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Brovrnian dynamics simulation of dense binary colloidal mixtures.
I. Structural evolution and dynamics
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We have carried out Brownian dynamics simulations of binary mixtures of charged colloidal
suspensions of two different diameter particles with varying volume fractions P and charged impurity
concentrations n; Fo.r a given P, the effective temperature is lowered in many steps by reducing
n,. to see how structure and dynamics evolve. The structural quantities studied are the partial and
total pair distribution functions g(r), the static structure factors, the time average g(r), and the
Wendt-Abraham parameter. The dynamic quantity is the temporal evolution of the total mean-
squared displacement (MSD). All these parameters show that by lowering the effective temperature
at P = 0.2, liquid freezes into a body-centered-cubic crystal whereas at P = 0.3, a glassy state is
formed. The MSD at intermediate times shows significant subdiKusive behavior whose time span
increases with a reduction in the effective temperature. The mean-squared displacements for the
supercooled liquid with P = 0.3 show staircase behavior indicating a strongly cooperative jump
motion of the particles.

PACS number(s): 82.70.Dd, 61.20.Ja, 05.40.+j, 64.70.Dv

I. INTRODUCTION

Computer simulations have provided decisive insight
into the structural and dynamical aspects of the liquid
to crystalline transition (CT) [1,2] as well as the liquid
to glass transition (GT) [3,4]. The recent use of the non-
linear mode-coupling theory (MCT) [5] of dense liquids
to glass formation has given an impetus to the study of
the GT. Detailed comparisons of the experimental and
the computer simulation results with the MCT predic-
tions have been performed on diverse systems such as
ionic systems, e.g. , Cap 4Kp s(NOs)z 4 [6], and molecu-
lar systems e.g. , propylene carbonate [7,8, polymers [9],
proteins [10], and hard-sphere colloids [ll—13].

The ease in controlling the interparticle interactions
merely by varying the impurity-ion concentration n, and
the particle voluzne fraction P [14] makes the aqueous
suspensions of charged polystyrene spheres (polyballs)
ideal model systems for studies concerning crystalliza-
tion as well as glass formation. The earlier simulations
on polyballs were concerned with the study of the order-
disorder transition [15—21] and glass forznation [21,22].
The molecular dynamics (MD) simulations for the phase
diagram of monodisperse Yukawa system [15,16] have
shown the existence of liquid, body-centered-cubic (bcc),
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and face-centered-cubic (fcc) phases, in qualitative agree-
ment with laboratory experiments [23,24]. In the small-
angle neutron scattering experiments [24], the glassy
state was also shown to exist at high volume &actions
(P ) 0.2). The pair distribution functions (PDF s) ob-
tained from the Fourier transform of the measured static
structure factors S(q) indicated that the short-range or-
der in the glassy state is fcc-like. In the MD simulations
using the Derjaguin-Landau-Verway-Overbeek (DLVO)
potential [Eq. (1)],a spontaneous freezing of liquid into a
bcc phase was observed at a critical density [17],which is
to be contrasted with the result of Robbins et al. [15,16],
where the spontaneous crystallization was absent except
for only two runs. The Monte Carlo simulations of the
polyball system has been carried out to study the order-
disorder transition without any specific reference to the
bcc or the fcc phase [18,19]. The MD simulations for a
1:1 binary mixture of polyballs [20] interacting via the
DLVO potential with the parameters similar to the ex-
periments by Lindsay and Chaikin [25] (and also to the
present simulations) have shown transitions from a liquid
to a crystal and a liquid to a glassy state as P is increased.
We will comment on this study later. Polydispersity is
known to favor the glass forming tendencies of a sys-
tem by inhibiting crystallization. Colloidal systems can
possess both size polydispersity as well as charge poly-
dispersity. About 11% of size polydispersity is shown to
disrupt the crystalline order [26—28]. The results of the
recent MC simulations by Tata and Arora [21] indicate
a charge-polydispersity-driven crystal to a glass transi-
tion at a charge polydispersity of about 26% in polyball
suspensions.

Since the Quid molecules are much smaller than the
polyballs, they provide a viscous damping to the motion
of the polyballs. Hence the simulation technique appro-
priate to the polyball suspensions is Brownian dynamics
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(BD), which was proposed by Ermak et al. [29,30] and
has been used in earlier simulatioiis [31]. The inHuence of
the Newtonian MD vi8-a-vis the Brownian dynamics on
the dynamical correlations for the liquid to GT in charge-
polydisperse colloids has been investigated in a previous
simulation study [22]. It was shown that the long-time
relaxation behaviors of the density correlation functions
in both cases are similar even though they difFer in short
and intermediate times.

In this paper we report the results of our BD simula-
tions of a binary system of polyballs with difFerent radii
and charges. The aim has been to study how the struc-
ture evolves as the interaction between the polyballs is
increased either by increasing the volume fraction P or by
reducing the charged ion concentration n, . This is equiv-
alent to reducing the efFective temperature of the Quid
towards freezing into a crystalline state or towards su-
percooling to a metastable glassy state. We find that for
P = 0.2, the liquid to crystal transition takes place at an
efFective temperature Tf" ——0.0374, but for P = 0.3, the
liquid goes into a glassy state at T" 0.0312. In the fol-
lowing paper (hereafter called paper II) [32], we present
the study of the translational and bond-orientational or-
der of these states, while the evolution of the van Hove
correlation functions is reported elsewhere [33]. The rest
of the paper is set up as follows. In Sec. II we describe
the model and the details of the simulation. Section III
is devoted to the results of our simulation. Finally, Sec.
IV contains the summary of our findings and conclusions
of this work.

II. MODEL AND DETAILS OF SIMULATION

P = —urn„[xa, +- (1 —2:)a2]
3

and reduced temperature T*, given by

1
T*

Uo

k~T
(Z)' &

ekRT (1+Ka) a, (4)

where a is the mean radius and Uo is the energy scale.
Our system is identical to the experimental system of
Lindsay and Chaikin [25] as well as the one used in the
MD simulation of Rosenberg et al. [20], viz. , ai ——545 A. ,

a2 = 1100 A, Zi ——300, Z2 ——600, and x = 0.5.
Following Ermak and Yeh [29], we use the finite dif-

ference BD algorithm in which the hydrodynamic inter-
actions are neglected and the stochastic Langevin equa-
tions of motion are integrated in a finite time interval bt
to update the particle positions (r;(t)):

r, (t+ bt) = r;(t) + E,(t)bt+ (~r)R+ O((bt) ).kgT

(5)

Boltzmann constant.
The cutofF distance r, for the potential is chosen to be

equal to 2a, or 6K, whichever is greater, to ensure that
U';~. (r ) 0.001kRT. The bulk of our simulations were
carried out with K (= Ki + W2) = 432 particles confined
to a cubic box (of volume V), whose dimensions are ad-
justed to get the appropriate number density n„= K/V.
We have used the cubic periodic boundary conditions and
its natural consequence —the minimum image convention
[34]—to minimize the surface effects. The system can be
suitably characterized by its total volume fraction

ZZ f K, ; ) ( rc

(1+ra;) (1+ra~) r

where a, = nz ~ is the average interparticle separation,
Z, is the efFective valence on species i, and e is the di-
electric constant of water (equal to 78) at temperature
T (equal to 298 K). The inclusion of the geometrical fac-
tor exp[r(a,. + a~)]/(1 + va, )(1+ ra&) is like incorporat-
ing the hard-core repulsion [14,17]. For a binary suspen-
sion, the inverse Debye-Huckel screening length r is given
by

4~e2 &

n„Z+) n, z,' ~, (2)

where n„and n; are the total number densities of the
particles and the monovalent impurity ions (i.e., z, = 1),
respectively. Here Z = xZi + (1 —x)Z2 and AR is the

We consider an equimolar [i.e. , the composition vari-
able x = %i/(Ki + Kz) = 0.5] binary mixture of charged
spherical polyballs of Nq and N2 particles with radii aq
and a2 () ai), respectively. The interaction between all
the pairs (i, j) of particles separated by a center-to-center
distance r = ~r; —rz

~

is modeled via the purely repulsive
size-corrected DLVO potential [14]

The random displacements (Ar) R are sampled from
a Gaussian distribution with zero mean and variance

((Ar)R) = 6Dobt. We note that the variance is directly
proportional to the absolute temperature T through the
Stokes-Einstein relation Do ——kRT/( = kRT/(67rga„),
where ( is the macroscopic friction coefficient, g is the
viscosity of solvent (equal to 0.01089 P for water), and
az is the hydrodynamic radius of the particle. Since the
primary objective of the present work is to investigate the
long-time behavior of the dynamical correlation functions
[32] near the liquid to solid (crystal or glass) transition,
the choice of bt should be such that the long-time behav-
ior is reached in an optimum number of time steps. On
the other hand, since the error associated with the BD
algorithm [Eq. (5)] is O((bt) ), a reasonable stability of
the trajectory is ensured provided the integration time
step bt is chosen to be much smaller than the density re-
laxation time rg ( a, /Do 10 sec) but much larger
than the velocity relaxation time 7„=—( 10 sec),
where M is the particle mass. The value bt 10 sec
was found to be a satisfactory choice to ensure a reason-
able stability of the trajectories for the highest values of
&j& and v studied. Due to the above choice of bt )) 7

the dynamics is coarse grained, rendering the momentum
variables p~ absent in the BD.

Due to the inaccuracies in calculating the systematic
part [i.e., the second term on the right-hand side of Eq.
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(5)] and the random part (Ar)R of Eq. (5), there could
be a small shift of the center of mass of the total system,
resulting in a spurious, monotonic increment of the mean-
squared displacement (MSD). This contribution, though
very small, will not allow the MSD to saturate to a finite
value when the underlying order of the system is solid-
like. This is corrected by holding the center of mass of
the system fixed at each position updating.

As a check on the algorithm, we have carried out the
center of Inass corrected BD simulation for a monodis-
perse polyball system (K = 500, radius a„= 455 A,
valence Zz —— 450, P = 0.04). The fcc phase was
found to melt when n, = (41 + 0.5) pM of HC1, i.e. ,
n, = (4.94 6 0.06) x 10~s cm s. This can be compared

with the MD simulations [35] result of n, = (31 + 1) pM
of HC1 and the experimental [25] value of n; 50 pM of
HCl.

As shown in Table I, at each P, an initial bcc lattice
is melted into liquid with high impurity concentration
n, = 5n&Z and this liquid is then sequentially "cooled"
in 11 more steps with n, at every step being half of the
previous one, except for the last step, where n, = O. The
runs in the sequence are named as I 0, La, Lc, . . ., Lk for

P = 0.01, XO, Xa, Xc, . . ., Xk for P = 0.2, and GO, Ga,
Gc, . . ., Gk for P = 0.3. With this method of cooling,
called "slow quench" (SQ), the effective temperature of
the system is brought down &om T* 1 to T* 0.03.
To ensure proper equilibration of the system at each T*,

TABLE I. Cooling history of difI'erent runs. The parameters are explained in the text.

Run

LO

La
Lb
Lc
Ld
Le
Lf
Lg
Lh
Li
Lj
Lk

N, q

60000
60000
60000
60000
60000
60000
60000
60000
120000
60000
60000
134950

Np,

109000

n, j(n„Z)
P = 0.01, time

5

5/2
5/4
5/8
5/16
5/32
5/64

5/128
5/256
5/512
5/1024

0

step bt = 3.5
1.3045
0.3618
0.1571
0.0941
0.0700
0.0596
0.0547
0.0523
0.0512
0.0506
0.0503
0.0501

twas

x 10 sec
5.995
4.579
3.671
3.120
2.804
2.632
2.541
2.495
2.471
2.459
2.453
2.447

3.64
11.46
27.27
48.26
69.58
86.12
96.58
102.45
105.36
106.82
107.59
108.48

Initial

bcc
LO

La
Lb
Lc
Ld
Le
Lf
Lg
Lh
Ll
Lj

Final

liquid
liquid
liquid
liquid
liquid
liquid
liquid
liquid
liquid
liquid
liquid
liquid

XO
Xa
Xb
Xc
Xd
Xe
Xf
Xg
Xh
Xi
Xj
Xk
Xl

Xm

200000
200000
20GOOO

249000
200000
200000
200000
200000
200000
200000
200000
219300
200000
200000

199000
199000
199000
199000
199000
199000
199000
199000
199000
199000
199000
199000
199000
199000

P = 0.2, time
5

5/2
5/4
5/8
5/16
5/32
5/64
5/124
5/256
5/512
5/1024

0
0
0

step bt =7x
0.9098
0.2749
0.1216
0.0722
0.0530
0.0446
0.0407
0.0388
0.0378
0.0374
0.0372
0.0369
0.0369
0.0369

10 sec
9.877
7.544
6.048
5.140
4.620
4.336
4.187
4.110
4.071
4.052
4.042
4.032
4.032
4.032

5.28
14.30
31.82
55.88
77.71
94.49
104.96
110.89
114.18
119.67
117.85
118.67
118.45
110.74

bcc
XO
Xa
Xb
Xc
Xd
Xe
Xf
Xg
X}1
Xi
Xj
bcc
bcc

liquid
Liquid
liquid
liquid
liquid
liquid
li.quid
liquid
liquid
bcc
bcc
bcc
bcc
bcc

GO
Ga
Gb
Gc
Gd
Ge
Gf
Gg
Gh
Gi
Gj
Gk

350000
399000
350000
350000
350000
437230
350000
350000
542150
350000
350000
359600

399000
399000
399000
399000
399000
399000
399000
399000
399000
399GOO

399000
399000

P = 0.3, time

5/2
5/4
5/8
5/16
5/32
5/64

5/128
5/256
5/512
5/1024

0

step bt =3 x
0.5055
0.1796
0.0876
0.0550
0.0416
0.0356
0.0327
0.0313
0.0307
0.0303
0.0302
0.0300

10 sec
10.570
8.073
6.472
5.500
4.943
4.639
4.480
4.398
4.356
4.335
4.325
4.314

8.56
21.37
44.22
73.20
100.66
119.18
131.25
137.92
141.41
143.14
144.12
145.12

bcc
GO

Ga
Gb
Gc
Gd
Ge
Gf
Gg
Gh
Gi
Gj

liquid
liquid
liquid
liquid
liquid
liquid
liquid
glass
glass
glass
glass
glass
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the internal energy per particle E, together with the total
and the partial static pair distribution functions (PDF s),
is monitored over the whole equilibration run of N, q time
steps ( 10eht). The quantity E (in units of thermal
energy k~T) is defined as

U1V

NkBT (6)

where U;~. (r) is given by Eq. (1). The stability of the
trajectories is ensured by the steady value of E (the rms
deviation being less than or equal to 0.15%). The next
Nz, (approximately equal to N, ~) steps (production run)
(see Table I) are used for evaluating the static properties,
the MSD's, and the translation and bond-orientational
correlation functions (presented in paper II [32]). Ther-
modynamic quantities are averaged over a few hundred
bt for fluidlike order and over a few thousand bt for solid-
like order to keep the error bars less than 5%%uo. That
the system has indeed reached an equilibrium state after
N, z steps is also ensured from a complete overlap of the
total and the partial PDF's calculated at the end of the
equilibration (after K,q steps) and production runs (after
K,~ + Np, steps).

III. B.ESULTS

In this section, we report the results of our BD simu-
lation study of the static structural parameters and the
total mean-square displacement as a binary dense liquid
is cooled by reducing n, in 12 steps for P = 0.01, 0.2,
and 0.3. By comparing the respective pair distribution
functions and mean-squared displacements, we have con-
firmed that the final state of this cooling process (n; = 0)
is a liquid for P = 0.01, a crystal for P = 0.2, and a glass
for P = 0.3. The dependence of the results on the system
size as well as on the methods of cooling is discussed in
Sec. IIIA. In Sec. IIIB we study the structural parame-
ters and Sec. III C deals with the total MSD.

A. Cooling diagram, dependence on system size,
and cooling methods

Figure 1 summarizes the cooling diagram in the P ver-
sus n; parameter space as obtained from our slow-quench
simulations. The characteristics of the corresponding
BD runs, namely, the equilibration time steps N ~, the
production time steps N&„ the added salt concentration
n, /(n&Z), the temperature T*, the screening length Ka„
and the internal energy per particle E, are listed in Ta-
ble I. The starting configuration and the final state are
also given for each run in Table I. The state of a sys-
tem is characterized by the corresponding PDF and the
MSD. A constant T* (= 0.04) line in Fig. 1 serves as
an approximate freezing boundary. As mentioned ear-
lier, we will concentrate on only three volume fractions
(P), namely, 0.01, 0.2, and 0.3, with different n;. The
existence of a crystalline phase in this diagram, in be-
tween a liquid region for low P and a metastable glass

L L L L

0.2 —x L L L L

L L L L

C L L L L L L L L L L

L L L L L L L L L L

L L L L L L L L L L L

L L L L L L L L L L L L

I I I I IIII I I I I I I III I I I I

10 10 10' 10

n;/(n Z) + 0.001

FIG. 1. "Cooling" diagram in the P vs n, parameter space
obtained via the slow-quench method. The abbrevations are
L, liquid; X, compositionally disordered bcc crystal; G, glass;
and C, solid-liquid coexistence. All these states are confirmed
from the nature of their PDF and MSD. The solid line cor-
responds to an approximate freezing boundary of constant
T* (= 0.04). The n, axis is shifted and shown in logarithmic
scale for convenience.

for higher P, is in qualitative agreement with our difFus-

ing wave spectroscopy (DWS) experiments on a binary
polyball system [36].

As can be noted &om Table I, runs Xl and Xm are
independent runs and are not similar to the other SQ
runs. If the particles are put on bcc lattice positions irre-
spective of their types and then simulated with the same
parameters as run Xk (i.e. , P = 0.2 and n; = 0), the final
state Xl is a bcc with improper sublattice ordering. By
contrast, if an initial bcc lattice composed of two inter-
penetrating simple cubic (sc) sublattices made of either
kind of particle is simulated with the same parameters
as above, the final state Xm is a substitutionally ordered
bcc lattice. By comparing the internal energy E and the
PDF in subsection IIIB4, the position and type of the
immediate eight neighbors of each particle and transla-
tional and bond-orientational orders in paper II [32], of
runs Xk, Xl, and Xm, we conclude [37] that the resulting
final state Xk of our slow-quench simulation is a composi-
tionally disordered bcc lattice, similar to Xl. We believe
that this is a limitation due to the finite size and the
finite time of our simulation and probably also due to
a high energy barrier; otherwise the system would have
reached its proper equilibrium state given by run Xm.

We consider three difFerent cooling methods: (i) the
slow quench (SQ), (ii) the rapid quench (RQ), and (iii)
the density quench (DQ). In the first two methods, the
system at a constant P is efFectively cooled by reduc-



4158 SUBRATA SANYAL AND AJAY K. SOOD

ing n; .An initial lattice [bcc (N = 250 or 432) or fcc
(N = 256 or 500 or 1372) or sodium-chloride structure
(NaCl, N = 512)] is melted by taking a very high im-

purity concentration [n;/(n„Z) = 5] to obtain a fluid
configuration. In the slow-quench method, this Quid is
cooled in 12 steps as stated in Sec. II. In the rapid-quench
method, it is cooled to the required value of n, in one BD
step. At every n; (or T*), the system goes through proper
equilibration and production runs. In the density-quench
method, n, = 0 and a low-P liquid is effectively cooled
by increasing P. Comparisons among the results of these
methods are given in the following.

Sloe-quench versus rapid-quench methods

In the following (also refer to Table II), we compare
the final states obtained by cooling a liquid by these two
methods. The total number of particles N vary from 250
to 1372.

(a) Far away &om the melting-freezing line in the cool-
ing diagram (Fig. 1), these two methods are consistent
with each other irrespective of the system size (N). To
this effect, we find that (refer to Table I) the final n, = 0

state for P = 0.01 is a liquid by either of these two meth-
ods. Similarly, glassy states are obtained for P = 0.3 by
either of these two methods.

(b) Crystallization is extremely sensitive to the cool-
ing procedure and the starting configuration chosen. For
P = 0.2, the RQ method yields a dense liquid or glass for
N = 432, 500 or 1372. By contrast, via SQ method, a
liquid (P = 0.2, N = 432) freezes into a bcc crystal with
the lattice positions randomly occupied by either of the
particles. The PDF's of the final bcc states obtained by
the RQ method for N = 256 and P = 0.15, 0.18, or 0.21
show compositional disorder similar to the SQ results for

432. In the former case, quite surprisingly, the
MSD's have always shown a linear dependence on time.
We note that unlike N = 432, N = 256 is not compati-
ble with the bcc structure but rather is compatible with
the fcc structure. We believe that even though an over-
all bcc-like short-range order is favored in the system,
the number incompatibility did not allow the N = 256
particles' system to freeze into a bcc structure, thereby
showing liquidlike behavior in the MSD. The number in-
compatibility could as well be the reason for the absence
of crystallization in the final state of P = 0.2 system ob-
tained either by SQ (N = 500) or by RQ (N = 500 or
1372). The latter two numbers are compatible with the
fcc structure.

0.01
432 (bcc)
500 (fcc)

Gr.

015 or 018 or 021
SQ 432 (bcc)

256 (fcc)

bcc

bcc

Sat.

Gr.

0.2

432 (bcc)
500 (fcc)
1372 (fcc)

DL-G Int.

TABLE II. Comparison between the slow-quench (SQ) and
the rapid-quench (RQ) methods of cooling. The initial liquid
is obtained by melting a lattice, which is given in parentheses
in the column specifying the system size ¹ The final state,
as confirmed from the PDF's and MSD's, is also provided:
L, liquid; DL, dense liquid; G, glass; Sat. , saturating; Gr. ,

growing; and Int. , intermediate.

Final state
Method N (Lattice) PDF's MSD's

250 (bcc)
SQ 256 (fcc)

2. Einite-size and Pnite-time egect on freezing

It is known that the problems associated with the 6-
nite size and the finite time of the simulations can be-
come important close to the Quid-solid transition. With
the lowest system size N = 256, the freezing line (refer
to Fig. 1) is found to shift towards lower P (P, 0.0575)
and often towards higher values of n, than that obtained
with larger systems (for example, P, 0.1 for N = 432).
We believe that any amorphous state is metastable and,
given enough time, will reach its proper equilibrium state,
which is crystalline. To verify this, we use the same
parameters corresponding to the glassy states, obtained
by the SQ or the RQ methods, to a system of particles
put in an initial lattice and run it for a large number of
BD steps to find that the final state remains crystalline
with the internal energy E lower than that in the glass
by about 10%. Even our longest simulation of approx-
imately 10 sec ( 10 ht!) was not enough for a glass

(P = 0.3, n; = 0) to reach the lower-energy bcc crystal.

432 (bcc) bcc Sat. 8. Density- quench method: MD ver sus BD

0.3

SQ

500 (fcc) DL-G

256 (fcc)
432 (bcc)

500 (fcc)
512 (NaCl)

432 (bcc)

Int.

Sat.

Sat.

MD simulations following the DQ method have been
carried out by Rosenberg et al. [17,20]. In Ref. [20]
which deals with a system identical to the present one,
it is found that an initial bcc lattice (N = 1024) melted
into a liquid at P = 0.005 remains liquid when the den-
sity is increased to P = 0.0075. The mixture sponta-
neously freezes into a bcc lattice of two interpenetrating
sc structures on a subsequent increment of the density to
P = 0.01 and into the glassy states for P ) 0.01. The
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glass, upon contraction to P = 0.01, retrieves the sub-
stitutional bcc order. This never happened in our BD
simulations for N = 432 or 1024. Rather, liquid phase
is obtained until P = 0.0575 and beyond this, it shows a
glassy state for higher values of P, similar to the rapid-
quench method. The MD results [20] have also shown
that upon equilibration, an initial bcc lattice, with the
upper and the lower half of the simulation box containing
the smaller and the larger particles, respectively (phase-
separated crystal), freezes into a substitutional bcc lat-
tice at P = 0.1. By contrast, our BD results show that
an initial bcc lattice (substitutional or phase separated)
melts for P & 0.01, but remains similar to the bcc lattice
with increasing rigidity for higher values of P. The rigid-
ity is inferred from the increased peak heights of g(r) and
the reduction in the short-time Huctuations in MSD s.

By comparing the PDF for P = 0.01, 0.2, and 0.3
with N = 432 (slow quench) and 1024 (rapid quench),
we found that they completely overlap with each other.
From this and the above results, we conclude that in or-
der to simulate proper equilibrium polyball suspensions
via the center of mass corrected BD algorithm, the op-
timum choice of the system size is N = 432. Further,
the slow-quench method, being the closest approxima-
tion of the process of reduction of n; by the ion-exchange
resins in the laboratory experiments, is obviously a bet-
ter candidate than the density-quench method involving
P variation at constant n;.

B. Microscopic structure

The structural parameters that we have probed are the
total and the partial PDF, i.e. , g(r) and g p(r) (n, P =
1 or 2); their respective spatial Fourier transforms, the
total and the partial structure factors S(q) and S p(q);
the integrated numbers of neighbors, defined as

(7)

and finally an empirical structural parameter, called the
Wendt-Abraham parameter Rg = g;„/g „,where g
and g;„are the values of g(r) at its first maximum and
the following first minimum, respectively [38—40].

In order to clearly resolve the structural features that
are smeared out by the thermal broadening of the PDF
peaks, one can determine the PDF g(r ) defined by the
time-averaged positions [41]

t+p

The most appropriate value of the number of steps p for
position averaging was found from the minimum in the
B~ versus p plots [41]. This corresponds to the typical
time for vibration of a particle in a "cage" formed by its
immediate neighbors. The values of p obtained by this
method are about 200 for liquid (run Lk), 400 for crystal
(run Xk), and 100 for glass (run Gk).

Liquid, crystalline, and glassy states

Figure 2 shows g(r) and g p(r) (a, P = 1 or 2) at n; = 0
for P = 0.01, 0.2, and 0.3, which have features typical for
liquid, crystal, and glassy phases, respectively. The total
MSD presented in a later subsection, together with these
PDF's confirms the state of the system. The character-
istic features of the PDF's in Figs. 2(a) and 2(d) are a
broad first peak, a smooth second peak, and a third peak
with an appreciably diminished intensity, confirming a
complete absence of the long-range order and correspond-
ing to a liquid state. As a further confirmation, only the
first peak of g(r) [or g p(r)] for liquids (not shown in. the
figure) becomes relatively higher and sharper compared
to that in the g(r) [or g ~(r)].

Figures 2(b) and 2(e) show the PDF's that have pro-
nounced peaks at positions corresponding to a bcc crys-
tal. This is brought out more clearly in the time average
g(r), shown in Fig. 3(a), where the vertical bars indicate
the positions of the neighbors in the bcc structure, scaled
with respect to the first peak position of g(r). Figures
3(a) (run Xk) and 4 (run Gk) correspond to Figs. 2(b)
and 2(c), respectively, showing that the peak structures
are far better revealed in g(r). The vertical bars in the
Figs. 4(a) and 4(b) are fcc neighbor positions scaled with
respect to the position of the respective primary maxi-
mum.

A considerably sharper and narrower first peak com-
pared to the liquidlike states, a split in the second peak,
and the presence of a distinct third peak are the charac-
teristic features of a glassy state for P = 0.3 in Figs. 2(c),
2(f), and 4. A comparison of the PDF for the run Gk
(Fig. 4) with run Xk [Fig. 3(a)] confirms a complete ab-
sence of nucleation in the former. Very interestingly, we
find that gii(r) [Fig. 4(a)] and gi2(r) (not shown) reveal
peak structures commensurate with fcc shell positions for
at least a few neighbors, including the presence of a kink
at the first-neighbor position and evolution of small peaks
at the next three neighbors from the split second peak.
By contrast, g22(r ) [Fig. 4(b)] and g(r) (not showii) show
the split second peak at the second and third fcc shell
positions. This is similar to the constant pressure Monte
Carlo simulations of Lennard-Jones glass [38] wherein a
comparison with the experimental results [42] has also
been made.

If any of our systems had phase separated, gii(r) and
g2z(r) should have been significantly higher than gi2(r),
signaling a tendency towards homocoordination. Lacking
such evidence [Figs. 2(a)—2(c)], we rule out the possibil-
ity of phase separation in any of our simulations. An
interesting feature to be noted in Figs. 2(b) and 2(e) is
that the partial PDF's are identical to the total one be-
yond the first minimum following the first peak. Also,
the first peak is shifted to either side of the total one,
in conformity with the different hard-sphere radii of the
two types of particles. These show that the particles are
distributed at random, irrespective of their type, in the
final state Xk. In contrast to the crystalline case, the
second and the third peaks in the g p(r) of glass with
P = 0.3 [Figs. 2(c) and 2(f)] are shifted to either side of
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the corresponding peaks in g(r) commensurate with the
first-peak shift. A similar nature, though not so clear,
exists for the liquid with P = 0.01 [Figs. 2(a) and 2(d)].
Figures 2(d) —2(f) further show that the nature of the to-
tal g(r) closely follows gi2(r) for all the P's, as expected
for an equimolar mixture. We also note that there is a
tendency towards complete separation between the first
and second shells in the equilibrated states (n, = 0) for
dense systems (i.e., for P = 0.2 and 0.3), as refiected by
the small values (approximately 0.2) of g

Similar characteristic features also exist in S(q) [37]
obtained from the spatial Fourier transform of the corre-
sponding g(r). These are not presented here since they
do not carry any new information. For qa, ( 50, S(q)
does not show any "interference" efI'ect, in contrast to
the MD results of Bernu et al. [43], where they find that
with increasing q, the oscillations in S(q) near qa, 10
go through a minimum followed by a maximum before
getting completely dampened.

We note that the splitting of the second peak of S(q)
and the PDF are taken to be the "signature" of the GT
in experiments [14,42,44] and simulations [41,45]. The
origin of splitting in the PDF and the corresponding
static structure factors diff'er [46]. Such splits are always
present in the PDF of our system at low temperatures
for P = 0.3 and also in the dense supercooled hquid be-
fore the crystallization takes place for P = 0.2 [Fig. 3(b)].
At these temperatures, the corresponding MSD's tend to
saturate and the density and bond-orientational correla-
tion functions show a slow decay (long-time tail). At first
sight, we are surprised by the presence of such a splitting
in g22(r) even at higher T* for P = 0.2 and 0.3, despite
the corresponding MSD's indicating sufFicient movements
for the heavier particles (type 2) and the correspond-
ing correlation functions showing liquidlike decays in our
total simulation duration. This result is in agreement
with the earlier MD studies of binary alloys, with either
a purely repulsive r potential [43] or Lennard-Jones
(LJ) interactions [47]. In these studies too the split sec-
ond peak in the PDF is found to occur well before the GT
is reached. Hence the splitting in the second peak alone
should not be used as a signature of the glass transition.
It has been suggested [44,48] that the split in the second
peak is due to a dense random packing and can occur
not only in glasses but also in dense supercooled liquids.
In a recent work, Clarke and Jonsson [49] have studied
this splitting more carefully by decomposing the PDF of
monodisperse and binary spherical hard-sphere packings
into components according to the local environment of
the pairs. It was shown that the second subpeak is due
to the linear trimers of spheres whereas the first subpeak
has roughly equal contributions from two types of closely
related pairs: the face sharing tetrahedra and triangles
with adjacent sides (see Ref. [49] for details). In all these
cases referred to above [14,41—45,47,48] the first subpeak
of the split second peak is higher than the second sub-

peak, while in the case of random hard-sphere packing, a
reversal of the relative intensities of the two subpeaks oc-
curs with increasing interaction (by densification) [50,49].
A similar picture is seen in our simulations for P = 0.2.
The intensities of the subpeaks in g22(r) (run Xh) shown

g. Evolution of structure

We shall now discuss the structural changes for P =
0.01, 0.2, and 0.3 as a function of slow cooling. In panel
(a) of Figs. 5—7 we show our results for the PDF at several
values of T*. The n(r) [calculated using Eq. (7)] are given
in panel (b) for a smaller range of r containing only the
nearest-neighbor shells. The corresponding S(q) are also
studied [37], but are not presented here owing to the
same reason stated before. Figure 8 shows the evolution
of the interparticle interaction as measured by the first
peak height S of S(q), as a function of 1/T* for the
three volume fractions.

For q'i = 0.01 and n, = 0 [Fig. 5(a)], the equilibrium
phase is liquid. For all the n(r) in Fig. 5(b), the infiection

$ = 0.01

LO (T = L304$)

La (T' = 0.301$)

g(1) &

Lb (T = 0.1571)

Lc(T =0.0041)

Lk (T =0.0501)

0

r/a,

15

12

9
n(r)

00.8 1.2 1.4

FIG. 5. (a) g(r) vs r/a, for P = 0.01. (b) Number of
neighbors n(r) vs r/a, in the vicinity of the first peak of g(r)
For clarity, data for only a few runs (or T*), as marked in (a)
and (b), are shown and curves for g(r) are vertically shifted
from each other by unity.

in Fig. 3(b) reverse to show characteristic bcc-like order
in the system as soon as it crystalizes with a further in-
crease in interaction in the run Xi [see Fig. 3(a) for run
Xk]. By the method of common-neighbor analysis [49],
it was indicated that the reversal of the relative subpeak
heights in the second peak results &om a broadening of
the distribution of distances within the linear trimers,
while the distribution sharpens for the sharing tetrahe-
dra and adjacent triangles.
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e runs and the corresponding T*g are

point [51] occurs at r/a, = 1.475 6 0.002
to the first m'

, corresponding
o e rst minimum following the first peak of g(r) The.

value of n(r) at this inflection point (which is taken to be
t e number of neighbors in the first coordination shell)
is 13.7+ 0.1. This suggests that the liquid has a bcc-like
oca order for which this value should have been 14.

For P = 0.2 (Fig. 6), the general nature of the de-
ve opment of PDF's and S(q) in fluid phase (run XO to
run Xh) is similar to that for P = 0.01. The liquid to

sepsint ecc crysta transition occurs over a few BD ste s
'

run Xi and then onward (i.e. , for the final states of Xi,
j, and Xk) the total and the partial PDF's show en-
ance peaks at bcc peak positions [refer to Figs. 6(a),

2(b), 2(e), and 3(a)]. The PDF's [or the S(q)] of runs
i, j, and Xk match perfectly well with each other, in-
icating an equilibrium situation. In Fig. 6(b) the value

o n(r) at the infiection point (r/a, = 1.474 + 0.003)
is 13.6 + 0.2. T
in the

is signifies bcc-like local order t-er, suppor-
ing he Alexander-McTague prediction [52] that isotropic
systems preferably crystallize into a bcc structure. This

the c
an t e asic features of the total g~ ~ f th l' d~r ~ or e iqui and

e crystalline phases as above are i l't tre in qua i ative agree-
ment with a previous detailed MD study of the monodis-

[ ig. ( )]. In particular, the value
of S „agrees with the Hansen-Verlet criterion [53] of
approximately 2.8 over a small but fi 'tu ni e range o tem-
peratures near freezing.

The situation depicted in Fig. 7 for P = 0.3 shows
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a completely difFerent scenario for the PDF. As T* de-
creases, the second peak splits into two and the third
peak becomes more distinct. The sublattice PDF's show
these features more clearly than the total PDF's and
hence are shown here. Figure 8(c) clearly shows a smooth
change of S „. A high value of S „( 3) for the
heavier sublattice at T* 0.5 as compared to that for
the lighter sublattice indicates that the heavier sublat-
tice has already &ozen. These characteristics are similar
to the experimental results on complex glasses [42]. The
smooth change over of the static quantities [e.g. , the total
and the partial PDF's, S(q), S „, etc.] points towards
the kinetic nature of the GT and is one of the basic pre-
dictions of the recent MCT [5]. In contrast to the above
cases, the n(r) in Fig. 7(b) shows that the value of n(r) =
12.47+0.05 at the inflection point (r/a, = 1.38 +0.002),
indicating the local order to be fcc [38], supporting the
similar inference drawn from Fig. 4.

8. W endt- A braham pat ameter

An empirical structural parameter Rs = g;„/g „has
been used in previous computer simulations [38—40] to
define the glass transition temperature T~. The param-
eter B~ shows a discontinuity in its slope as a function
of T. A similar trend in Ag versus the impurity concen-
tration n; has been seen in Monte Carlo simulations of
charge-polydisperse colloids [21,54]. In Fig. 9 we show
our results for Rs versus n, /(n&Z). By fitting straight
lines to the low n, and the high n; for P = 0.3 [panel
(b)], we find that the value of Rs at the intersection of
the two lines is 0.1404, close to the value found in LJ sys-

tems [38,39,41] and charge-polydisperse colloids [21,54].
The value (n;)s = 0.0339n&Z provides the GT tempera-
ture T" = 0.0312. For the CT data in Fig. 9(a), Rs shows
a distinct jump at (n;)g/(n„Z) = 5/512 estimating the
freezing temperature to be Tf ——0.0374.

Corn@at'iaon of the run Xk toith Xl and Xm

A complete overlap of g(r) and g p(r) for the runs Xk
and Xl and the fact that the value of the internal energy
E for Xk is 118.67+0.04, nearly the same as 118.45+0.04
for compositionally disordered Xl, indicates that the final
state Xk is a compositionally disordered bcc crystal. As
stated earlier, we believe that given enough time and a
larger system size, the final state might be a sublattice-
ordered bcc structure, similar to the run Xm, for which
E is about 7%%up lower (equal to 110.74 + 0.02). In order
to check how good the bcc order is we have picked up
four arbitrary particles in the simulation box and listed
the distances and the types of their corresponding eight
nearest neighbors. A comparison is made with the re-
sults of runs Xl and Xm both in their respective initial
configurations and in the final state after simulating for
4 x 10 8t. For a perfect substitutional bcc lattice (initial
configuration for run Xm), the immediate eight neighbors
belong to the difFerent species and they sit at the corners
of a perfect cube with the concerned particle at the cen-
ter of the cube. These particles, when simulated (the
final state of run Xm), make movements (less than 5%%up)

from their respective initial positions and seldom parti-
cles of the similar species become neighbors. In run Xl,
the particles continuously rearrange themselves, irrespec-
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tive of their types, and this is in much closer comparison
with the run Xk. This convincingly confirms that the fi-
nal state Xk is a bcc crystal with an improper sublattice
ordering.

C. Mean-squared displacement

In order to quantify the dynamical evolution of the
system, as it is cooled from an initial fIuid phase, we have
calculated the total mean-squared displacement defined
by

1

CO

CI
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0.1

Gd

Gh
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Gg

10 I

XO

CO

CI
V

10

10
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10 10
t (sec)

10'

I IG. 10. The log-log plot of the temporal evolution of the
total mean-squared displacements for the runs with P = 0.2
listed in Table I.

and also the partial MSD ([Ar (t)] ) for both types of
particles (n = 1 or 2), defined similarly as in Eq. (9),
where r;(t) is the position of the particle i at time t.
The angular brackets in Eq. (9) indicate an averaging
over a set of typically 50 initial conditions (tpj clloseil
at different times in the same run to improve the signal-
to-noise ratio. The time dependence of the total MSD
(the Einstein plots) are shown in Figs. 10 (P = 0.2)
and 11 (P = 0.3) in log-log plots for various tempera-
tures while cooling the system towards the n; = 0 state.
The sublattice MSD's carry information similar to that
of the total MSD's and hence are not shown here. The
power-law dependence of the MSD's can be expressed as
([Ar(t)] ) oc t, where the exponent m, = 1 for Fickian
diffusion and m ( 1 for subdiffusion. The log-log plot is

0.02

10

t (sec)

FIG. 11. Same as Fig. 10, but for P = 0.3.

a convenient way to present the data since MSD's with a
power-law dependence should show up as a straight line
with slope m in this plot and hence the distinction be-
tween the diffusive and the subdiffusive regimes should
be quite apparent.

At high temperatures the dynamics is considerably dif-
fusive (m = 1 for all t) whereas they are localized or
trapped (m = 0 for all t) in runs Xk and Gk at low-
est T*. By contrast, the MSD for the final state Lk
for P = 0.01 (not shown) still shows diffusive behavior
(m = 1). These, along with the corresponding PDF's
presented in Fig. 2, confirm the states Lk, Xk, and Gk
to be liquid, crystalline, and glassy, respectively. At in-
termediate temperatures the general nature of the MSD
follows three distinct stages. The initial stage can be as-
sociated with the "cage diffusion. " This regime spans up
to t 10 sec in the data for P = 0.3, but the choice
of St does not allow us to see this regime for P = 0.2.
Following this, there is an intermediate "subdiffusive"
regime and the long-time diffusive behavior. Figures 10
and 11 clearly show that the linear temporal dependence
of the MSD and hence approximating the long-time dif-
fusion constant from the asymptotic slope of MSD's are
valid for runs XO to Xc for P = 0.2 and runs GO to Gb
for P = 0.3. As seen from Figs. 10 and ll, the long-time
diffusion constant is lower than the short-time cage dif-
fusion. The MSD's in other runs for both P's have the
following noteworthy features. The span of the subdiffu-
sive regime increases successively as the temperature is
lowered for both P's and, as expected, it is more for the
denser system (P = 0.3). Near the glass transition, this
regime covers the entire simulation length and the asymp-
totic values of the diffusion constants are not reached. A
clear difference between the nature of MSD's as a liquid
is cooled towards a crystalline and a glassy state, as ap-
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parent &om curves Xd to Xk in Fig. 10 and curves Gc
to Gk in Fig. 11, is that the MSD's in the latter show a
"staircase" behavior that is completely absent in the for-
mer case. This supports the cage concept, indicating that
in the supercooled or glassy regime, a particle repeatedly
gets arrested in some kind of a cage structure formed by
its neighbors and intermediately hops &om one cage to
another, giving rise to the observed staircase nature of
the MSD. The fact that these are seen in the statistically
averaged quantity MSD indicates that the hoppings must
be taking place quite cooperatively. We note that since
the MSD is quite small for these low temperature states,
cooperative hops of the order of interparticle separation
by a few particle will always show up in these plots. To
confirm this conjecture, we have carried out a detailed
study of the van Hove correlation functions and the indi-
vidual particle displacements in the vicinity of the GT,
which will be presented elsewhere [33]. We also note that
a reduction in the long-time value of the MSD for the CT
is sharp (curves Xh and Xi in Fig. 10) as compared to
the slow kinetic nature of the GT.

IV. SUMMARY AND CONCI USIONS

In this paper we have presented the BD simulation re-
sults for a simple DLVO model of a binary mixture of
polyballs with different radii and charges. The interest
has been to look into the static and the dynamic aspects
of this system in the liquid, crystal, and glassy states.
By comparing difFerent cooling methods, we infer the
slow-quench method to be the most realistic and close
to the method adopted in the laboratory experiments.
The structural quantities studied are the total and the
partial pair distribution functions g(r) and their spatial
Fourier transforms the static structure factors S(q), the
tiine averaged g(r), and the Wendt-Abraham parame-
ter Bg ——g;„/g „and the dynamic quantity reported
in this paper is the total mean-squared displacement.
All these parameters show that by lowering the effective
temperature (achieved by reducing the co-ion concentra-
tion n, ) at &P = 0.2, liquid freezes into a body-centered-
cubic crystal with imperfect sublattice ordering whereas
at P = 0.3, a glassy state is reached. This result is in
qualitative agreement with our DWS experiments [36]
with binary mixtures.

The structural quantities and the mean-square dis-
placements change abruptly at the crystal transition, ex-
pected of a first-order phase transition. On the contrary,
slow and gradual changes of these quantities reveal the
kinetic nature of the glass transition. The final state bcc
lattice (run Xk) obtained by the slow cooling of a liquid
for P = 0.2 has an imperfect sublattice ordering. Since
a substitutional bcc lattice, with the same parameters as

above (run Xm), has a lower potential energy per par-
ticle, we expect that the imperfect bcc lattice (run Xk)
is metastable with a slightly higher energy. The change
of slope of the Abraham-Wendt parameter estimates the
freezing temperature T&

——0.0374 for P = 0.2 and the
glass transition temperature T" = 0.0312 for P = 0.3.
The value of T compares well with that obtained from
analyzing the translational and bond-orientational corre-
lation functions of the same system, presented in paper
II [32]. The short-range order, beyond the principal min-
imum of the PDF, is shown to be bcc-like in the liquid,
but is fcc-like in the glass. The structure is better re-
vealed by the temperature averaged g(P). With g(P), the
characteristic structural features in the PDF, namely, the
short-range fcc order, the split second. peak in the glass
and the reversal of the relative subpeak intensities with
interaction were discussed in the light of a recent paper
by Clarke and Jonsson [49].

The mean-squared displacement changes with cooling
from a normal liquid to a somewhat moderately cooled
liquid, irrespective of the volume fraction. The temporal
evolution of the MSD shows a deviation from the usual
Fickian diffusion in the intermediate and long time for
both P's at low n, . The temporal span of this subdif-
fusive regime increases with a decrease in the temper-
ature as well as with increasing P. In the long-time
regime, the MSD for supercooled liquid with P = 0.3
shows staircase behavior, indicating a strongly cooper-
ative jump motion present in these states. This is a
recent observation of the subdiffusive and staircase be-
havior for a system of Brownian particles. The subdi8'u-
sive behavior has been very recently calculated [55] and
has been noted in the MD simulations of one-component
and binary r i2 soft-sphere systems [56,57], monodis-
perse Yukawa fluid [51,58,59] and I J systems [60,61], and
also for the nearest-neighbor-interacting lattice gas [62].
It has been suggested that the motion of a particle in
the background of an inhomogeneous medium may lead
to the subdiffusion. Approximating the long-time diffu-
sion constant &om the asymptotic slope of the MSD is
strictly correct in the Quid phase, before the subdiffusive
and staircase behaviors set in.
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