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Gaussian random energy model and Dyson's model for the origin of metabolism
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The equivalence between Dyson's model for a population of prebiotic mutually catalytic molecules
and the Gaussian random energy model is established. It is shown that, within the mean field ap-
proximation, the mathematical expression for the function that describes the autocatalytic capability
of the whole system is completely determined by the nature of the interaction potential (or the force
field) between the monomers. Our results along with those previously obtained by Abbott [J. Mol.
Evol. 27, 513 (1988)] on the replication of an autocatalytic system lead us to suggest that spin-
glass theory is an appropriate model for the investigation of the origins of both metabolism and
replication.

PACS number(s): 87.10.+e, 64.60.Cn, 87.15.—v

I. INTRODUCTION

The physics of disordered systems in condensed matter
has become increasingly relevant to the study of biolog-
ical systems. A representative example is the theory of
spin glasses [1],which has found applications in as diverse
domains as the investigation of neural nets [2] and in the
study of protein dynamics [3—5]. A spin glass has a nat-
ural disorder because it contains frustrated interactions.
Such systems exhibit a rugged potential energy surface,
which is a feature that is found to be widespread in bio-
logical systems. It is believed that this complexity in the
energy landscape is responsible for the great adaptability
and the rich evolutionary dynamics of biological systems.
It is thus possible to suppose that both the structure of
the energy landscape and the resulting complexity that
characterize contemporary biological systems are hered-
itary properties that emerged in the early evolution of
biomolecules.

The Gaussian random energy model (REM} was in-
troduced by Derrida [6] to study spin glasses. It is a
simple model of a disordered system in which the energy
levels are assumed to be independent Gaussian random
variables. Bryngelson and Wolynes [7] first applied the
model to study the folding of proteins and since then a
number of groups have used it to study the folding of
proteins [8—10] and other physical phenomena such as
thermal properties [ll] and relaxation processes [12,13].
Subsequently, Fernandez [14] has shown that the relax-
ation kinetics of RNA folding can be described with the
REM. Recently, the model has also been used to model
electron transfer reactions in biomolecules and in solvent
environments [15].

In this paper we show how the REM can provide
the theoretical &amework for the model of the origin of
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metabolism that was developed by Dyson [16]. The out-
line of this paper is as follows. In Sec. II, we summarize
Dyson's model and the problem that he was trying to
address. In Sec. III, we describe the application of the
REM to the same problem and derive all the equations
which are necessary to show the equivalence of the two
approaches, which is established in Sec. IV. Section V
gives the conclusion.

II. DYSON'S MODEL FOR THE ORIGIN
OF METABOLISM

Schrodinger, in his book What is Life'7 [17], first ques-
tioned our fundamental understanding of the physico-
chemical basis of life, but it was Von Neumann [18] who
6rst used the computer metaphor for living organisms.
He observed that there is a strong analogy between the
way computers and living cells function. Two compo-
nents are essential for the functioning of computers —the
hardware, which processes information, and the software,
which embodies the information. The analogues in living
cells are the proteins and the nucleic acid, respectively.
Proteins are the essential components for metabolism and
the nucleic acid for replication, which constitute the two
basic functions of life.

One of the principal problems when discussing the
origin of life is the origin of each of these functions,
metabolism and replication. Two hypotheses are pos-
sible. The first is the single-origin hypothesis, which
assumes that life began only when the functions of
metabolism and of replication, which were already
present in a rudimentary form, were linked together. The
second. hypothesis, called by Dyson the double-origin hy-
pothesis, postulates that life began with separate species
of creature, one species capable of metabolism without
replication, and the other one capable of replication with-
out metabolism [16].

Dyson classifies theories of the origin of life into three
main groups. Two of them, the theories of Oparin [19]
and of Eigen et al. [20], are single-origin theories since
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both postulate a single process for the origin of life.
Oparin places metabolism as the primary event with
replication afterwards, while Eigen puts the primary em-
phasis on replication with metabolism being developed
after replication had been established. . It is only the
third theory, that of Cairns-Smith [21],which is explicitly
a double-origin theory. The first origin is the construc-
tion of a protein metabolic apparatus in conjunction with
clays, which play a replicative role, while the second ori-
gin, which occurs after a period of biochemical evolution,
is the replacement of the clay replicative apparatus with
a nucleic acid one. (Recently, Morowitz [22] developed
a model of life s origin in which cells originate first, pro-
teins follow, and genes evolve last. We do not discuss this
model here because it is reminiscent of Oparin's theory. )

The Eigen theory for the origin of replication has been
extensively studied both experimentally and theoreti-
cally. In his work, which is discussed at length in the
book Origins of Life [16], Dyson tried to establish a
mathematical framework for the Oparin theory for the
origin of metabolism in the same way that Eigen had
done for his theory. To do this, he constructed a simple
model (which he called his toy model) in which he con-
sidered the behavior of a population of molecules that
are confined in a primitive cell or droplet. The essential
feature of the model for the origin of metabolism are the
transitions that occur for the population between qua-
sistationary states, which are disorganized (dead), and
those that are organized (alive).

He made a number of assumptions that we quote in
full here:

l. (Oparin theory). Cells caine first, enzymes second,
genes much later.

2. A cell is an inert droplet containing a population
of polymer molecules that are confined to the cell. The
polymers are composed of monomer units that may be
imagined to be similar to the amino acids that make up
modern proteins. The polymers in the cell contain a fixed
number N of monomers. In addition, there is an exter-
nal supply of free monomers that can diffuse in and out
of the cell, and there is an external supply of energy,
which causes chemical reactions between polymers and
monomer s.

3. Cells do not die and do not interact with one an-
other. There is no Darwinian selection. Evolution of the
population of molecules within a cell proceeds by random
drift.

4. Changes of population occur by discrete steps, each
step consisting of a single substitution mutation. A mu-
tation is a replacement of one monomer by another at
one of the sites in a polymer.

5. At every step, each of the N sites in the polymer
population mutates with equal probability (1/N).

6. In a given population of polymers, the bound
monomers can be divided. into two classes, active and
inactive.

7. The active monomers are in sites where they con-
tribute to the ability of a polymer to act as an enzyme.
To act as an enzyme means to catalyze the mutation of
other polymers in a selective manner so that the correct
species of monomer is chosen preferentially to move into

a site that is active.
8. In a cell with a fraction x of monomers active, the

probability that a monomer inserted by a fresh mutation
will be active is P(x). The function P(x) represents the
efBciency of the existing population of catalysts in pro-
moting the formation of a new catalyst. The assumption
that P(x) depends on x means that the activity of cata-
lysts is to some extent inherited from the parent popula-
tion by the newly mutated daughter. The form of P(x)
expresses the law of inheritance from parent to daughter.
The numerical value of P(x) will be determined by the
details of the chemistry of the catalysts.

9. The curve y = P(x) is S shaped, crossing the line

y = x at three points, x = n, P, p between zero and one.
10. Here we make a definite choice for the function

P(x) based on simple thermodynamics argument. It
turns out that the function P(x) derived from thermo-
dynamics has the desired S shaped form to produce the
three equilibrium states required by Assumption 9.

In the subsequent sections it will become apparent that
some of these assumptions are unnecessary and are inher-
ent in the REM version of the theory that we develop.

III. THE REM THEORY

The structure of a primitive cell or droplet consists of
a mixture of free monomers and polymers of different
sizes. According to assumption 6, each monomer has
two nearly degenerate states that are separated by an
energy that is difFerent for different monomers. In our
model, the monomers can be formally treated as Ising
spins and we adopt the following notation to describe the
state of the monomers —the ith monomer in its active
form has an energy —ei and is in the state o.; = +1; the
ith monomer in its inactive forxn has an energy +ei and
is in the state o, = —1. Within a droplet, the number
and size of polymers are not fixed, but fluctuate among
local minima under the influence of thermal effects and
interactions among monomers. The interactions between
the ith and jth monomers have a strength —J;~ that we
assume is a random variable whose distribution depends
on the droplet. In this model, the energy expression for
the droplet is

where the values of ei are Gauss-
ian distributed with mean (e;) = e and fluctuations
((e, —e) ) = b, e . The fluctuations arise from droplet
disorder. Similarly, we assume that the monomer in-
teractions J;~ are also Gaussian distributed with mean

(J;~) = J and fluctuations ((J;~ —J)2) = EJ2. Typ-
ically each monomer interacts on average with z other
monomers.

The key element in this energy that makes the sys-
tem spin-glass-like is the property of "frustration, " which
means that there are many unfavorable interactions be-
cause all favorable interactions cannot be satisfied simul-
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taneously. As a consequence, the state becomes highly
degenerate and there are a large number of different local
energy minima, which may have similar energies even if
they are not similar in structure. The number of such
substates increase exponentially ( exp(0. 2N) for Ising
systems) with the number of monomers.

Suppose that there is a droplet with N interacting
monomers that is in a specific conformation with xN
monomers in their active state. The mean energy for
such a system is then

E(x) = Ep —(2e —4z J)xN —4z Jx ¹

F(x) = Fp —(2~ —4z J)xN —4z Jx N —TS"(x);

LE2
+o =Eo-

B

where

U(x) = = Ug(x) ~ U2(x),
F(x) —Fp

B

The free energy F(x) may be analyzed in terms of an
effective potential U(x), which is defined as the sum of
two terms:

Ep =¹(—zJ).

For the standard deviation of the droplet energy, we as-
sume the simplest model possible (in which the standard
deviation is independent of x) and write it as with

Uq(x) = xln(x) + (1 —x)ln(1 —x),
B 2 B f Ai A

U2(x) =Ax ——x = ——
i

x ——
i

+
2 2 ( B) 2B'

(10)

2+z

The number of states with xN active monomers is given
by

N!
(xN)! [(1 —x)N]! (4)

S'(x) = —Nkgy (x ln(x) + (1 —x) ln(1 —x)), (5)

where kB is the Boltzmann constant.
Using the thermodynamic relation for the temperature

T, OS/OE = 1/T, it can be shown that the energy may
be written as [15,11]

E(x) = E(x)—
LE2
kBT

and the entropy as

2

. and so the configurational entropy, which is defined as
S*(x) = Nk~ 1n[O(xN)], can be written in the thermo-
dynamic limit (N + oo) as

4zJ —2~ 8zJ
kBT

F(x) —FpP.(x) - exp (— = exp( —NU(x) ). (12)
kBT

Now that we have defined an efFective potential for
the population of molecules in the droplet, we can in-
vestigate transitions between populations and in partic-
ular between disordered (dead) and ordered (alive) states,
which is the idea that underlies the Dyson model and is
contained in his assumption 9. To do this, we need to
determine the conditions of bistability for U(x).

The first term is the entropic potential, which is greatest
as x approaches zero or one, and so favors large popu-
lations of active or of inactive monomers. The second
term is a conventional potential energy and is the energy
gained by activating xN interacting monomers. For our
purposes, the importance of U(x) lies in the fact that
the equilibrium distribution of the population P, (x), in
a droplet having xN monomers active, must be a Boltz-
mann distribution:

The critical temperature T (x) is the temperature at
which the entropy goes to zero. It is

T.(*) = LE
[2k~S*(x)] ~

and it attains its lowest value, T, ;„=AE/k~/2N ln 2,
at x = 1/2. At high temperatures T & T,(x), the energy
and the entropy are approximatively equal to the mean
energy and the configurational entropy, respectively. For
T & T,(x), the entropy of the droplet remains zero be-
cause it is trapped in one of its low-energy substates.

At high temperature T ) T (x), or for values of x such
that T & T (x), the free energy F(x) = E(x) —TS(x) is
given by the expression

A. Bistability conditions
for the effective potential U(x)

Since Uq(x) & 0 on the whole interval 0 & x & 1, U(x)
will have two minima at stable points and a maximum
at an unstable one if U2(x) & 0 on the same interval.
This imposes the condition that A ) B/2. Because of its
two minima, U(x) has to have in addition two points of
inffection (points where the second derivatives are zero)
provided B & 4. It follows that the conditions for bista-
bility of U(x) are:

A&A =2andB&B =4,

or

e & e, = 2J —kgyT and J ) J, = k~T/2z.



4212 DOMINIQUE J. BICOUT AND MARTIN J. FIELD 52

B. Extrema and points of in8ection of U(x) ~ 5 ~ ~ I I
I

I ~ I I
I

~ I ~ I I I I I I
I

I I ~ x
I

~ ~ I ~2.

When the above conditions are fulfilled, the first
derivative of U(x) cancels at three points cx, P, p (n &
P & p), which are solutions of the equation

1

1 + exp(A —Bx) (14)
zJ/kT

o. and p are the stable points corresponding to the dis-
ordered and ordered states, respectively, while P is the
unstable point that corresponds to the potential barrier
separating the two stable points. The points of inQec-
tion, obtained by equating the second derivative of U(x)
to zero, are given by

x~= — 1+ 1—

0 5 I I I I

-3 -2 0
e. /kT

FIG. 1. Phase diagram in the space (e, zJ) representing
different possibilities for the population of a droplet. In the
transition region (dead and alive coexisting), populations pos-
sess both ordered and disordered states. There are no ordered
and disordered states in the dead and immortal regions, re-
spectively.

C. Marginally disordered and ordered states

Two interesting situations appear when the param-
eters (A, B) increase Rom the cusp at A„B where
x+ ——x = I/2. These marginal situations arise when
one of the points of inHection, say x (x+), coincides with
one of stable points, say a (p). In this case, x~ are also
solutions of Eq. (14) and the maximum of U(x) coincides
with one of its minima. Let

B = B~cosh 20
2

The range of values of A which allow an order-disorder
transition, is given by

A &A&A+,

for a=0.
Figures 1 and 2 display the phase diagram and the

effective potential for the two marginal and the symmet-
ric situations. The marginally ordered and disordered
states are interesting because they are limit systems hav-
ing the weakest and strongest capabilities for an order-
disorder transition, respectively, with a given number of
monomers species. In the marginally ordered system,
there is no stable ordered state while the situation is re-
versed for the marginally disordered system. For these
reasons, these states can be considered to be dead and im-
mortal, respectively. All intermediate cases can be rep-
resented as a nonsymmetrical combination of dead and

where

A~ = 1 ~ 8+ exp(+8). (18)
Q ~ Q5 x & x

l
x x I l x I I

I
I I I

I
I I

Therefore, we call marginally disordered a system having
A = A and corresponding to -0 ~ 05

1+exp(8)
'

The marginally ordered state corresponds to A = A+
with

-0.15—

(2o) -0.25
0 0.2 0.4 0.6 0.8

X

I l ~ I I I I I I I s I x I I I I

The symmetric situation is obtained for 2A = B. This
correspond to

(21)

and the potential U(x) has equal minima at n and p.
For these reasons, the average energy 2 can be called the
asymmetric energy since the symmetric case is obtained

FIG. 2. The effective potential U(x) for the three sit-
uations —marginally ordered (dead systems), symmetric,
and marginally disordered (imxnortal systems). The cor-
responding values of the energies are Z = —0.028k~ T,
zJ = 0.562kxxT for dead systems (dashed line);
K = 0.0, zJ = 0.576k~T for syxnmetric systems (solid line);
and Z = 0.062k&T, zJ = 0.607k&T for immortal systems
(dot-dashed line).
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2~ F(P) —F(a)exp
QFII(~)FII(P) kgT (22)

where F"( ) is the second derivative of F By .intro-
ducing the height of the barrier defined as

immortal states and it is the interactions between them
that allow order-disorder transitions.

We would like to determine how long it takes for a
population to switch spontaneously from a dead state
to an alive state. In other words, if we divide the 2
diferent substates of a droplet into two disjoint sets: V
the dead states, and A the alive states. We are interested
in finding the time required for a polymer starting in a
typical state in 17 to be transferred towards one in A. At
high temperature, T & T, the mean first passage time is
given by the classical Arrhenius law

IV. THE AUTOCATALYTIC PROBABILITY @(z)

To make the correspondence between the REM theory
and the model of Dyson, we need to calculate the au-
tocatalytic probability for the REM model. Let us con-
sider a droplet containing N monomers. The state of our
droplet system is given by the number j = 0, 1, . . . , N
of monomers active in the droplet after k mutations.
The variation of j(k) corresponds to a discrete one-step
Markov process j —+ j+ 1,j ~ j —1.. As a consequence,
the daughter population and its ancestors are not cor-
related. This fact is consistent with the REM, which
assumes a fitness landscape constructed &om indepen-
dent random variables. Let P(j, k) be the probability of
finding j active monomers in the population after k mu-
tation events have occurred. The master equation that
describes the evolution of the population is

b, = U(P) —U(n), (23)

the average time required for a droplet to make the tran-
sition &om dead to alive can be rewritten as

BI,P(j, k) = t+ iP(j —1,k) + t +iP(j + 1,k)
—(t+ + t . )p(j, k),

t ~
——go ——0.+

(26)

2" n(1 —n) P(1 —P)
Nk~T ]1 '—sn]1 —m)]]1 —Bp(1 —p)] )
x exp(b. N)

exp(ZN)
7O N (24)

N, v.

70
= expb -::-N (25)

The energy dependence of N is depicted in Fig. 3. It is
apparent that N drastically increases as J tends to J .

10
I-
r
I

1 03

10
g-1

10

where 7p can be interpreted as the average transfer time
between microstates at a given site. A critical population
size N can now be defined within which a dead-alive
transition can occur with a reasonable probability. N, is
such that the average number of transitions is equal to a
certain threshold

and t. are the transition probabilities per unit of mu-
tation &om j to j + 1 and &om j to j —1, respectively.
We follow Dyson [23] and use the transition probabilities

j ~ j+1:t+ = (1 —z)y(z),

q ~ j —1: t;. = z[1 —y(z)], (27)

t++ t.
2 2

The steady state is attained when the current flux I(j)
is zero:

z =j /N, where we have introduced the probability P(z)
that the mutated unit be active in a droplet that already
contains j monomers active. In other words, P(z) de-
scribes the law of inheritance &om parent to daughter.
In this section, we determine the form of this probability
without making any assumptions.

t . +t. is the overall transition probability that the sys-
tem will leave the state j. By choosing a random number
in the interval [0, t +t ], we can. realize the stochastic
motion of the phase point j(k), which undergoes a ran-
dom walk through the phase space (0, 1, . . . ,), which is
governed by the transition probabilities. The mean num-
ber of mutations the population undergoes in the state j
1s

I(q) = t,. p(j) —t+,p(q —1) = 0 (29)
10

0 I

0.5
I i s ~ ~ I

zJ/kT

FIG. 3. The critical population size N (8 = 1) as a func-
tion of the reduced interaction energy z J/k&T for symmetric
systems (solid line) and dead systems (dashed line). By defi-
nition,

¹
is in6nite for immortal systems.

p(j) = p(o)
2 g+ I't;~' = P(0) exp —) ln

g
—1 l l=l E I—1

Using the Euler-MacLaurin summation formula,

and so the stationary solution of the master equation is
given by
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ft;l
ln

l —1

(t, )—ln/ —
/

+
(to )

and in the limit of large N (xN )) 1), we get

P(x) = P(0) [Nu(x)] '~ exp( —NU(x) J,

where

(32)

u(x) = x[1 —&(z)] &(0)
(1 —x)P(z) 1 —$(0)

(33)

and the potential

U(x) = in~
~

dy+ ln~
~

dy.y &
* /1 —4(y) &

ql —yy

(34)

monomers. It is remarkable to note that the probability
P(z) is typical of the sigmoidal functions that are used
as input-output functions in neural networks, although,
in this analogy, A represents the threshold and B the
synaptic eKciency.

(iii) Assumptions 9 and 10, which require that the
daughter population has the same average activity as the
parent population at three points, is no longer necessary.
Indeed, the 5 shape of P(z) stems &om the bistability
of the potential U(x) and the corresponding three cross-
ing points of P(z) are points where the first derivative
of U(x) is zero, i.e. , where both the daughter and par-
ent populations are equal on average and have the same
characteristics.

To make the model more concrete, Dyson introduced
two parameters a and 6 that specified the diversity of
the population of monomers (1 + a is the number of
monomer species) and the precision of the polymerizing
catalysts, respectively. Dyson showed that when one as-
sumes that every imperfect catalyst produces an energy-
lowering proportional to x, the probability P(z) takes the
form

At this stage we can compare the above expression for
the efFective potential with the one given in Eq. (10).
The first term corresponds to the entropic potential and
the second one is such that

( ) 1 + b

In terms of the parameters in the REM, it follows that

I
dy = U2(*).

&1 —4(y) &

o E y j
a=Kbe px(

— ), =be px( ), (39)

The mathematical expression for the probability P(z) is
therefore given by

1 + exp(A —Bz) (36)

~ + E{~+x/N) s'{~) .+ exp k~T

1

1+ exp

(37)

Thus, the law of inheritance &om parent to daughter is
governed by the nature of the interactions between the

This expression for P(x) is exactly the same that Dyson
uses in his model. Before going further, let us make three
remarks:

(i) Within the mean field approximation, the poten-
tial U(x) stems Rom the summation of two terms of en-
tropic and energetic origins. The mean field approxima-
tion means that the eKciency of the activity of the cata-
lyst, or the probability that the mutated unit be active,
depends only on the total number of active monomers
present and not on their detailed arrangement nor on
the population before the mutation event.

(ii) As a consequence, the functional form of the au-
tocatalytic probability P(z) does not depend on the en-
tropic term but is completely determined by the potential
energy and is reminiscent of the transition probability for
the importance sampling procedure used in Monte Carlo
simulations:

where zJ is interpreted as the average energy by which
the catalyst lowers the activation energy for the correct
placement of a monomer. It is clear &om these for-
mulas that the diversity a of the monomer population
and the discrimination factor 6 are intimately related.
In the symmetric case, for example, just a single quan-
tity, the average monomer-monomer interaction energy
zJ controls the system and a given number of monomer
species fixes the precision of the polymerizing catalysts.
This one-to-one relation between the diversity and the
polymerization precision (sloppiness) implies a feedback
control and is an important requirement for homeostatic
equilibrium. For asyinmetrical models (K g 0), a system
having a given sloppiness is able to tune its diversity in
the allowed interval A & A & A+ in order to increase
or decrease its size N in the alive state.

Table I lists values for the parameters of some repre-
sentative systems that were studied by Dyson [23]. It
is to be noted that when e « zJ, the monomers are
strongly coupled and the model exhibits a large number
of configurational substates, i.e. , a rugged potential en-

ergy landscape. It should also be noted that values of zJ,
which are consistent with having a reasonable probabil-
ity for an order-disorder transition, are comparable to the
values of the pairwise interactions between amino acids in
proteins [24] and are of the order of a few percent of the
thermal energy, k~T. This means that such systems are
Bexible and adaptable, characters typical of metabolism,
but less so of replication, which is less error tolerant. It
would be instructive to investigate how the three systems
dead, symmetric, and immortal individually relax to the



52 GAUSSIAN RANDOM ENERGY MODEL AND DYSON'S MODEL. . . 4215

TABLE I. Typical values for the parameters of some representative models. The letters P, 8,
and S stand for dead, symmetric, and immortal systems, respectively.

17
8
2
17
8
2
x)
8
2

a
8
8
8
10
10
10
19
19
19

6
62.9
64

65.7
89.4
100.0
128.0
219.3
361.0
3195

0.32
0.33
0.39
0.19
0.20
0.29
0.07
0.08
0.14

0.59
0.50
0.39
0.67
0.50
0.29
0.75
0.50
0.14

y

0.59
0.67
0.70
0.67
0.80
0.87
0.75
0.92
0.99

Z/ksT
—0.0043

0.00
0.0066

—0.0280
0.00

0.0617
—0.1246

0.00
0.545

z J/k~T
0.518
0.520
0.523
0.562
0.576
0.607
0.674
0.736
1.01

~—1

371
886

34
69

equilibrium state as a function of the number of mutation
events. Such dynamical studies have already been per-
formed in other contexts by, for example, Shakknovich
and Gutin [13], and Fernandez [14]. We will report the
results of our application of these techniques elsewhere.

V. I3ISCUSSION

In this paper we have shown how the REM can be used
as a theoretical &amework for the model of the origin of
metabolism developed by Dyson. This has been done by
defining the effective potential of an interacting system of
monomers and by rederiving the expression for the auto-
catalytic probability given by Dyson without any further
assumptions.

We wish to conclude with a brief discussion on whether
this same &amework can be used to model replication
as well as metabolism. Metabolism is based on homeo-
static equilibrium. Homeostasis, which is the ability of
a system to maintain a constant internal environment
in a changing external environment, tends to maximize
diversity of structure and Qexibility of function. On the
other hand, replication requires both diversity and stabil-
ity for carrying macromolecular information. These char-
acteristics can be modeled in spin-glass systems because
they have diversity (many local minima), stability (barri-

ers preventing escape f'rom a single state), and Hexibility
(degenerate ground states). The origin of life is certainly
a complicated process with confIicting situations, inci-
dents, and adaptations working at different time scales
so that the fitness function is far &om a trivial one and
must exhibit a rugged landscape. The concept of spin
glass as a model of the transition to biological order has
already been employed by Anderson [25], Stein and An-
derson [26], Rokhsar et aL [27] and Amitrano et al. [28] to
model the template replication of nucleic acids. Abbott
[29] has used spin-glass systems to show that an auto-
catalytic system, as used by Dyson [16,23), is capable
of replication without templating. Replication in such
a system arises &om the ability of the system to store
and recover information as is done in neural networks.
Therefore, it seems that the spin-glass analogy can give
useful insights into both metabolism and replication and
be used to incorporate them into the same theoretical
&amework. This is work we are currently engaged in.
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