous quantum jumps. The gain term rep-
resents the probability density per unit time for a tran-
sition from any state into the state gx, whereas the loss
term gives the probability density per unit time for a
transition &om the state gx into any other state. The
total rate for transitions from a given state gx to any
other state is therefore

Hq is made up of three parts: the IIree Hamiltonian Hq of
the system, a Hermitian part hx ——g,. S,A, A; induced
by the coupling to the reservoir (Lamb shift), and a non-
Hermitian part describing dissipation of energy into the
reservoir degrees of freedom [34].

As is easily verified, the above Liouville master equa-
tion (67) preserves the basic conditions formulated in
Sec. IIA, i.e., normalization, concentration on the unit
sphere in Hilbert space, and phase invariance. Thus it
uniquely defines a stochastic process on the projective
Hilbert space of the reduced system.

Moreover, we note that the Liouville master equation
is invariant with respect to unitary (canonical) transfor-
mations U Rq l-+ 'Rq. To be more precise, if we transform
state vectors as @i ~ @i = U@x, by virtue of the uni-
tary invariance of the measure D@xD@x the correspond-
ing transformation rule for the probability distribution
reads

I'[4i ~] = ——»lie ' "@ill'.
d'T

(75)

According to the general theory of Markov processes (see,
e.g. , Ref. [35]), the distribution function of the random
waiting time 7 is given by

E[vgi, w] = 1 —exp
l

— dsI [@x,s] l

o )

Let us assume that the state @x was reached through a
jump at time t. Due to the continuous time evolution
between the jumps, the total rate I' for the next transi-
tion depends upon the time 7 elapsed since the time t.
Inserting Eq. (73) (with t replaced by 7.) into Eq. (74) we
obtain after some algebra

P,'[g'„t] = P [gx„t] . (70) (76)

As is easily shown, the transformed distribution Pz also
obeys the Liouville master equation (67) if, at the same
time, the system operators A; and the Hamiltonian Hq
are transformed as

This waiting time distribution function E[gx, w] repre-
sents the probability that the next jump occurs within
the time interval [t, t+ v). Obviously, we have E[gx, 0] =
0. Since the norm in Eq. (76) is a monotonously decreas-
ing function of w, the limit

lim lie
' ' @xi[i

—= q (77)

B. Construction of the realizations
of the stochastic process

The Liouville part of Eq. (67) given by the first term
on the right-hand side describes the rate of change of Pq

exists and thus E[@x,oo] = 1 —q. In general, we have
0 & q & 1. For q = 0 it follows that E[gx, oo] = 1.
This means that the next jump occurs with probability
1 in some finite time. However, if the non-Hermitian
part of Hq has a zero mode it is possible that q ) 0. In
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A;@i
(78)

takes place with probability p; = p, llA, vgilli/I'[@i]. Note
that g,.J, =1.

Summarizing, we obtain a realization Qi(t) of the
stochastic process defined by the Liouville master equa-
tion (67) by means of the following algorithm:

(i) Assume that the state Qi was reached by a jump
at time t, that is, we have @i(t) = @i.

(ii) Determine a random waiting time w according to
the distribution function (76). This can be done, for ex-
ample, by drawing a random number g that is uniformly
distributed over the interval [0, 1) and by determining 7

from the equation )7 = I"[gi, w]. For )7 ( 1 —q there
exists a unique solution. For g & 1 —q we set w = oo.
Within the time interval [t, t + v) the realization is then
determined by the continuous time evolution

this case, the so-called defect q [36] is to be interpreted
as the probability that after time t no further quantum
jump occurs. We remark that this can be formulated
mathematically by adding the point oo to the set 1R+ of
non-negative reals. This means that the space underlying
the random variable w becomes fI = IR+ LI {oo) and the
defect q is the probability of the event w = oo.

The quantity W[@il@i] denotes the probability density
per unit time for a transition from @i to @i. Since this
transition rate is given by a discrete sum of functional (II

functions [see Eq. (65)] we have a discrete set of possi-
ble transitions: Under the condition that the state just
before the jump is given by @i, the transition

to numerical algorithms that can easily be vectorized and
parallelized.

It is important to note that the above stochastic simu-
lation algorithm derived &om the Liouville master equa-
tion (67) is very similar to the Monte Carlo wave function
simulation method proposed in Refs. [18,24—26]. The dif-
ference to these methods is that the realizations of the
stochastic process defined by our Liouville master equa-
tion are strictly confined to the unit sphere in Hilbert
space. This is due to the fact that we have introduced,
right &om the beginning, the projective Hilbert space as
the phase space underlying the stochastic process. For
the same reason the continuous part of the time evolu-
tion is nonlinear in our case, the nonlinearity being re-
sponsible for the normalization of the state vector.

Apart &om this different normalization, our analysis
thus implies that the piecewise deterministic quantum
jump methods proposed in the literature can be justified
&om a general microscopic ansatz for the interaction of
the open system with the external reservoir. Note that
this has been achieved without referring to an equation
of motion for the density matrix of the reduced system.
In contrast, the equation governing the dynamics of the
reduced density operator can be derived &om the above
Liouville master equation as the equation of motion for
the covariance matrix

pk(X1, X() fD41&@1Ql(T1)@l(X()P1Wll, t] . (82)

In fact, differentiating (82) with respect to time and in-
voking the Liouville master equation (67) we obtain

g, (t+ s) =
I.—iH1 8.].

0«s« (79)
+ ) p;

I
A; p, A,. ——A, A, pi ——

pg A, A;
I2 2 )

(83)

For w = oo the algorithm terminates here.
(iii) At time t + w (if w is finite) one of the possible

jumps labeled by the index i [see Eq. (78)] occurs. Select
a specific jump of type i with probability

This equation is exactly of the Lindblad form of the quan-
tum Markovian master equation [7,8] with Lindblad op-
erators A, and Hamiltonian Hq + hq.

p' = ~'IIA'@ (t+ — ) II'/I'[& (t+ — )] (8o)

and set

A, vPi(t + ~ —s)
i t+r

IIA'A(t+ ~ —s) lli
' (81)

It should be clear that once an ensemble of realizations
has been generated according to this algorithm, any sta-
tistical quantity can be estimated as ensemble average.
As has been emphasized [37], the numerical implementa-
tion of this or similar algorithms may serve as a very efB-
cient method for simulating the dynamics of open quan-
tum systems. In fact, as has been demonstrated in a
diff'erent context [38], the stochastic simulation method
of complex systems described by master equations leads

where the limit e,' 0+ is understood.
(iv) Repeat these steps until the desired final time is

reached.

C. Di6'usion-noise approximation

We shall demonstrate in this subsection that under cer-
tain conditions the diffusion limit of the Liouville master
equation (67) exists and yields a Fokker-Planck equation
that is equivalent to a stochastic Schrodinger-type equa-
tion. For the sake of a simple notation we assume in
the following that we have only one Lindblad operator A
and we omit the index 1 &om all quantities that refer to
the reduced system Sq. Furthermore, the Lamb shift is
included in the system Hamiltonian.

According to the general theory of stochastic processes,
a diffusion expansion of a given master equation can be
performed if the size of the transitions among the states
becomes arbitrarily small and if, at the same time, the
number of transitions in any finite time interval becomes
arbitrarily large. In order to formulate these conditions
we introduce a small (dimensionless) parameter e and
write the Lindblad operator as
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A = 1+zC', (84)

~g ) = Hy ——q (1+s(Ct + C) + s'O'C) @2

+-~ (1+s(C'+ C)~ + &'(C'C)~) @

where jL denotes the identity operator and the operator
C is independent of e. Our aim is to investigate the
behavior of the Liouville master equation in the limit

; 0. On using Eq. (84) we obtain to second order in
E'

w(4i}4i] = g (1+e(c~ + c)~ + z~(c~c}~)
x b [@—@+ sM(@) + s ~(Q)],

where we have introduced the abbreviation ( .)~
(vP~

. ~@) and defined the nonlinear operators

1
M(g) —= (c—-(c'+ c)„)y,2

«(4) = (c'—c—)~ —-(c' + c4 + (c'+ c4 c)&.2 4

Inserting these expressions into the Liouville master
equation we obtain to second order

0—~W, &l = ' &* «(@)(~)— . («(4)}*(~)) ~W, &}

b b

dx dx', M(vP)(x)M(g)(x') +,[M(@)]*(x)[M(g)]'(x')
1 b2 $2

+2, M(g) (x) [M(g)]'(x') I'[@,t] .
$2

This is obviously a functional Fokker-Planck equation for
the reduced probability distribution. The nonlinear drift
operator K(g) takes the form

K(@) = H@+ -ps fC —Ct) @ + ipse' —(Ct + C)&C2 2

—
—,(c~ + c); —

—,c'c)@ .

As can be seen &om Eq. (87), the difFusion part of the
Fokker-Planck equation involving the second-order func-
tional derivatives scales as pc . Thus, in order to obtain
a nonvanishing and 6nite diffusive contribution in the
limit r ', 0, we assume that the e dependence of the
relaxation time p reads

(89)

On the other hand, the drift operator (88) contains a
t;erm that is proportional to pr = pe . This term di-
verges in the limit e ', 0 unless we impose the condition
that the operator C is self-adjoint, that is, C = C~. Us-
ing this condition we obtain for the drift operator

«(o) = «y+*&((c),c —-'(c)„* —-', c*)@ (90)

and the operator M(vP) takes the form

The Fokker-Planck equation (87) is equivalent to a cer-
tain stochastic Schrodinger-type equation. The noise
term of the latter is multiplicative since the Fokker-
Planck equation is aoalinear. Employing standard tech-

+'~" (C (C)~k @~(t—) (92)

where g(t) is a real and Gaussian white-noise process with
zero mean and correlation function

(7(t)&(t )) = ~(t —t ) . (93)
It is interesting to note that Eq. (92) is of the same
form as the stochastic differential equation of the quan-
tum state diffusion model proposed by Gisin and Perci-
val [14] for the case of a self-adjoint I indblad operator.
The only difference is that in our case the stochastic dif-
ferential equation contains a real instead of a complex
Wiener process (it has already been remarked in Ref. [39]
that the quantum state difFusion model also works with
a real Wiener process). The appearance of a real in-
stead of a complex white-noise process in the stochastic
Schrodinger equation indicates the fact that the diffusion
part of the Fokker-Planck equation (87) difFers &om that
of the Fokker-Planck equation given by Diosi [15].

Summarizing, we have showa. that the piecewise de-
terministic jump process defined by our Liouville master
equation leads, in fact;, under certain conditions to a well-
defined diffusion limit. These conditions are the condi-
tion of small jumps (84), the scaling (89), and that the
Lindblad operator is self-adjoint. Of course, it is possible
to formulate other conditions and to perform different ex-
pansions of the Liouville master equation. Ruthermore,

niques from probability theory we find that, under the
conditions just described, the Ito stochastic differential
equation corresponding to the Fokker-Planck equation
(87) is given by

i @=HvP + ip —(C)yC ——(C)~ ——C
1 2 1 2

dt 2 2
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we remark that, if several different Lindblad operators
are present, the diffusion limit may be valid only for a
certain subset of the them. In this case, the differential
Chapman-Kolmogorov equation takes on its most general
form containing a Liouville-master-Fokker-Planck opera-
tor.

IV. SUMMARY

The question that has motivated the investigation pre-
sented in this paper was the following one. Is it possible
to formulate a set of basic physical postulates and as-
sumptions that enables one to derive, directly from the
underlying microscopic dynamics and without referring
to a density operator description, a unique stochastic
process governing the dynamics of the states of the open
system? It has been shown above that this in indeed
possible. Let us summarize the basic postulates and as-
sumptions that have led to this conclusion.

(i) The starting point was a formulation of quantum
ensembles of closed and open systems in terms of proba-
bility distributions on projective Hilbert space. The lat-
ter may be obtained by taking the unit sphere in Hilbert
space and identifying states that difFer by a pure phase
factor. Consequently, we have introduced probability
densities P[@] on Hilbert space that satisfy the three ba-
sic postulates given at the beginning of Sec. II and may
thus be regarded as distributions on projective Hilbert
space.

(ii) When dealing with open systems that are con-
sidered as subsystems of some larger system, we need
a unique prescription that tells us how to compose two
statistically independent subsystems and how to reduce a
given system to one of its subsystems. This composition
and reduction has been formulated in terms of probability
distributions on projective Hilbert space. The obtained
equations take into account the basic rules of quantum
mechanics and they guarantee that the distributions for
the combined and for the reduced system are again distri-
butions on the corresponding projective Hilbert spaces.

(iii) The basic assumptions for the derivation of the
reduced system dynamics are the weak coupling assump-
tion and the validity of the Markov approximation. Note
that the latter is understood in the sense of classical prob-
ability theory, that is, it means essentially the truncation
of the hierarchy of multitime joint probability distribu-
tions on the level of the two-time joint probability distri-
bution.

(iv) We have made some technical assumptions, i.e. ,
that the system operators of the interaction Hamiltonian
are eigenoperators of the system Hamiltonian with a non-
degenerate spectrum and that the diagonal elements of
the reservoir operators vanish in the representation of the
reservoir Hamiltonian.

All in all, these postulates and assumptions then led
to the conclusion that (i) the short-time structure of the
conditional transition probability implies the existence of
a di6'erential Chapman-Kolmogorov equation and that
(ii) the latter takes on the form of a Liouville master

APPENDIX: DETERMINATION OF THE
RESERVOIR CORRELATION FUNCTIONS

In this appendix we shall determine the reservoir cor-
relation functions

I'', =).f pf.'ppp,
cr,P

r. . —X u~ij = / g~~pn )

(A1)

(A2)

r,",. —= ) f' pf'ppp .
eP —ec QIJc

On using (41) we find

T 'r

I';, = ds ds'e'~ " "l(B,( —s')B,),
0 0

(A3)

where the angular brackets denote the reservoir average

(B,'(s)B') = ).p-(~-IB,'(s)B~ Iv -)2 .

equation. The Liouville master equation uniquely de-
fines a stochastic process on the projective Hilbert space
of the reduced system. The realizations of this stochas-
tic process, which have been constructed in Sec. III, are
piecewise deterministic paths interrupted by discontinu-
ous quantum jumps. As is also explained in Sec. III,
these realizations are very similar to those generated by
the Monte Carlo wave function simulation methods pro-
posed in Refs. [18,24—26]. Moreover, the equation of mo-
tion for the reduced density operator is given by the equa-
tion governing the two-point correlation function of the
stochastic process.

The mathematical formulation of the stochastic pro-
cess in terms of a differential Chapman-Kolmogorov
equation allows us to perform definite asymptotic ex-
pansions. As an example, we have presented a diffusion
approximation of the Liouville master equation. This
yields a functional Fokker-Planck equation, which, in
turn, is equivalent to a stochastic Schrodinger-type equa-
tion. The latter closely resembles the stochastic differen-
tial equation of the quantum state diffusion model.

Concluding, we point out the following interpretation
of the stochastic theory developed here. The starting
point of our derivation has been the unitary time evolu-
tion according to the Schrodinger equation of the total
(closed) system. The essential step towards a stochas-
tic description is the enlargement of the formal setting
through the introduction of probability distributions on.

projective Hilbert space. This enlargement immediately
leads to a Liouville equation for the probability distribu-
tion of closed systems. Our derivation then demonstrates
that the dynamics of an open subsystem is approximated
by a differential Chapman-Kolmogorov equation, which
defines a piecewise deterministic jump process for pure
states. This fact clearly reveals that the stochastic dy-
namics of the open system wave function is the synthesis
of the continuous Schrodinger-type evolution and the dis-
continuous quantum jumps of the Bohr picture.
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Transforming to new time variables t = s —8', t' = s' we
obtain

T T—t 1

Ct' dt '( ' '&' ' "(B,'(t)B,).
0 —t'

). (&pla,'(t) Iv -)&v -Ia, lv p)pp .
ts'p —ts: Q Ig

Assuming again that C,". . is sharply concentrated around
a small strip along the t' axis, we have

Since 7 && w~ the correlation function vanishes very fast
outside a small strip along the t' axis. Thus we may
approximate

I'," = ~h, s e ' 'C" (t)—T

Performing the time integration we find

(AS)

f OO

ct'e'(-'--')'
I I

«e ' "(B,'(t)a')
I

E o

If we assume that the &equency differences ~~ —cu; are
large compared to b 1/w, the first Factor on the right-
hand side of this equation averages to wb;~. Thus we find where

e ' *'C,",(t) = ) 2nD (ep —e —~;)
~p —+ GII,

x &ppla, 'I p-) &p-la'I pp) pp

F~j ~ 'Tp&8&~

where the inverse relaxation times are given by

d~e-' "a,'. ~ a, .

Similarly, we find, on using Eq. (42),

(A4)

(A5)

( )
1 sin(dT

4J

Obviously, lim ~ D (u) = b(u) and for large but finite
w the function D (u) is concentrated around u = 0 with
an efFective width of order 1/v A. By virtue of the
assumption that the difFerent intervals II, are well sepa-
rated (see Sec. III) we thus obtain

T T—t I

I' = — dt' dte'f-' -')' -'-"(B'(t)a;) .
0 0

On using the same arguments as above we obtain

e * "C,",(t) = h;k) 2~D (ep —e —(u;)—T n,P

&v pla,'Iv -)«-Ia'Iv p)&p

(1f„—~
I

-&, +is;
I
a.. .)

where p; is given in Eq. (A5) and S, is defined by

~

~dte ' "(B,'(t) B;) = -q; + i S; .
0 2

'

Finally, we find

T T—t I

F' = dh' ~(~~ —cu; )t' —a~; t~k (~)'U
0 tt

(A6)

(A7)

On the other hand, we have directly &om its definition
T

e ' "&Bt(t)B;)= ) 2~D (ep —e —~;)—T
cx,P

x&a pla,'I~-) &v -Ia'l~p)pp .

Comparing the last two equations gives

f
T

e ' "C,",(t) = b;„p;,
—T

which, on inserting into (AS), finally yields

where F, = 7yb~bg .k
(A9)
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