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Hydrodynamics and dynamic fluctuations of fluid membranes
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This paper develops a formalism for studying the renormalization of dynamic properties of Quid
membranes under coarse graining produced by removal of high-wave-number degrees of freedom. It
derives hydrodynamical equations for Quid membranes and shows that appropriately chosen noise
sources can lead to a Fokker-Planck equation for the probability distribution that decays to the
thermal equilibrium at long times that includes measure factor corrections to the usual Boltzmann
weight. Membranes that are incompressible at short length scales are shown, via both static and
dynamic renormalization calculations, to be compressible at long length scales. As a result, a
Qexible membrane will always have a density mode that is distinct from its height or shape mode.
Dissipative coeKcients in the membrane Rouse model are shown to renormalize whereas those in
the Zimm model are shown not to.

PACS number(s): S7.22.Bt, 03.40.Gc, 05.40.+j

I. INTRODUCTION

Amphiphilic molecules in water spontaneously segre-
gate into extended bilayer fluid membranes [1,2]. At
length scales large compared to molecular dimensions,
the details of molecular architecture and interactions be-
come unimportant, and it is appropriate to describe the
membrane as a structureless Qexible surface. Static phys-
ical and statistical properties of membranes are well de-
scribed by the Hel&ich-Canham Harniltonian [3,4], which
depends only on membrane geometry via its local metric
and curvature tensors. Dynamical properties of mem-
branes at long-length scales can also be described phe-
nomenologically. In this paper, we will derive stochastic
hydrodynamical equations for fluid membranes and ex-
plore their consequences. Our primary goal is to develop
a formalism that will allow us to calculate how dynamical
as well as static parameters renormalize under removal of
high-wave-number degrees of &eedom. A preliminary re-
port of our work appears in [5].

The stochastic hydrodynamical treatment of Quid
membranes presents a number of unique problems. The
equilibrium statistical mechanics of fluid membranes is
complicated by measure factors [6,7] in partition traces.
We show that these factors require that our noise sources
have nonvanishing averages in spatially nonuniform con-
6gurations. Our hydrodynamical equations describe
both shape changes and tangent plane motion. They
are invariant with respect to arbitrary time-dependent
reparametrizations. They have nondissipative couplings
between variables with opposite sign under time rever-
sal. These terms appear as Poisson brackets in Qat-
space stochastic equations [8—ll]. We show that they
can be derived from Poisson brackets in Quid membranes
also. This derivation, like quantization of the electro-
magnetic field [12], must be carried out for a particular
parametrization (or gauge) of the surface. Finally, the
nonlinear dependence of both Poisson brackets and dissi-
pative coeKcients on fields leads to additional contribu-
tions to the average noise.

Static statistical properties of membranes can be cal-
culated as though the membranes were isolated: an in-
compressible solvent does not induce static inter- or in-
tramembrane interactions. Dynamic properties depend
on the solvent: motion of the membrane at nonzero fre-
quency induces motion in the solvent, which in turn ex-
erts a force on the membranes at distant points [13—15].
Thus, the dynamics of physical membranes in solution is
a three-dimensional problem depending on the dynamics
of the solvent. Our hydrodynamical equations allow for
friction forces between the solvent and the membrane in
addition to intrinsic viscous forces within the membranes.
We will consider renormalization in two simple models:
the Rouse model [16] in which the membrane experiences
a dissipative force proportional to its velocity relative to
a rigidly fixed solvent and the Zimm model [16] in which
the membrane induces shear modes in the solvent, which
are treated at zero frequency. The effects of nonlinear
interactions on the three-dimensional dynamics of mem-
brane systems have been treated elsewhere [17,18].

Thermal Auctuations crumple [19,20] a membrane so
that it is compressible after coarse graining via the re-
moval of high-wave-number degrees of freedom even if it
is incompressible at the molecular length scale. We derive
this result using both static and dynamic renormalization
procedures. Thus, a membrane will always have a hydro-
dynamic density mode distinct &om the shape or height
mode. Both the height and density modes are needed
to reproduce the experimentally observed hydrodynamic
modes of lamellar lyotropic systems [21,22]

Hydrodynamical equations for Quid membranes have
been derived by other authors [23,24]. Our derivation,
however, emphasizes reparametrization invariance. It is
similar in spirit to the purely dissipative model used by
Goldstein et al. [25] to study space curves in two dimen-
sions. In fact, our Rouse model reduces to this model
in two dimensions when motion in the tangent plane
is prohibited. When expressed in the Monge gauge,
our dynamical equations for the height are identical to
the gauge invariant version of the Kardar-Parisi-Zhang
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II. SURFACE CEOMETRY, SCALARS, AND
TEN SORS

We are concerned with statistical and dynamical prop-
erties of Quctuating membranes. In this section, we will
review concepts in differential geometry [30,7] needed to
describe these membranes, mostly to establish notation.
We will also review some important scalars and tensors.

A. Elememtary differential geometry of a surface

At length scales long compared to molecular lengths,
membranes can be modeled as two-dimensional Quctu-
ating surfaces embedded in three-dimensional Euclidean
space, which we will often refer to as the embed-
ding space. The medium (usually a solvent) in which
the membrane moves lives in the embedding space.
Points on a two-dimensional surface embedded in three-
dimensional Euclidean space are specified by a three-
dimensional vector R(u) with components R;(u), i
1, 2, 3, as a function of a parameter u = (u, u ) in a
two-dimensional manifold, which we will refer to as the
parameter manifold. Covariant tangent-plane vectors are
then defined as

e =BR, a = 1, 2, (2.1)

(KPZ) [26] equation used by Golubovic and Wang [27].
We assume that relative motion of the two monolayers
comprising the bilayer can be neglected and that the
membrane can be modeled as a single Quid surface. In
real membranes, sliding of monolayers across each other,
though inhibited by friction, does occur [28] and gives
rise to an experimentally observable mode with complex
crossover structure [29]. Our treatment could easily be
generalized to study the e8'ects of renormalization on
these modes.

This paper consists of nine sections, of which this
is the first. Section II reviews di8'erential geometry
mostly to establish notation. It also introduces dy-
namic reparametrization. Section III reviews static ener-
gies of compressible membranes and the calculation of
forces. Section IV considers static renormalization of
membranes and shows how a a membrane that is incom-
pressible at the molecular length scale become compress-
ible at long-length scales. Section V derives the complete
reparametrization invariant hydrodynamic equations for
a Quid membrane. Section VI calculates dynamical renor-
malization in the Rouse model and shows that there are
nontrivial renormalizations of the dynamic friction coef-
ficients. Section VII does the same for the Zimm model.
In this case, however, there is no renormalization of the
friction coefBcient because of its nonanalytic nature. Sec-
tion VIII derives Poisson brackets in the Monge gauge
and shows that they reproduce the nondissipative parts
of the hydrodynamical equations derived in Sec. V. Fi-
nally, Sec. IX investigates the Fokker-Planck equation for
the field probability distribution and shows that appro-
priately chosen noises will drive the system to equilibrium
at long times.

where 0 = 8/Bu .The metric tensor is

gab = ea ' eb. (2.2)

Its inverse g satisfying

ab a
g gbc =~c (2.3)

allows us to define contravariant tangent-plane vectors
e = g eb satisfying e eb ——bb . Any vector v in the
tangent plane can be expressed as v = v e = v e,
where v = e . v and v = e v = g vb are, respec-
tively, its covariant and contravariant components. A
unit normal n to the surface can be constructed from ei
and e2.'

x e2
x e2

(2 4)

The area of a surface element with sides du and du is
dS = n (eidu x e2du ) = ~gd u, where

g = detgab (2.5)

is the determinant of the metric tensor. The curvature
tensor is then

~ab —Xl ab (2.6)

The mean curvature is

1 1 1(l lb
2 2 2 (Bi R2)

(2.7)

and the Gaussian curvature is

1 1S = detKb
1 2

(2.8)

u'(t) = c(u, t)—:u'(u, t), (2.9)

where 4 has components 4 and 4 . Under this trans-
formation, the fixed grid in Fig. 1(a) translates and dis-
torts in tiine as depicted in Figs. 1(b) and 1(c). We can

where RI and B2 are the principal radii of curvature at
the point of the surface in question.

There are an infinite number of ways of parametrizing
a surface, i.e. , there an infinity of choices for the param-
eter u. A change of variables &om u to n' is called a
reparametrization. For reasons that will become appar-
ent later, a choice of parametrization is closely analogous
to fixing gauge in a gauge theory. 'We will, therefore, of-
ten refer to a particular parametrization as a gauge choice
and a reparametrization transformation as a gauge trans-
formation. We will be concerned with how functions on a
surface transform under time-dependent reparametriza-
tions. To describe these transformations, let us assume
that there is some time-independent parametrization of
u, and an associated time-independent grid defined by
lines of constant u and u in the parameter manifold
as shown in Fig. 1(a). Time-dependent parametriza-
tions can then be defined in terms of an invertible map
u ~ u'(t) defined via
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All of our renormalization calculations will be carried out
in the Monge gauge.

C. Scalars and tensors

(b)

A quantity that remains unchanged under a gauge
transformation is a scalar. No observable quantity can
depend on how we choose to parametrize the surface,
provided we do not also transform the embedding space.
Thus, all observables are gauge scalars. The vector
K(u, t) specifies a point in Euchdean space. It is an ob-
servable and does not change under reparametrization.
Thus, each of its Cartesian components is a scalar under
reparametrization: R(u, t) -+ R'(u', t) = R(u, t) Co-.
variant components of vectors and tensors transform via
I9u' /I9u and contravariant components via Bu /Bu':

(c)

g/ab, o ~

cd ~

Otl Otl |9tl Otl

0th t9tl |9tl BtL
(2.15)

of course de6ne other time-dependent parametrizations
by applying another time-dependent map either to u or

B. The Monge Gauge

For nearly flat surfaces, the most convenient gauge
is the Monge gauge in which surface coordinates are
parametrized by their height h(x) above a Hat surface
with Euclidean coordinates (x, 0). In this case, u—:x. =
(x, y), and

R(x) = (x, h(x)). (2.10)

The metric tensor and its inverse in this gauge are, re-
spectively,

FIG. 1. (a) shows a grid on a surface formed by lines of
constant constant u and u . (b) and (c) show the grid at
two successive later times. The lines of constant u and u
can both move and distort with time. The dot in all three
figures shows a moving particle on the surface. Its velocity in
the embedding space is its velocity relative to the grid plus
the velocity of the grid relative to some fixed configuration.

The quantities g b, K b, etc. , transform as tensors ac-
cording to the above rules. The surface element dS =
d u~g is a scalar because

~g' = det(I9u /Ou' ) ~g (2.i6)

and d2u' = det(oju's/Bu )d2u. Similarly H = TrKP and
S = det Kb are both scalars.

The mass density p(u, t) is also a scalar. Let particle
n have coordinate u (t) in the parameter manifold. Its
position in Euclidean space is the R (t) = R(u (t), t).
The integral of the mass density over the surface is the
total mass M: f d2u~gp(u, t) = M. The microscopic
expression,

p(u, t) = ) b(u —u (t)),
~g

(2.17)

for the density satisfies the above constraint. Under the
transformation u ~ C (u, t), the coordinates of particle n
transform according to u (t) -+ u' = CI(u (t), t). The
quantity u (t) measures the position of particle n rela-
tive to the fixed grid (see Fig. 1) whereas u' (t) measures
the position of the particle relative to the time-dependent
grid. The transformation law for the density can be ob-
tained from Eq. (2.17), p(u, t) -+ p'(u', t), where

and

where

gab —~ab + ahbh

8 hObh

g

g = 1+ (V'h) .

(2.ii)

(2 12)

(2.i3)

p' u', t
Qg(u', t)

m

Qg(u', t)
m

Qg(u', t)
= p(u, t),

).~( (t) — .(t))

) .~(@( t) —@( (t) t))

) b(u —u (t)) [det I94 (u, t)/I9u ]

(2.i8)

Finally, the curvature tensor is

t9a Bb6
ab— (2.14)

where we used Eq. (2.16) with 4' = u' . This verifies
explicitly that p(u, t) is a scalar under gauge transforma-
tions.

Scalars involving derivatives with respect to u are con-
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D eb ——K gn. (2.19)

Thus, the mean curvature is obtained from

D e =Hn. (2.2o)

This equation will prove useful in the analysis that fol-
lows.

III. ENERGIES AND FORCES

structed from the covariant derivative D . For a vector
v, D v' = Ov +I"&v where I'& ——e . Beb is the
connection. The quantity D v = g ~ O (g ~ v ) is a
scalar. The curvature tensor can be expressed compactly
in terms of covariant derivatives:

d u~g(H —Hp) + rs d u~gS, (3.6)

describes the energy of shape variations that are slow on
a scale set by the membrane width. Here K and v~ are,
respectively, the bending and Gaussian curvature rigidi-
ties with units of energy, and Ho ——2/Bo is twice the
spontaneous curvature. In what follows, we will focus
on nearly Hat membranes of fixed topology for which the
spontaneous curvature is zero and for which the Gaus-
sian curvature term can be ignored. The bending rigid-
ity r depends on density. In Eq. (3.6), we assumed that
r = r(p = po) is independent of p. When p deviates
from po, there are additional terms in A. involving both
bp and curvature. The leading such term is

+c—p=~ d u g~pH ) (3.7)

d v g p —pp. (3.1)

In general, there will also be terms depending on covari-
ant derivatives of p (e.g. , D PD p) They will. , however,
not concern us here. The equilibrium value, po, of p in
mean-Geld theory is determined by minimizing Qp with
respect to p: Of/Op —p = 0 at p = po. We can expand
+p in a power series in bp = p —po .

The &ee energy or Landau-Ginzburg-Wilson (LGW)
Hamiltonian 'R for a fiuctuating surface can be con-
structed from the scalars discussed in the preceding sec-
tion. We consider first terms in 'R depending only on the
mass density. As in flat space [11], we can introduce a
Helmholtz &ee energy density f (p) and a chemical po-
tential p, on a curved surface [31]. The associated LGW
Hamiltonian is

where A = 2(Or/Op)I~ ~, . This term is subdominant
compared to others in our present calculations, and we
will ignore it. Our model membrane Hamiltonian is thus

R A'Q + Rp (3 8)

1 b'R

~g ha(u)
= —e O p —[rQ+ p(p)H]n,

f, (u) =—

(3.9)

with Ho = 0.
The force density f, (u) acting on a given point on a

membrane arising from membrane stresses can be calcu-
lated by taking the functional derivative of 'R with re-
spect to membrane displacements at constant mass in
each volume element in the parameter manifold. This is
equivalent to a derivative at constant ~gp [33]:

Qp =o d 'll g+ —go d 'll g 6P (3 2) where

where yo/p20 is the compressibility and

~ = ~(po) = f (po) —s po (3.3)

is the surface tension or energy per unit area of the sur-
face at the equilibrium density. At density p, the mem-
brane pressure is

Q = H(KP —2bsH)(Ks —2bsH) + D H (3.1o)

1 b'R 1 b'R= [rQ+ p(p)H]n — D (pe ),

arises from 'R, . Alternative forms of f„expressed in
terms of derivatives of Q with respect to R at constant
p and with respect to p at constant R, will be useful in
what follows. The derivative of Q at constant p is

p(p) = —V(p) —pO&(p)/Op]. (3.4)

In equilibrium at chemical potential p, , p = —o.(po). For
p near po, we can expand p in bp: where we used

(3.11)

p(p) = —~ —poxo 'bp. (3.5)

In the absence of external forces, whose contributions
are included in f (p), p is normally positive in equilibrium
systems. If the membrane is under external tension, then
p can be negative and o positive. In free membranes, o
is effectively zero [32].

There are energies associated with distorting a mem-
brane away from its preferred shape. The Helfrich-
Canham Hamiltonian [3,4],

D [(pp —f)e ] = D ([p —(p/v9)(b&/bp)]e 3
= pHn —(1/~g)(b'R/bp)D (pe ).

(3.12)

We can calculate b'R/bh(x) I~ in the Monge gauge by tak-
ing the z component of Eq. (3.11):

bA. = (rQ+ pH) — O
I p 'I . (3.13)

1 b'8 I' Oh, &

bh x ~gbp x ( ~gy
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Combiiung Eqs. (3.9) and (3.13), we obtain

f, (x.) =— h'8 1 h'R ( 0 hl
b'Ii ~g bp ( ~g )

&1 be~
q~g ~p)

for the force density in the Monge gauge.

(3.14)

FIG. 2. Schematic representation of a Buctuating surface.
The full line represents the surface in which Quctuations with
wave number up to A are allowed. The dotted line repre-
sents the coarse-grained surface with maximum wave number
of fluctuations less than A/b. Each element of area of the
coarse-grained surface has greater mass than the original sur-
face because of surface crumpling. The degree of crumpling
can change locally causing the effective coarse-grained density
to change and rendering the membrane compressible.

IV. STATIC RENORMALIZATION

Before proceeding to the derivation and study of mem-
brane hydrodynamics, we will in this section consider
renormalization of membranes in static equilibrium un-
der removal of high-wave-number degrees of &eedom.
The renormalization of v and o have been extensively
studied [34—36,6]. Here we will be interested princi-
pally in how the compressibility y renormalizes. We will
also review the measure for integrating over different in-
equivalent shapes in partition sums. Naive measures do
not preserve rotational invariance and Ward identities.
Though it possible to obtain the correct one-loop renor-
malization of e and o in static calculations without seri-
ous attention to measure [36], it is not possible to obtain
correctly the renormalization of o in the dynamical cal-
culations we present here.

A fluctuating membrane has shape fluctuations with
wavelengths up to a cutoff A 27r/a where a is a molecu-
lar length. After removal of degrees of freedom with wave
number A/b ( q ( A the resulting coarse-grained mem-
brane will have shape fluctuations with maximum wave
number A/b as depicted schematically in Fig. 2. Under
this transformation, the determinant of the metric ten-
sor changes &om g to g' & g, and the effective area of a
patch of membrane associated with an area element d u
in the parameter manifold decreases: d2u~g' ( d2u~g.
On the other hand, the mass associated with an area el-
ement in the parameter manifold cannot change under
coarse graining. Thus, the local mass density p(u) trans-
forms under coarse graining to a larger mass density p'
satisfying

W~'p' = vgp (4.1)

The additional mass density arises because of membrane
crumpling, which is not visible at the new length scale.
Figure 2 suggests strongly that the compressibility of the
coarse-grained membrane is larger than that of the orig-
inal membrane: the density of the coarse-grained mem-
brane can easily be increased by increasing the local
crumpling. Thus, a membrane that is incompressible at
the molecular scale becomes compressible at the coarse-
grain scale a' = 2vr/A'. This important fact, which we
will derive below, implies that a membrane can never be
considered as incompressible at long-length scales. As a
consequence, there will always be hydrodynamic density
modes.

A. Partition function and measure

as
The partition function for membranes can be written

j~~ ~

—+AT

shapes

(4.2)

where

'8 = 'R, + 'Rp. (4 3)

The sum over shapes is a sum over all physically distinct
realizations of the surface. Naively, this is an integral
over all positions R(u) of local points on the surface.
However, translations of R parallel to the surface do not
change the membrane shape. As a result, shape changes
are parametrized by one variable rather than the appar-
ent three in R(u). DifFerent choices of this variable cor-
respond to different gauges. In this paper, we will be
concerned only with what are called normal gauges in
which different surfaces are speci6ed by the normal dis-
tance of their points froin some reference surface Ro(u):
R(u) = Ro(u) + v(u)no(u) where no is the unit normal
to the surface Ko. In the Monge gauge, which we will
use most extensively, the reference surface is the flat xy
plane: u = x = (x, y), Ro(u) = (x, y, 0), no ——e„and
R(x) is given by Eq. (2.10).

The sum over shapes will involve an integral over v(u)
or over h(x) in the Monge Gauge. As in all gauge the-
ories [37], there is a Fadeev-Popov (FP) determinant

exp( —'R~~/T) associated with gauge fixing,
and we would naively expect g, i, „——f 'D[v(u)]A~~.
The FP determinant, evaluated in Ref. [6], is A~~
Q„- n(u) . no(u), where n(u) is the unit normal to the
actual surface. The product is over cells in the param-
eter space whose number tends to infinity and volume
tends to zero in the continuum limit. Associated with
each of these cells, which can be constructed from lines
of constant ui and ~2 as shown in Fig. 1, is a surface
element each with the same physical area in the embed-
ding space. In the Monge gauge [6,38], this reduces to
b, ~y = Q g ~2(x). The FP determinant can be re-
expressed as Gyp = e ~~~, where 'R~~ =

2 P lng,
the factor of ~g in the integral arising from the constraint
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~

—in[+(q qbg ) +oq qbg ]
.b 2

BZ' BZj
x (A /A T) —

2 T ln 1/~g
BZ

(4.4)

= 2@M d x Vh, +0 Vh,

where g g is the metric tensor of the reference surface,

fBz ——f d2q/(2vr) is the integral over the symmetric
Brillouin zone of the reference surface, fBz, is the integral
over the distorted Brillouin zone of the tilted surface with
nonzero V'h, and

~ d'q - , , A2
p,M = ,'T, ln—(o.q'+ Kq4)

27r 2

3Kq + 20q+ Vq4+ O.q2
(4.5)

The full partition function in the Monge gauge is thus

of identical physical area for each cell. If we were deal-
ing with a standard gauge-field theory, D[v]A~I would
be the complete and correct measure for integrating over
physically different states. In membranes, however, there
is an additional complication. As just discussed, the grid
in parameter space should be constructed so that the
area of the surface associated with each of its cells is
identical. In normal gauges, the parameter manifold is
chosen to be a fixed reference surface. The physical sur-
face has greater area than the reference surface unless the
two surfaces coincide exactly. We are thus faced with a
problem. We either have to allow the grid in the param-
eter manifold to change as the membrane fluctuates in
order to maintain constant membrane area per cell, or
we have to find some way of dealing with extra mem-
brane area if the grid of the parameter manifold is fixed.
For practical calculations, it is very desirable to keep the
grid in the parameter manifold fixed in order, for ex-
ample, to have simply defined Fourier transforms. To
correct for the missing area, it is necessary to introduce
an additional factor, e /, in the measure. This fac-
tor, analogous to the Liouville correction in string theory
[39,40], was calculated in Ref. [6]. The sum over shapes
is now g h

——f 17[v(u)]e ~+~++~ l/ where the grid
of points in the parameter space remains fixed. The com-
bined Liouville and FP factors can be expressed in terms
of an effective measure Hamiltonian, which in the Monge
gauge to lowest order in curvature is

ponents 6 = h& + Ii+ where h&(q) = 0 if A/b & q & A
and h+(q) = 0 if 0 & q & A/b I.n addition, we introduce
[following Eq. (4.1)] a coarse-grained density p satisfying
~g'p' = ~gp, where g' = 1+ (Vh&)2 and g = 1+(Vh)2.
The partition function is then

Z= V h~27h~r pP p'

(p(g/g) i/2p)e('8+'R) /T

V h~&p'V h~&p0
x exp[ —('R + 'RM)/T

—z e~ p' —pg g''/" d'x. (4.7)

Z = V 6+ 'V p l7 p' V 0 e (4.8)

where

d — d2& ~I] y + 1 V'h& 2 + 1K~~ ~2h 2

where

d2x 1 p2T2 p2 ~2~2

—iT(1 + Ai)gbp+ i T8[p' —(1 + Ai) po])

+-'y, '(1+ D, ) J d'x(bp)'+ (4.9)

TA2

4~ ~+2+ o
TA4

4vr (KA2+ o.)2'

r.' = r.(1 —3b, i),
A2

0' = rr 1+ TA 1n(rr, A —+ rr)
4m T

(4.10)

(4.11)

(4.12)

(4.13)

Equations (4.12) and (4.13) could also be expressed as
difFerential fIow equations. Finally, we integrate over 0
and h p to obtain

z= (4.14)

where

Integrating over 6+ with 6 = 1+a and e (( 1, and keeping
only harmonic terms in h, we find

Z= Vh V pe-~ + &/' . (4.6)
'R' = d u g' o'+ 2v' H' + —y' bP', 4.15

The measures 17[h] and 17[p] are now the naive unitless
measures defined on the Rat reference surface: 17[k]

dh[x]/A and 'D[p] = Q dp(x)/p, where A is the ther-
rnal wavelength [41] and p = m/A .

where II' (V2h )2, g' = 1 + (Vh ), and

(X') ' = ~o'[1+&i+ (po/A')&2&o'] '

or

X = &o(1+ &i) + (po/A )+2 ~

(4.16)

(4.17)
B. Momentum shell coarse graining

We can now carry out the momentum shell coarse-
graining procedure. We divide h into slow and fast com-

The last equation tells us that the compressibility in-
creases upon coarse graining as suggested by our discus-
sion at the beginning of this section. Even if the mem-
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brane is incompressible at the microscopic length scale,
i.e., even if yo = 0, it is compressible at longer length
scales (i.e. , y' g 0).

The new surface tension (r' in Eq. (4.13) is the coeffi-
cient of the coarse-grained area in 'R'. It is thus the coef-
ficient of z(V'6+)2 when (g')~) 2 is expanded in (V'h+)2.
The equality of both coeKcients is guaranteed to the or-
der we are calculating by the I iouville-Fadeev-Popov fac-
tor of Eq. (4.4). Thus, the coarse-grained height-height
correlation function is

(~ (q)h'(-q)) = T
(4.18)

as required by rotational invariance.

V. HY'DRODYNAMICS

The long-wavelength, low-&equency dynamics of any
system is controlled by hydrodynamical equations relat-
ing conserved and broken-symmetry variables. In iso-
lated two-dimensional (2D) Quid membranes, there are
four intrinsic conserved quantities: energy, mass, and
two tangent-plane components of momentum. If the
membrane is &ee to move in a three-dimensional em-
bedding space, the component of momentum normal to
the surface is also conserved, leading to a total of Ave
conserved quantities. In addition, uniform rigid trans-
lations of the membrane in its embedding space leave
its energy unchanged, and the membrane position vari-
able R(u) is a hydrodynamic variable. As in static prob-
lems, reparametrization invariance reduces the number
of physically independent components of R &om 3 to 1.
Thus, an isolated membrane has 6 hydrodynamic vari-
ables and 6 associated hydrodynamic modes: one heat,
one tangent-plane transverse momentum, two propagat-
ing longitudinal tangent-plane sound modes, and two
propagating capillary or height modes. When a mem-
brane interacts with its environment, its momentum is
no longer conserved. There are then only three hydrody-
namic modes: energy, mass (provided the membrane does
not exchange mass with its environment), and height.

In this section, we will derive the complete covariant
hydrodynamic equations both for an isolated membrane
and for one that interacts with its environment. To keep
our discussion as simple as possible, we will consider only
isothermal processes so that we do not have to consider
energy conservation. Though membrane hydrodynamical
equations have been derived elsewhere [23,24], we present
here a derivation that emphasizes reparametrization in-
variance and clearly identi6es physical quantities, which
do not change under reparametrization.

We begin with the mass conservation law, which will
give us the tangent-plane momentum density. Using Eq.
(2.17), we obtain

Bg[gg(u, t)p(u, t)] = mB, ) b(u —u (t))

where Bq is a derivative at constant u, and

.du b(u —u )

CX

(5.2)

is the momentum density. Equation (5.1) can be rewrit-
ten in covariant form as

Dgp+D j = 0, (5 3)

where Dg ——g ~ Oqg ~ and D is the covariant deriva-
tive. Though j transforms as a vector under time-
independent gauge transformations, its transformation
properties under time-dependent gauge transformations
are more complicated:

.du' b(u' —u' )j' u, t
dt gg(u', t)

. (Bu' dus Bu' ) b(u —u )+
( Bu~ dt Bt ) gg(u t)

19u t9uj (u, t) + p(u, t) (5.4)

p, (r, t) = f d' ~gp(ut)d(ur —R(u, t)), (5 5)

which is a conserved quantity. The 3D momentum den-
sity Js(r, t) = psvs, where vs is the velocity, is the cur-
rent associated with p3. To determine J3, we calculate

tt pr(r, t) = f d u8, (~gp)8(r —R(u, t))

d u gpOqK V' r —H.

d uB gj + gpBgK Vb r —R,
(5.6)

where V' operates on the Euclidean space position r.
Then integrating by parts and using

B b(r —R) = —e V'b(r —R) (5.7)

we obtain

tt, p, (rt) = —gg f dru~g(g ,e d- ptt, R)d(r —R).
= —V'. Js(r), (5 8)

The second term in this equation is familiar kom Galilean
transformations in Hat space where the momentum den-
sity j(r, t) transforms according to j'(r', t) = j(r, t) + pv
under r m r' = r + vt.

The momentum density j depends on parametrization
and, therefore, cannot be a physical observable. To deter-
mine the gauge invariant momentum density, we consider
the three-dimensional mass density ps(r, t) at point r in
the embedding space:

= —mB ) b(u —u)~ du

C1

B (V&j (u t)] (5.1)

where

Jr(r) = f d u~gJ(u)6(r —R(u)) (5.9)



WEICHENG CAI AND T. C. LUBENSKY

with
J(u) = j e + pBgR. (5.10)

J(u, t) = p(u, t)v(u, t).
The normal velocity is simply

(5.11)

In the above, BqR(u, t) = BiR(u, t)/Bt~„- as before U. nder
a time-dependent gauge transformation, B&R(u't t) ~„-

B6R~~t + (Bu' /Bt)B R, , and we can see with the aid of
Eq. (5.4) that J(u, t) is gauge invariant Thus, J(u, t) is
the physical momentum density of the 2D membrane in
the 3D embedding space. Note that the component of J
normal to the membrane, J = pn. OqR, does not depend
on j . The component of J parallel to the membrane,
J = e J = j + pe . 0&R, has contributions &om bothj, the momentum relative to the grid u, and e - 0&R,
the rate of change of the grid marks in Euclidean space.
From J(u, t), we can define a local membrane velocity
v u via

where we used Eq. (5.13) relating vs(R(u), t) to
v(u, t) = J/)() and Eq. (5.7). Now, using Eqs. (5.17)
and (5.14), we have

1 b'R
D6J+D-(j Jla) = — +fd'. +f-~, (518)

~g bR~
where bR/bR is given by Eq. (3.9).

The dissipative force density fg;, ——f;,+ f has a con-
tribution f;, &om intramembrane viscous forces, and a
contribution f &om interactions with the surrounding
medium. It can be decomposed into a normal and a
tangent plane part: fd;6 = fd;, „n+ fd;, e Th.e tangent-
plane part of f;, can be expressed in terms of a tangent-
plane viscosity tensor and covariant derivatives of the
membrane velocity:

(5.19)

v„= n O~R, (5.12)

and the tangential velocity is v = (j /p) + e B6R.
Both v(u, t) and vs(R(u, t), t) are the local meznbrane
velocity and must, therefore, equal each other:

v(u, t) = vs(R(u, t), t). (5»)
Having determined the Inomentum density, we need to

calculate its equation of motion. This is most easily done
by looking first at the equation for Jz. The material time
derivative dJs(r, t)/dt is equal to the total force density,

Fr(r, t) = f d gfruv( tt)d(ur —R(u, t)), (5.14)

on the membrane at point r, where

fT ——f, +fg;, +f,„~ (5.15)

dJ3 = 2

dt
= ttgJr + tt, (v;Jt) = f d u~gfrd(r —K). (6.16)

The left-hand side of this equation can be rewritten as
an integral over the surface using Eq. (5.9):

is the total force per unit area on the membrane at the
parameter point u. The latter consists of an external
part f q, a dissipative part fg;„and a reactive internal
part —g i~ bQ/bR [Eq. (3.9)]. The equation of motion
for J is thus

tgbcd
(

tge bd + tgd bt: tgb t:d) + ( tgb t.d (5 20)

with q, and („respectively, the surface shear and bulk
viscosities. The normal component of the viscous force
1S

f„;,„=q„D D v„ (5.21)

f = —p„(v„—V„)n —p, (u —V )e (5.22)

with diferent &iction coefBcients p„and pq for flow re-
spectively perpendicular to and parallel to the mem-
brane. There can only be flow perpendicular to the mem-
brane if there are pores in the membrane allowing the
embedding fluid to pass through it. If the membrane has
no pores, v = V„, a condition that can be imposed by
setting p = oo. No slip boundary conditions v = V
parallel to the membrane can be imposed by pq

——oo.

VI. THE ROUSE MODEL

A. Model and harmonic modes

The force f arises &om interactions with the embed-
ding fluid. It can be modeled phenomenologically as
a friction force proportional to the difference between
the membrane velocity v and the medium velocity V =
V n+ V e at the membrane:

B6Js + V', (v;Js)

d uvtgdd(r —K) d- 'tt, f d uv g(JJ/p),
x b(r —R)

d'u[B, (~gJ) —~gJ(B,R —J/p) V]b(r —R)

d u[B, (~gJ) + ~g(j J/p)e~ V']b(r —R)

d u[B6(VtgJ) + B (~gj /PJ)]b(r —R)t (5.17)

a
fm = ynvn& pgv ea. (6.1)

The intramembrane viscous force f;, is subdominant

The hydrodynamical equations derived in the preced-
ing section, though perfectly general, are quite complex.
In this section, we will consider a simpli6ed model, the
membrane version of the Rouse model [16], in which the
inertial and nonlinear terms on the left-hand side of Eq.
(5.18) are neglected and in which the background fluid is
rigidly Axed so that



52 HYDRODYNAMICS AND DYNAMIC FLUCTUATIONS OF FLUID. . . 4259

1 bA. . n+(„,
~g hR

1 O'R

~g bR

p„BtR.n =—

yt (j /p+ OtR. e ) =— e

(6.2)

(6.3)

The mass current j can be removed from Eq. (6.3) by
applying the covariant derivative D to both sides and
using the mass conservation equation, Eq. (5.3):

Dtp —D (pOtR e )

+p, 'D (pf, . e ) + p, 'D (p( ) = 0, (6.4)

where f, is the membrane force Eq. (3.14). In the Monge
gauge, Eqs. (6.2) and (6.4), respectively, yield equations
for 0th, and Otp:

~gal 1 I' D.h), bR ~g
p„hh p„( ~g j &p

8 Oh Bh&tp= —D-
I

p'D
&

/+ &-
i

p~-h
I
4h

'Yt ( g ~pp
1 1

~-(p~aC ). (6.6)
vt ~a

compared to f, and we can ignore it in fd;, f . We will
be interested in how short-wavelength Buctuations mod-
ify long-wavelength properties so we will add a random
thermal noise source g(u, t) = ( n+( e whose statistics
we will discuss shortly. The dynamical equations in the
Rouse model are then

The density mode is identical to that of a fl.uid membrane
on a rigid substrate [42].

B. Noise

Noise fl.uctuations should be chosen so that the mem-
brane will be driven towards thermodynamic equilib-
rium at long times. Normally a white noise spec-
trum with zero mean (provided dissipative coefBcients
are frequency independent) will accomplish this pur-
pose. Our system, as we have seen, has complexities
not encountered in most models. The equilibrium par-
tition function is not Z = f 17[h]'D[p] exp[ —'R/T] but
Z = j17[h]17[p]exp[ —('R + 'R~)/T], where R~ is the
Liouville-Fadeev-Popov Hamiltonian of Eq. (4.4). Thus,
whereas dynamical forces in our dynamical equations are
determined by the physical Hamiltonian 'R, equilibrium
statistical weights are determined by the effective Hamil-
tonian 'R + 'RM. If we insisted that the average noise

(g) be zero for every configuration of 'R, then Eq. (63)
would decay to a distribution with weight e ~/+. In Sec.
IX, we will show that in order to ensure that the correct
equilibrium distribution e (++~ )/ is reached at long
times, it is necessary to choose

(6.12)

((,) = 0, i = x, y, and

+h —~th + ~a(~Q —t ~)/w + ~e(poxo '/v )H~p

-(„= o, (6.7)

F, = Dtp —(poxo'/~t)D'~p
poD. (atR. e )—+ (po/pt)D. & = 0, (6.8)

where gg = ~g( /p . We will use Eqs. (6.7) and (6.8) in
our renormalization calculations.

The noiseless linearized Rouse model equations are

2 —1

a,p- ~'~' V'up=0,
yt

Bth + —(rcV' —o V' )h = 0.
yn

(6.9)

(6.1o)

Note that p and h, are completely decoupled. There
are, therefore, independent height (capillary) and den-
sity modes with dispersion

Our principal interest in this section is how removal of
high-wave-number degrees of freedom in h(q) renormal-
izes static and dynamic coeKcients to lowest order in
T/r. . We can, therefore, linearize these equations in p by
setting p = po + bp. To first order in Sp, Eqs. (6.5) and
(6.6) can be written as I"h = 0 and I"~ = 0 where

where p;~ = p~n;n~+pte, e ~. The existence of a nonvan-
ishing average noise can be given further justification. In
stochastic models such as we are considering, noise arises
from degrees of &eedom with wave number greater than
the cutoff A. Normally, these modes are symmetrically
distributed (e.g. , in a spherical shell with A ( q ( cA
with c ) 1) and contribute no average force. In our sys-
tem, however, the number of high-wave-number degrees
of freedom depends an membrane configuration [as can
be seen from 'R~ in Eq. (4.4)] and becomes asymmetric
if V'6 is not spatially uniform, and we should in fact ex-
pect there to be forces proportional to V h arising &om
degrees of freedom with wave number greater than our
cutoff.

C. Dynamic renormalisation

We can now use standard procedures to study how
dynamical quantities renormalize under removal of high-
wave-number degrees of &eedom. We follow the field-
theoretic version of the Martin-Siggia-Rose formalism
[43,44] and introduce a generating function enforcing

~gE~ = 0 and I"t, = 0:

(6.11)
G= D gEpDEh b gEp b Ep, , 6.14

X
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where the average is over Quctuations of the noise. Intro-
ducing integral representations for the two b functions
and transforming from integrals over ~gI"~ and I'h we
obtain

G= DpDhDbpDh exp — dt d xC

where
(6.15)

~ = p&g[D~p —(popo /pt)D bp —poD (B&R.e )] —~p(poT/pt)D pD p

+h[Bgh+ ~g(KQ —aH + popo Hbp+ b'RM/bh)/p„] —T~gh /p„—lnL (6.16)

Here J is the Jacobian of the transformation Rom ~gI"~ and I"h to bp and h. It does not contribute to the one-loop
calculations we present here. The action 8 can be divided into a harmonic part:

eo = xo pAbp —(po2/p~) pV'bp —T(p'o/p~) (Vp)' —poB~ p+ i B~h + h(r V' —aV') h/p„—Th'/p„ (6.17)

and a nonlinear part

l:„=—(po + yobp)B, p(V'h)'/2 —(po/pt)B pBhh(BhbpB h —B bpBhh/2)

+poV'p V'hB|h + T(po/pt)B~pBhh(BhpB~h —B~pBhh/2)

+(Ic/p„)h[V'hB~B&hB~B&h —B~hB&h(B~B&V'h —b~&V' h/2) + (K/2p„)B~h[V' B~h(V'h) + B~h(V' h) ]

—(a/2p„)(Vh) (B hB h+ hV' h) + (po/p„)hbpV' h —T(V'h) h /2p„—pMhV h/p„. (6.18)

1
&hh = —i(u+ g(k)

(6.19)

and unbroken lines represent the correlation function

2 T+hh- p„~'+ g'(k) '

Recall that pM [Eq. (4.4)] is expressed as an integral

over q of the form fo, which can be broken up into an

integral over large and small q: f + f&/& It ca. n thusA//b A

be treated in much the same way as measure factors are
treated in the nonlinear 0 model [45]. We can now use
standard diagrammatic perturbation theory to calculate
corrections to the various vertices appearing in 80 re-
sulting &om the removal of high-wave-number degrees
of freedom in h. The one-loop diagrams contributing to
these vertices are shown in Fig. 3. Dotted lines represent
the response function

I

where

g(k) = (rk iak )/p„. (6.21)

d(d&x= -xo
2 27t

k Ghh(k, (u)

= Ajyo+ (p /A )E, (6.22)

where Ai, A2 are defined in Eqs. (4.10) and (4.11), and

f =
f&i& d k/(2m) . Corrections to po/pq can be ob-

tained either from the V p b'p or the V'p--V'p vertex [Fig.
3(b)]:

&(po/pt) = ~ k GhhGhh (po/7 )&1.
2T 27t

(6.23)

Corrections to y are obtained from the p-Oqbp vertex
shown in Fig. 3(a):

(a) (b)

Corrections to K/p, 0/p, and p
i are obtained, respec-

tively from the h-V' h [Fig. 3(d)], the h-V'2h [Fig. 3(c)],
and h-h [Fig. 3(e)] vertices:

(c) (d) (e)

d~
&(~/~-) = —(~/~-)

27t
Ghh 2+/Yn+1~

FIG. 3. Diagrams contributing at one-loop order to static
and dynamic vertices of the Rouse model. The unbroken line
represents the correlations function Gh, h, and the dotted line
the response function Gzz. Each straight cross line represents
a spatial gradient, and each curved cross line represents a time
derivative. The diagrams contribute to the following vertices:
(a) pBtp or y, (b) V'p ~ V'p or po/pz, (c) hV' h or a/p, (d)
hV' h or m/p, (e) hh or 1/p, and (f) Btp or po.

4b, (a/p„) = —(r/p„) (3k /2)Ghh

dec) 2—(a/~-)
27t

+hh + PM

= e(TA /47') log(~A + a) A /T,

(6.24)

(6.25)
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d(d

27r
(I'/2)Gh, ~ = &i/& .

(6.26)

Finally, the equilibrium in-plane density pp changes un-
der coarse graining. Its shift can be obtained from the
vertex linear in Bqp [Fig. 3(f)]:

from Eqs. (5.18) and (5.22), where f, is given by Eqs.
(3.9) or (3.14). The membrane exerts a force on the
embedding fluid, and the equation for the fluid velocity
1s

(9,V(r) ——7' V(r)
ps

d(d
Lpp ——

27t
(k'/2)Gg), = poA). . (6.27) = ——V'p+ — d u~gb(r —R)f, (R(u)), (7.2)

ps ps

The resulting coarse-grained generating function is

G = D[p]D[h ]D[bp]D[h() exp
(

— dh d xZ(
l

()
where p, is the solvent mass density, and V is a gradient
in 3D Euclid. ean space. The solvent is incompressible so
that Eq. (7.2) must be supplemented with

(6.28)
V V=0. (7.3)

with

Ap(p—o + x'~p) —(p"Al)R"~p —T(p"A~) (&p)

+ha h(+ h(~'V' —~'V') h /~„' &h'/p„'—+ - . ,

(6.29)

Using Eq. (7.2), we can solve for V' in terms of f, . In
Fourier space,

Vi(g, ) = G, (Q, )/&' lrg " '"'f. (R( )) (74)

where

where

K' = r.(l —3b, )),
A20' = (T 1 + TA 1n(r—A + (T)—

4m T

(6.30)

(6.31)

1
G*, (q, ~) = (~v —~'4)

Z(dps + g'V
(7 5)

where q = q/q. In the low-frequency limit, we can set
w = 0 in this equation so that

& =«
I
1+&~+ A, &»0

( po (6.32)

(6.33)

V~(R) = f d u'Qg(u')0;, (S(6,u'))f„(R(u')), (76)

w here S'(u, u') = R(u) —R(u') and

(6.34)

(6.35)
Ov(S) =

l
~a+ s;s, ')

8m.qS q
' S2 (7.7)

The equations for v', o', and y' agree with those calcu-
lated statically in Eqs. (4.12), (4.13), and (4.16). The
equation for pp is a consequence of mass conservation.

VII. THE ZIMM MODEL

Membrane motion will in general excite modes in the
solvent in which it is embedded. The Rousse model treats
the solvent as rigid and ignores these modes. In this
section, we will consider the membrane generalization of
the Zimm model familiar &om polymer dynamics [16]. In
this model, modes excited in the incompressible solvent
lead to an effective long-range hydrodynamic interaction
between points on the membrane. To keep our discussion
simple, we will ignore density and consider only height
fluctuations, though, as we have seen, the membrane is
compressible at long wavelength.

We are interested in the long-wavelength, low-
&equency dynamics of the membrane. We can therefore
ignore inertial and nonlinear terms in Eq. (5.18). We
can also ignore fg;, relative to f . We can thus obtain
the force equation

OgR. n = V. n

du' gu'n; uO;~ S,z
Ku'

+n,p, f, (7.8)

The second term on the right-hand side of this equation
is unimportant compared to the first and can be ignored.
Furthermore,

(7.9)

in the Monge gauge when the density is constant. Thus,
the equation of motion for the height in the Monge gauge
is

is the Oseen tensor [16].
Equation (7.4) expresses V as a function of f„which

in turn depends only on membrane parameters. We can
thus use Eq. (7.1) to obtain an equation for the mem-
brane velocity in terms of membrane coordinates alone.
In particular, the velocity normal to the membrane is

(7.1)
c),h(x) =— d x'1(x, x')

bh, x' (7.10)
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where

I"(x, x') = Qg(x)n;(x)0;, (S)Qg(x')n, (x')
= 0 sB hcyqh —O, B h —0, cy'h+ 0 . (7.11)

As in the Rouse model, the noise must be chosen so that
the equilibrium probability distribution e ~+~~/ is
approached at long times. To this end, we set (h, = {(h,)+
b(h, vrith

bI'(x, x')
(q„) = — d'x'I'(x, x') + T d'x

(7.12)

(u(q) = — (rq + a.q ),
4gq

(7.15)

d'xhO, h,

d xd x'h(x)I'(x, x') b('R + 'RM)

vrhich produces w(q) —iq when o = 0.
To study static and dynamic renormalization,

we again construct a generating function Z

f 17h'Dh exp( —Idtl:), where

and —Th(x') (7.16)

(b(h(x, t)b(r, (x', t)) = 2TI'(x, x')6(t —t'). (7.13)

The second term in Eq. (7.12) arises because I (x, x')
depends on h(x). We vrill discuss this point more thor-
oughly in Sec. IX. Equations (7.10)—(7.13) now define a
complete stochastic dynamical theory, whose harmonic
and nonlinear properties we can study.

To line order in h, Eq. (7.10) reduces to

where we have ignored the bI'(x, x')/bh(x) contribution
to the noise because it does not afFect our one-loop calcu-
lations. The action 8 can be decomposed into harmonic
and nonlinear parts, 8 = Zh, + C„~, with

d'x ha h,

O, h. = — d'x , (rV' —o.V' )h(x') (7.14)
8m'ry/x —xr

f

vrhen (h, = 0. This leads to the familiar [14] dispersion
law

+h, d x'
, Nmv 'h —v'r 'h. —Th. ])8mvy

(7.17)

~nl = d x d x Kh 7 h~~~g~agh ahBgh Bang+ h ba
8~my/x —x'/

+(K/2) ~.h[&"~.'h'(&h)'+ &.'h'( 7'h)'] —(~/2) (V'h) '(O.'h'a. h + h'V'h)

+h ( + h+ + h —Th)
~

~.h~. h + (
x —x

(x —x') cy'h'(h —h') (x —x') 8 h(h —h') (h —h')2 )
3C —3C K —I: +

2/x —x'/2 )
(7.18)

Following the same procedures as for the Rouse model,
we Gnd that the static coeKcients r and cr are renormal-
ized exactly as in the Rouse model or in static calcula-
tions. The dynamical dissipative coeKcient g, how-
ever, is not renormalized because I'(q) is nonanalytic in

q and there can be no diagrammatic corrections to it.

VIII. POISSON BRACKETS

In Sec. IV, we derived the hydrodynamical equations
for Quid membranes using standard approaches based on
conservation laws and Newton's laws. In this section, we
will recast these equations in terms of Poisson brackets.
This will allow us to show that the dynamical probabil-
ity distribution will decay to equilibrium at long times in
the presence of appropriately chosen noise sources. As we
have already seen, the physical properties of Quid mem-
branes are gauge invariant implying that the membrane

I

Lagrangian must also be. As a result, we can expect
to encounter the same difBculties in specifying canonical
momenta a,nd Poisson brackets that one encounters in
quantizing the electromagnetic field [12]. Though our fi-

nal equations are gauge invariant, we will need to specify
a gauge to derive our Poisson bracket relations. Here we
will use the Monge gauge.

Implementing the constraint that particles remain
within the membrane as they move and as the shape
of the membrane changes presents additional difIiculties.
It is of course interactions among membrane particles
and between membrane particles and their solvent that
causes the membrane to form. One could in principle
describe membrane dynamics in terms of the Lagrangian
of all membrane and solvent particles. In this approach,
however, the existence of the membrane is totally ob-
scured. We, therefore, need to find a formulation of
the Lagrangian and a choice of independent variables in
which the constraint that membrane particles always re-
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8 = 2m) [g b(u + e . (9~R~)(u +. e (9qR~)

+(n (9,R ) ]
—V[(R j],

where g g ——e . e b. Since 8 is constructed &om
gauge invariant quantities, it is gauge invariant as re-
quired.

We now specialize to the Monge gauge for which K
(x,h(x, t)). As discussed above, we regard x and the
field h(x, t) as our canonical coordinates and express 8
as

8 = -m) [x + ((9~h + V'h x. ) ]
—V. (8.2)

The momentum conjugate to x and h(x, t) are then

pc
bZ

(8.3)bx
= mx + m[0, h(x ) + V' h(x ) .x. ]V' h(x )

(8.4)

and

1 Sl:
~g b((9gh(x. ))

) (o)qh~ + V'h . x~)h(x —xa),

(8 5)

where we used bOqh(xa, t)/hOqh(x, t) = h(x —x: ). The
fundamental Poisson bracket relations are

main in the membrane is satisfied. Our approach will be
to choose the particle coordinates u in the parameter
manifold as canonical coordinates and the single inde-
pendent components of the position vector field R(u, t)
as a canonical field. Thus, in the Monge gauge, we will
construct a Lagrangian in terxns of x, x, h(x, t), and
(9,h(x, t).

The construction of the Lagrangian begins with the
kinetic energy. The position of particle o. in Euclidean
space is R (t) = R(u, t), and its velocity is R
u e + Bj,R where e = (9 R(u, t) is the covari-
ant tangent-plane vector at the position of particle o..
The velocity K is gauge invariant. The particles inter-
act via a potential V[(R )] that depends only on their
Euclidean space coordinates. The Lagrangian is thus

Ogham in terms of jP, (x). We are, however, interested
in a coarse grained Hamiltonian, which is a function of
coarse-grained momentum densities, rather than a parti-
cle Hamiltonian expressed as a function of particle mo-
menta. The Hamiltonian in Eq. (8.8) can be coarse-
grained in the standard way. We introduce the momen-
tum density

where

P(x) = ) p h(x —x ).
~g

(8.10)

P(x) and jb(x) are the canonical momentum densities,
whereas j(x, t) is the component of the physical momen-
tum density [Eq. (5.10)] in the xy plane. To keep our
notation compact, we will treat j = (j,j„,0) as a vector
in three-dimensional Euclidean space with components
only in the xy plane. Also j~ = j and j„=j are
the two colnponents of the momentum density j in the
Monge gauge. The canonical momentum jh satisfies

jb(x) = p(x)Dgh(x) + V'h. j, (8.11)

as can be seen directly from Eq. (8.5). Thus, jb is the
component of the physical momentum density along no ——

e, as can be seen by taking the z component of Eq. (5.10).
Thus the physical momentum density is

J(x) = j(x) + jb(x)e, . (8.i2)

The coarse-grained kinetic energy part of the Hamilto-
nian is

gdx = —,
' f d* vg (j 'j+ jx)

p(x)

d J.J.
p(x)

(8.i3)

Though this expression was derived in the Monge gauge,
it is independent of gauge since J is. Finally, the coarse-
grained potential energy is 'R [Eq. (4.3)], and the total
coarse-grained Hamiltonian is

j(x, t) = ) x ()j(x —x ) = P(x) —Vh(x, t)jb(x, t),
~g

(8 9)

(P a~ &x(x3,b) = ~xxP~ab)

(j&(x) h(x )) = ~(x x )/9&.
(8.6)
(8.7) The equilibrium partition function is

(8.i4)

The microscopic Hamiltonian associated with 8 is ZZ'= Bj&jh DpVA Peq) (8.i5)

gd = —d+ ) p . x + f d'x~gj„(x)g, h(x)

= —,'m) [x' + (Vh x +Bah ) ]+ V. (8.8)

This Hamiltonian is not expressed, as it should in prin-
ciple be, as a function of the canonical momentum p
and jp„(x). This is because we cannot directly solve for

where

p —(&r+&M )jT
eq —& (8.i6)

is the equilibrium probability distribution including mea-
sure factors.

Poisson-bracket relations among the fields j, jh, h, and
p can be calculated with the aid of Eqs. (8.5), (8.6), (8.7),
and (8.9). The results are
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(j(x),p(x')) = p(x)V' + V'h(x)p(x') , . V'(b(x —x') \

g(x)

(b(x —x')), V'h fb(» —«') )
b-(x) jb(x')) = jb(x)~- —j-(x)~bhg() )

+jb («) (Bbh —Obh) 8 —(a ++ 6, «m «'),5(x —x') f
g(x)

I

(j(x), h(x')) = —Vh
g(x)

(b(x —«') l
(j(x) & («)f = j(x) + + j (x)+

g « ( g(x) ) g(x)

V'h, (b(« —x') l

g(x') ( gg(x)

(jp, (x), h(x')) = b(« —x')

g(«)

, V'h, &b(x-»'))
(jb(x) p(x')) = -p(«')

g(«) ~

Vh
(j„(x),j„(x'))= g, (x) V

l
~

—(« ++ «')
g x

~ g(«)

(s.17)

(8.18)

(s.19)

(s.2o)

(s.21)

(s.22)

(8.23)

It is a straightforward exercise to show that the Poisson-
bracket equations

B&h(x) = -(h(x), 'R),
a«(x) = -~p(x), ~~,
(9J(x) = —(j(x), R),

c),j„(x)= -(jb(x), R),

(s.24)

(8.25)

(s.26)

(s.27)

reproduce the nondissipative parts of the hydrodynam-
ical equations in the Monge gauge. For example, Eq.
(8.24) is

O, h = — d'*'(h(x), j,(x')) .

d'x'(h(x), j (x') jbj
= —p g ah+ p 3h& (s.2s)

in agreement with Eq. (8.11), and Eq. (8.25) is

(8.29)

which, with the aid of Eq. (8.28), reduces to the mass
conservation law of Eq. (5.3).

IX. THE FQKKER-PLANCK EQUATIGN

As we have indicated many times, noises in stochastic
equations must be chosen to guarantee that the probabil-
ity distribution for observables must decay to the equilib-

rium distribution 7,~ at long times. Membrane dynam-
ics presents two problems not generally encountered in
flat-space stochastic models. The first, discussed in Sec.
IV, is that there are measure corrections in the partition
function trace leading to 7 ~ e ~+++~ ~~ rather than

e ~~ . The second is that the efFective dissipa-
tive coeKcients as well as Poisson brackets are nonlinear
functions of fields in any given gauge. In this section, we
will generalize standard derivations of the Fokker-Planck
equation to include these complications for arbitrary field

(x). We will then show in particular that the Rouse
model studied in Sec. VI does decay to equilibrium.

Let the general equations of motion for arbitrary field

(x) [which could be h(x), j(x), etc.] be

tt, tt. (x, t) = —) f d'x'Q. tt(x, x')
p

b px'

—) d'*'r.p(«, «')
b p«'

(9.1)

where both the Poisson bracket Q p(x, x')
(x.), Pp(x') ) and the dissipative coefficient I' p(x, x')

can depend on the Beld P (x). In addition, I' p(x, x')
can either be a local operator [i.e. , proportional to
b(x —x')], or it can be a nonlocal operator, involving gra-
dients as in the Zimm model. Note that it is the physical
Hamiltonian 'R, uncorrect'ed by measure terms that ap-
pears in Eq. (9.1). We assume that the noise can have
a nonvanishing expectation value (( (x:, t)) with fluctua-
tions b( (x., t) = ( (x, t) —((, (x, t)) characterized by a
Gaussian distribution with variance
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(b( (x, t)b(,'p(x', t')) = A p(x, x')b(t —t') . (9.2)

Both (( (x, t) ) and A p (x, x') will be chosen so that equi-
librium is reached at long times. As discussed in Sec. VI,
the rationale for a nonvanishing value of ((,

' (x, t)) is that
high-wave-number degrees of freedom may in fact exert a
nonvanishing force in spatially inhomogeneous, nonequi-
librium situations.

We now follow standard procedures to calculate the
time derivative of the probability,

P(f~ ( )) t) = b(~ ( ) —~ ( t))
x a (x)}&o

(9.3)

that P (x, t) has a value P (x) at time t given that it
had a value of $0 (x) at time t = to. The average in this
equation is over the noise subject to the initial condition

(x, to) = Po (x). The result is

&'P = ). d'
1

d'*'[Q-p( ') + I'-p( ')], P —(&-( t))P
i

aP
(9.4)

If we choose

(4(* ')) = —):f ~'*'7 ~(" "') + Qo(" "')f, + & ) &'«'h, 7~(" "') + Qy(» «')]
b px' p x (9.5)

and
A p(x, x') = 2TI' p(x, x'), (9.6)

1 ( (9hb
I'gp(x, x') = I'pg(x, x') = —0

~ p ~
b(x —x'),

& v~)

Bh= — (f XIgh(x, x)2 I I

bh x'

d z'I'p, p(x, x'), + (g(x, t),
bp x.'

gyp= — d x Ipp 3c, 3c
bp x'

d z'I'pp, (x,x'), + (p(x, t),bh x'

(9.7)

(9.8)

where

then Dq'P = 0 when 'P ~ e ~+++ l)+ and 'P decays to
this form for any initial state. The term proportional to
b Q p(x, x')/bPp(x') is familiar from Hat-space stochastic
models with nontrivial Poisson brackets [9—11]. It is nor-
mally included in the original stochastic equations with
the requirement that (g (x, t)) = 0. The term propor-
tional to bi' p(x, x')/bPp(x') is similar to that encoun-
tered in systems with a spatially varying difFusion con-
stant [16]. Here we argue that it really should be taken
to arise &om the noise.

The complete hydrodynamical equations for a Quctuat-
ing membrane can clearly be cast in the form of Eq. (9.1).
The form of I'

p (x, x') will depend, of course, on the par-
ticular dissipative model we chose. The Rouse model can
also be cast in the form of Eq. (9.1). Equation (6.5) for
h is already in the form of Eq. (9.1). Equation (6.6) for
p can be recast in this form by substituting Eq. (6.5) for
Oqh. The result is

(9.10)

I'pp(x, x') = " —(9
~ p ~

b(x —«')1 ( (9h)
& ~g)

B~~gp g Ob b(x —x ).
1 g Q 1 I

Ve~g ~g
(9.11)

Note that I'qq(x, x') and I'q~(x, x') are local but
dependent quantities whereas I'~~(x, x.') is nonlocal. The
noise (,'g is equal to ~g(„/p, and

(;(,&) = j~**'~"(')( ('&) ——, ~ -(Ku~, ( )-
(9.12)

One can show that bl'p, q/bp = bl'), g/bh = 0 but that both
the h and p derivatives of I'h~ and I'~~ are nonzero. For-
tunately, the contributions that these derivatives make to
((,'g) and ((~) do not afFect.. the renormalization equations
to lowest order in T, and they were ignored in Sec. VI.
The measure Hamiltonian depends on h, and not on p.
Thus, we have ((g) = —~gb'RM/bh to lowest order in T
in agreement with Eq. (6.12) . In addition, the variance
(b( bgp) satisfies Eq. (9.6) with n and P running over h
and p and I' p given by Eqs. (9.9)—(9.11).

X. SUMMARY

I'hg(x, x') = b(x —x'),
yn

(g g)
In this paper, we have developed a formalism for

treating hydrodynamics and dynamic Quctuations of de-
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formable membranes. We derived gauge invariant hydro-
dynamical equations describing both tangent-plane mo-
tion and shape changes. We showed that noise sources
can be chosen so that the probability distribution for hy-
drodynamic variables decays at long times to the equilib-
rium distribution with the required measure factor cor-
rections to the usual Boltzmann factor. We were thus
able to treat dynamical mode-mode coupling and renor-
malization using the same techniques that were devel-
oped for Qat space. We calculated the renormalization
of both static and dynamic coefficients under removal of

high-wave number shape Buctuations in the Rouse and
Zimm models.
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