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Inhomogeneous Huid membranes: Segregation, ordering, and efFective rigidity
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Fluid membranes with spatially varying distributions of bending rigidity and spontaneous cur-
vature are considered, which are applicable to inhomogeneous membranes consisting of different
components and membranes with inclusions (such as proteins) or adsorbed colloidal particles. Ther-
mally activated shape Huctuations of the membrane induce rather long-ranged interactions between
these inhomogeneities, which are free to diffuse laterally and to organize into spatial structures.
As a consequence of these interactions, one finds two ordered phases in addition to the disordered
phase in which the inhomogeneities are randomly mixed: a segregated phase, where the inclusions
tend to aggregate, and a hexagonal phase, where the inclusions maximize their mutual separation.
The phase behavior depends crucially on the lateral correlation length within the membrane. Also,
the effective bending rigidity of the membrane is calculated for all different phases; in general, the
inhomogeneities in the elastic moduli considered here lead to a characteristic softening of the mem-
brane. These results, which are obtained using perturbation theory, are confirmed by Monte Carlo
simulations. Experimental applications comprise proteins or adsorbed colloidal particles in vesicular
bilayers and lamellar stacks and membranes consisting of lipid mixtures.

PACS number(s): 82.70.—y, 87.22.Bt, 64.60.—i, 64.75.+g

I. INTRODUCTION

In experimental and biological situations, fluid mem-
branes are usually inhomogeneous on some microscopic
length scale. Typically, membranes consist of mixtures
of various lipids with in general diferent elastic prop-
erties, or can incorporate larger inclusions (such as pro-
teins) or host adsorbed colloidal particles or other macro-
molecules, which locally perturb the elastic and struc-
tural properties of the pure membrane. The experi-
mentally observed behavior for such mixed systems is
very complex and shows phase separation of the difer-
ent membrane constituents, randomly mixed states, and
more complicated modes of aggregation of larger inclu-
sions [1—5]. Apart from direct interactions between the
inclusions or the difFerent components making up the
membrane, which certainly do exist, there are a num-
ber of efFects due to the lipid matrix the inclusions are
embedded in. On the theoretical side, it was found very
early that the presence of a protein in a membrane leads
to structural changes in the lipid environment, which in
turn give rise to lipid-mediated interactions between two
of these inclusions [6]. This was forxnulated subsequently
in terms of Landau theories for an order parameter con-
nected to some local property of the membrane, usually
taken to be the degree of chain ordering or the density
of lipid xnolecules [7—9]. Aggregation was also argued
to result &om a hydrophobic mismatch between proteins
and the surrounding xnembrane [10]. Quite complemen-
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tarily, the distortion of a membrane around an inclusion
was studied using the standard elasticity model of mem-
branes, giving rise to attractive or repulsive interactions
between two inclusions, depending on the elastic proper-
ties of the two monolayers making up the bilayer [11].

On a more fundamental level, inclusions and other in-
homogeneous structures lead to spatially varying elastic
properties of the mixed membrane system, according to
the distribution and the elastic properties of the differ-
ent constituents. It has been realized very recently that
thermally activated shape fluctuations of the embedding
membrane then give rise to interactions between the dif-
ferent components distinguished by their elastic moduli,
even without additional coupling between the inclusions
and the surrounding membrane [12—14]. Clearly, such
interactions are ubiquitous and universal in the sense
that they depend only on the coarse-grained elastic mod-
uli of the membrane constituents. In many cases these
fluctuation-induced forces will be exceeded by direct in-
teractions between inclusions; however, in the last section
we will report on ways to experimentally single out these
indirect forces.

In this article, we first derive the shape-fluctuation-
induced interaction between inclusions which locally
change the (i) bending rigidity and (ii) spontaneous cur-
vature of the membrane. This is done in the harmonic
approximation for a finite in-plane correlation length of
the membrane. We then calculate the &ee energy of dif-
ferent lateral arrangements of the inclusions, by summing
over all interactions between them, and arrive at a phase
diagram, featuring the disordered phase, where the dif-
ferent constituents are randomly mixed, an aggregated
phase, where the inclusions phase separate Rom the pure
membrane, and a hexagonal phase, where the (asymmet-
ric) inclusions keep xnaximal distance &om each other.
We also calculate the eR'ective elastic properties of the
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mixed membrane in each phase; one obtains a charac-
teristic softening due to the coordinated interplay of the
membrane shape fluctuations and the distribution of the
elastic moduli. These results are obtained using a per-
turbation scheme, with the difFerential elastic constants
being the small parameter. Monte Carlo simulations per-
formed for a selected set of parameters and for a more
realistic interaction potential between membranes con-
taining a hard wall con6rm the analytic predictions. At
the end, we discuss in detail how these predictions can be
checked experimentally. It is also shown how the notion
of an effective bending rigidity can be invoked to under-
stand the trend to aggregation for very stiff inclusions.

II. FLUCTUATION-INDUCED FORCES
BETWEEN PAIRS OF INCLUSIONS

The effective Hamiltonian of a homogeneous mem-
brane which is on average flat can be written as [15]

addition, an inclusion can be up-down asymmetric and
thus also induce a local spontaneous curvature [see Fig.
l(c)]. For an adsorbed particle the same effect obtains if
the adsorbate is rather spherical than plate like [see Fig.
l(d)]. In general, one will encounter a mixture of these
two effects. Note that holes in the membrane correspond
to regions of decreased bending rigidity [17]. Naturally,
the same description holds for mixtures of lipids with
different bending rigidities and spontaneous curvatures,
though on a much smaller length scale.

To make the above notions concrete, let us consider an
inclusion with an area a and bending rigidity of Kp +
br. and spontaneous curvature of co + bc; clearly, the
bare perturbation parameters are given by the difFerential
elastic constants bK and bc . The effective perturbation
parameters turn out to be b'K /ro and bc agro/T. The
energy contribution of an inclusion positioned at w = w

(and neglecting the flnite area extent) can be written as

'8 (x ) = —h'~ a V' l(x ) —bc roa 9' /(» ). (2)

'Rp —— d x —~p V l x. —cp +V l x

where Kp is the bending-rigidity modulus and cp the spon-
taneous curvature of the membrane. The displacement
field l(x) either describes the shape of a single membrane,
subject to an external potential V(l), or the separation
between two membranes [16], interacting via the mutual
potential V(l). In most cases the membrane is up-down
symmetric and the spontaneous curvature vanishes. Even
if cp is nonzero it does not affect a membrane as described
by (1) since the integral over the terms depending on co is
a constant not depending on the shape of the membrane.
The Gaussian curvature is not taken into account; the
corresponding elastic constant for membranes and for in-
clusions as well is not known.

We will now discuss the effect of an inclusion or an
adsorbed particle on the elastic properties of a mem-
brane defined by Hamiltonian (1). An inclusion which
is stiffer than the embedding membrane constitutes a
locus of increased bending rigidity [see Fig. 1(a) for a
schematic picture]; in analogy, a tightly bound flat par-
ticle will stiffen the membrane locally [see Fig. 1(b)]. In

(a) (b

FIG. 1. Schematic picture of (a) an inclusion or (b) an
adsorbed macroparticle changing the local bending rigidity,
and (c) an inclusion or (d) an adsorbed particle giving rise to
a local spontaneous curvature.

It is a well established fact that the local perturbation of a
membrane due to inclusions induces mutual interactions
between them [18,12,11]. Here, we derive this interaction
for Gnite temperature and Rnite correlation length of the
membrane, in which case shape fluctuations have to be
taken into account. For two inclusions defined by (2) and
located at x: = x:q and x = w2, the interaction energy
X( )(xi —x2) can be calculated perturbatively [12,13],
noting that

t f Z)Ie —['Ro+'Rg(xg)+Kg(»2)]/T
P( )(x —x ) = —Tin

27le—

&(~) &(~)
1 2 (3)

(4)

a4hribK2 (4)
4T C~, Xg —W2

a4~o2bc i b c2 (2)
T C~, Xg —X2 . (5)

~( ) is the self energy of an inclusion and will be calcu-
lated in the next section. Note that at this order of the
perturbation theory there is no mixing between the rigid-
ity and the spontaneous-curvature coupling. The two-

and four-paint correlation functions t &, (x) and C&, (x)(2) (4)

are known for a harmonic potential V(l) = (m/2)l~ and
calculated in Appendix A [13];both decay exponentially
with a characteristic length given by the in-plane cor-
relation length. The bending energy-energy correlation
function C&, is positive for all separations, and the inter-
action due to the rigidity perturbation is thus attractive if
bKq and bK2 have the same sign. This attraction can lead
to aggregation between inclusions which are much stiffer

and is given up to second order in the perturbation pa-
rameters by
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than the embedding membrane, as will be calculated in
the next section. The curvature-curvature correlation
function |&, is actually repulsive for small distances
and oscillates for distances large compared to the mem-
brane in-plane correlation length. This behavior is also
obtained for more realistic potentials V(t) taking into ac-
count the impenetrability of neighboring membranes [19].
The interaction due to the spontaneous curvature pertur-
bation thus is predominantly repulsive if bc& and bc2 have
the same sign. As will be shown in the next section, this
short-range repulsion can lead to modulated (hexagonal)
ordering of the inclusions, if the spontaneous curvatures
of the inclusions are all oriented in one direction.

III. EXTENDED PHASES

b~ 4 2 b~2f = — q G (q) — q G '
(q)2 4T (9)

One notes that the spontaneous curvature gives no con-
tribution to the total &ee energy, which reBects the fact
that the integral of the corresponding interaction energy
(5) over an infinite domain in fact vanishes. The &ee en-
ergy of the aggregated state of a membrane with a protein
area &action of P, corresponding to a phase separation
into a pure membrane domain and a domain close packed
with inclusions, is simply A f+ = Pf+ —PX(i)/a2, where
the self energy of the protein has been subtracted, and is
given by

by (these and other integrals are calculated in Appendix
B)

a4r. 'bc'0 cx
~

4G(2)( )
(i) 6a bK~

2

a4bK'a bK 4 (2)

q

- 2

(6)

where the propagator for Hamiltonian (1) in the har-
monic approximation defined by V(l) = (m/2)/ is
G( )(q) = T/(Keq + m). For adsorbed particles, the
self energy T~ ~ contributes to the adsorption energy,
thus in8uencing the mean coverage of particles if there
is equilibrium between adsorbed particles and particles
immersed in the intervening solvent. It is noted that
the self energy connected to the spontaneous curvature
of the inclusions is always negative, thus enhancing the
adsorption of spherical particles &om the solution.

In the following we calculate the &ee energy of different
distributions of inclusions; the perturbation Hamiltonian
'R' now involves an integration over the reference plane
and can be written as

~pic ~ / ) x 7

The &ee energy per unit area for given distributions
br(x) and bc(x) then reads

In this section we calculate the &ee energy of differ-
ent ordered phases up to second order in the perturba-
tion parameters bK and bc. This corresponds to an accu-
rate summation of all pair interactions, neglecting higher
multibody interactions. For the calculation of the free
energy of ordered phases it is instructive to compute Grst
the self energy of an inclusion, defined by (2) and (4).
Up to second order it is given by

- 2
/br. 2

Qf /)i q' G"(q) —a' q'G" (q)4T q

a2K2bc2
+ q q

)jt)a KQbc 4G(2)
( )

q
(10)

the disordered phase, the distributions br(x) and
bc(x) are conveniently defined via their moinents which
for an uncorrelated bimodal distribution take the values

br(x) = PbK,

bc(x) = /bc, (12)

(PbK2 for x g yb ( )b (y) =

$2bc2 for x g ybc(x)bc(y) = (14)

where the overbar denotes an average over all distribu-
tion functions bK(x) and bc(x). For the following results,
the averaging over the disorder was done after taking
the logarithm in Eq. (8), corresponding to a quenched
disordered distribution of inclusions. This amounts to
neglecting correlations between the inclusions in the dis-
ordered phase [20]. In the same spirit, one can use a
random-mixing approximation for the entropic contribu-
tion, and the &ee energy density for the disordered phase
turns out to be

Qf~ = PQf++ T(gin(P) + (1 —P)ln(1 —P)/a ). (15)

As was pointed out in Sec. II, the spontaneous-curvature-
induced interaction is repulsive at short distances and
thus favors ordered structures where the oriented inclu-
sions maximize the distance &om each other; we there-
fore calculated the &ee energies of various modulated
phases. Such phases (but not the aggregated phase) have
also been obtained for inclusions the spontaneous curva-
tures of which obey a Gaussian probability distribution,
in which case the functional integral over the inclusion

T )' ~)q —(w. + N )/T)''f = ——ln fnie ~» (8)

where A is the total area defined by f d2x = A.
The simplest phase is the condensed phase with homo-

geneous coverage of the inclusions, where bK(x) = br and
bc(x) = bc, assuming that the inclusions are all oriented.
The &ee energy per unit area according to (8) is given
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configurations can be performed exactly without resort-
ing to a perturbation analysis [21,22].

For the representation of hexagonal ordering we define
the function

1P(X) = COS(gi X) COS('Q2 X) COS('Q3 X)

[cos(2+i . x) + cos(2'Q2 x)
+ cos(2+3 x)]/4+ 1/4,

bc(x) = @(x)bc,

( )b ( )
g(x)vP(y)br2 for x g y
vP(x)b~2 for x = y,

g(x)@(y)bc2 for x g y
@(x)hc2 for x = y.

(18)

(20)

where Qi = Q(0, 2/ 3), Q2 = Q(1 1/v 3) 'Q3

Q(—1, ]./~3), and Q = 2vr/d with d being the distance
between nearest neighbors in the hexagonal array. In or-
der to take into account the discrete nature of the spatial
distribution of inclusions, the function vP(x), which varies
between 0 and 1, is taken to represent the probability dis-
tribution of finding a protein at position x.. In analogy to
the disordered phase, the distributions he(x) and b'c(x)
are then defined via their first moments

hr. (x) = @( x)b'r. ,

In the single-mode approximation used here, the inclu-
sion density is fixed at P = J dxg(x)/A = 1/4; for the
density to be an independent parameter one would actu-
ally have to go beyond single-mode approximation, which
is not attempted here. At this level of the theory, for a
density P ( 1/4 the hexagonal phase can be thought of
as composed of two regions with P = 1/4 and P = 0,
respectively.

The &ee energy of the hexagonal phase of oriented in-
clusions is then given by

- 2

QfH = — 2 qs G~ l(q) + 3 q G~ l(q)(2+i + q) G~ (2+i + q) —5a q G~ l(q)
32T Q q q

a2K2bc2
+ 5 G ~( ) —S(2Q&) G' (2gi)). (21)

( 1& . (
&f = —4 1 — +4m~ 1—

4&ii &

(22)

= &&f"+ &~~S(&l (&) + (1 —&)»(1 —&)&/&

(23)

5 3+ —K(Q)
2

3 1 5 &
+(d 1+ 21+ Q4 8

(24)

The function K(Q), which is related to the four-point
propagator G~4&(q) = 2 j G~ l(p+ q)G~2l(p), is calcu-

The various integrals appearing in the &ee-energy expres-
sions are calculated in Appendix B. Other modulated
structures, such as striped or chessboard phases, have
also been considered but at most coexist with the hexag-
onal phase, as will be discussed further below. With the
reduced parameters (~~

= $~~/a, a' = )cobe a (f/Tbe,
S = 128ro/hr, Q = 2Q$~~ g2/3, and using the in-plane

correlation length (~~ = (4ro/m) ), the reduced free en-
ergies of all relevant phases can be written as

lated in Appendix C. A salient feature of the &ee en-
ergies is that they do not depend on the temperature
for ~ = 0. The phase diagram resulting &om a min-
imization of the &ee energies with an area &action of
the inclusions fixed at P = 1/4 is shown in Fig. 2(a)
for three difFerent values of the parameter S, namely,
S = 0.044, S = 0.22, and S = 0.44, &om the outer
phase boundaries to the inner ones. The parameter u
measures the asymmetry of the inclusions and is zero
for completely symmetric inclusions; for inclusions which
are &ee to Hip and change their orientation, the hexago-
nal phase is never observed since nearest-neighbor pairs
will try to minimize their mutual interactions by form-
ing energetically favored antiparallel close-packed pairs.
The aggregated phase will thus be stabilized further, but
with subtle consequences due to the inherent &ustration
eKects arising for hexagonal close packing of the anti-
aligned pairs of inclusions [23]. For the values of S shown
here, the aggregated phase (A) and the hexagonal phase
(II) are separated by the disordered phase (D). For val-

ues smaller than S —0.02 the aggregated and the hexag-
onal phases actually meet. For general P and S, the
aggregated phase only occurs for u ( 1; in contrast, the
hexagonal phase (and other modulated phases as well) is
restricted to u & 0.646 due to an inherent small-wave-
length instability of the free-energy expression (24). As
one can see f'rom Fig. 2(a), the aggregated phase van-
ishes both for very small and for large correlation length.
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Such a reentrant behavior can be understood by realizing
that the interaction due to the increased rigidity of inclu-
sions, the first term in (5), behaves for large separation
as X(x) Ta—(b' e/Ko) (~~

e /f~~/x, as follows from

(A8) and (A12). Clearly, there is a competition due to
the (~~ dependence of the range and the magnitude of the
interaction, leading to a maximal attractive interaction
for finite correlation length. The interaction due to the
spontaneous curvature coupling is asymptotically given

by X(x) Kobe a $
~

e /t~~ /~x and in addition os-
II

cillates. The two-dimensional integral over x is in fact
scale independent of (~~, and the hexagonal phase, which
is stabilized by the latter interaction, extends down to
zero correlation length. We note that scans changing the
in-plane correlation length (~~, which in experiments on

(a)

I

A 4

(b)

lamellar stacks can be easily achieved by changing the
mean separation between the membranes, correspond. to
straight lines passing through the origin.

Figure 2(b) shows the limiting phase behavior for

P = 1/4 and S = 0; the disordered phase is only sta-
ble for small values of the rescaled correlation length.
On the boundary between the hexagonal and aggregated
phases, which is independent of the parameters S and P
and reaches

(~~
——oo for ~ 0.86, the striped phase co-

exists in addition to the two phases meeting there. The
striped phase is defined by @(x)—:[1 —cos(Q . x)]/2
with Q = Q(0, 1) and again Q = 2vr/d (with d being
the distance between two neighboring stripes), leading
to Q = Q(~~/~2. On the point where all three phases
meet, located at u = 0.646 and

(~~
——0.956 22, the chess-

board phases coexists with the disordered, the aggre-
gated, and the stripe phases. The chessboard phase is
defined by @(x)—:[2 —cos(Qq x) —cos(Q2 . x)]/4 with

Qq ——Q(0, ~2), Q2 ——Q(~2, 0), and Q = 2vr/d, leading
to Q = Q(~~. It is quite possible that multibody inter-
actions (which have been neglected here) or direct forces
between the inclusions stabilize the stripe or the chess-
board phase, leading to a finite phase region between the
hexagonal and the aggregated phase where one of these
phases could be stable.

In Fig. 3 the phase diagram for u = 0, corresponding
to symmetric inclusions, and general P is shown. The
values of S are S = 0.66, 0.44, and 0.22, &om the inner
to the outer phase boundaries. For the limiting value
S = 0 the order extends all the way &om ( = 1/2,

II

the lower bound, to
(~~

——oo. For S ) 0.72 there is
no order at all. The three circles denote the parameters
for which Monte Carlo simulations have been performed.
Note that the overall phase diagram is symmetric around
P = 1/2, which refiects the invariance of the condition
for coexistence of the aggregated and disordered phases,
4f —4f = 0, under the operation P ~ 1 —P.

I

0.5 1.5 A

FIG. 2. Phase diagram for fixed inclusion area fraction
1/4 as a function of the rescaled in-plane corre-

l%

lation length
$~~

=
(~~ /a and the ratio of the sponta-

neous-curvature perturbation and the rigidity perturbation,= 16gcobc a (~~~/Tbm, featuring the disordered phase (D),
the aggregated phase (A), and the hexagonal phase (H).
Scans of the correlation length correspond to straight lines
going through the origin. (a) Shown are results for three
difFerent values of the parameter S = 128tcq/br, namely,
S = 0.044, S = 0.22, and S = 0.44, from the outer phase
boundaries to the inner ones. (b) Results for S = 0.0. The
disordered phase has disappeared at large values of ( . On the

II

transition line between the aggregated (A) and the hexagonal
(H') phase the stripe phase has identical free energy; on the
point where the disordered, hexagonal and aggregated phases
coexist, the stripe and the chessboard phase are stable in ad-
dition.

0 I

0,2 0.4
I

0.6
I

0.8

FIG. 3. Phase diagrams for symmetric inclusions (~ = 0)
as a function of the rescaled in-plane correlation length g

~~

and
the inclusion area fraction P. The values of S are S = 0.66,
0.44, and 0.22, from the inner to the outer phase boundaries.
The circles denote parameter values for which Monte Carlo
simulations have been performed.
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4-
A respect to aggregation; for u ) 5, on the other hand, one

obtains Q' = oo and A(Q') = 0.

2.— IV. EFFECTIVE RIGIDITY

In this section we use perturbation theory to estimate
the effective bending rigidity of an inhomogeneous mem-
brane, which may be defined. via the roughness in the
following way: For a homogeneous membrane defined by
the Hamiltonian (1), the roughness is given by

FIG. 4. Plot of the wave vector Q* which miiumizes the
function O(Q)—:(d/(1 + Q ) —K(Q) as a function of ~. For
u & 0.646 one obtains Q* = 0. For u ) 5, on the other hand,
one obtains Q' = oo and A(Q') = 0.

8v/Kpm
(25)

In analogy, the effective rigidity tc,yy for an inhomoge-
neous membrane characterized by an additional pertur-
bation 'R' as given by (7) may be defined in a heuristic
manner by

In the perturbation calculation, the linear size of an
inclusion a was taken to coincide with the small-scale
cutoff a~~ of the underlying lipid matrix; in practice, one
expects the two different length scales to enter the &ee
energies. The entropy of mixing will scale as a2~~/a2; the
remaining energetic contributions are expected to scale
as a~~/a in the limit (~~ &( a/~P, when all interactions
are of suKciently short range. It follows that the param-
eter S should in fact scale as a~~/a; as follows from
the phase diagrams in Fig. 2 ordering should thus be fa-
cilitated with increasing size of the inclusions, as indeed
demonstrated by the Monte Carlo simulations; see Sec.
V.

The phase diagram in Fig. 2 results after minimiza-
tion of the &ee energy of the hexagonal phase (and the
other modulated phases considered) with respect to the
wave vector Q. This entails minimizing the function
O(Q)—:u/(1 + Q4) —K(Q), leading to the minimiz-

ing value Q' which is plotted in Fig. 4 as a function of
For u & 0.646 one obtains Q* = 0, which leads to

the aforementioned instability of modulated phases with

(26)

In the following, we present results up to second order
in the rigidity and the spontaneous-curvature perturba-
tion; this is done separately, since there is no mixing
between the two perturbations at this order. For the ex-
tended phases, Sec. IV A 2, we will again present results
for quenched averages over the inclusion distribution; in
Sec. IV A3 we extend the discussion to annealed aver-
ages as well and show that the two ensembles are in fact
equivalent for a fixed density P of inclusions.

A. Rigidity inhomogeneity

Single inclusion

We first consider the effect of a single inclusion defined
by the Hamiltonian (2) and located at xi ——0. The
roughness at a position x then turns out to be

(t(x)') = (l')p-

=(l )

(l( )'l'7'l(0)'j')o+, (t( )'I7'l(0)'I'):
a2bK a4b]c'

T
5'"'( )j'+ ~, &"'(0)l&'"( )l' (27)

where the correlation function C~ (x) is defined and cal-
culated in Appendix A. For w = 0, right at the location
of the inclusion itself, the roughness is given by

as follows &om the integrals given in Appendix B. For
x g 0 the roughness is

(l(0) ) = (1 )p( 1 — . )e((~jj /4 + 1)

h/c
x

i

i ——(i —l./4g(~) i)Kp
(28)

(l(x) ) = (1 )p(1 — . )rer(~2e/gj~j~)
vr r.p(((

( bK"i ' ——(' —&/«(~) i)/Cp
(29)
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Asymptotically, for (~~ ~ oo., the effect of an inclusion
on the roughness at its location vanishes; as a function
of the distance &om the inclusion, there is an additional
exponential damping with distance which comes &om the
Thomson function [24].

2. Extended phaaes

(~2)C g2) 4 G(2) (T q

q

- 2

As a check, we first calculate the roughness for the case
of homogeneous coverage with inclusions, the condensed
phase, defined by hr(x) = br. One obtains

In general, the roughness of an inhomogeneous mem-
brane defined by Hamiltonian (1) and a perturbation (7)
for a quenched distribution of bending rigidities is given
by

leading to

(32)

(E*& = «'&o — f 4~(V)(t(~)'I&'~(4)I*&D

br(y) b K(z) (l (x)' [V't (y)]'A8T zygo

x Ã'~( )l'): . (30)

which corresponds to the first terms of a perturbative
expansion of (26) with r,yy = rp+ br, just as one would
expect.

For the disordered phase with a coverage of P, defined
by (11) and (13), one obtains

(i2) D (i2)

= (P)0 14— (33)

Phr. 2 $28r2 s P P 6r a
q G~'~ (q) +, q' G '~ (q) +, q G~' (q) p G~' (p)T T2

3 2hK2 bK2+, + ~4t
—4*& .~~ —4&4(~)j,

where all integrals are given in Appendix B. By compar-
ison with (26), the effective rigidity turns out to be given
by

bK 2 bK
K~ff ——Kp 1 + —— —

2 1 —1 4
II

. 34
Kp Kp

For (~~ )) 1 this result can be written in the intuitively
more appealing form

Kp Kp+ 8K
(35)

Asymptotically, the efFective rigidity K,ff is given by the
harmonic average of the rigidities of the pure membrane,

and the perturbed membrane, Kp + bK, weighted
with the respective area &action, and is thus consid-
erably smaller than the arithmetic average, defined by
P—:(1 —P) r p + P(r p + br). The arithmetically averaged
bending rigidity K applies to macroscopic deformations
with prescribed bending shape [27]. The softening of
the membrane as described by the difference K —K,ff is
due to a coupling of shape Quctuations of the membrane
to the lateral distribution of bending rigidities. Soften-
ing of a membrane has also been observed in the context
of inhomogeneous polymeric surfactant interfaces (mixed
brushes) [29] and adsorbed polymers [30]. A formula sim-
ilar to (35) has been proposed earlier on rather general

Kef f
+(1 —P

g~p+ b~y
(36)

The efFective rigidity is increased as compared to the re-
sult (35) for the disordered and modulated phases. This
corresponds to a decrease of the &ee energy and thus
reQects the trend to aggregation on a more phenomeno-
logical level. (This approach will be expounded in the
last section. )

grounds [28,25]. The present treatment shows that the
decrease of the effective rigidity is a collective property
due to nonlocal effects, which cannot be explained by
treating the membrane as an assembly of independent
patches. This is evident from the behavior of a single
inclusion, which does not lead to an asymptotic decrease
of the effective rigidity; it is the combined interplay of
all inclusions distributed over the whole membrane that
lowers the rigidity at a specific location.

The formula (35) also holds for the modulated phases
in the asymptotic limit (~~ )) 1, as checked by explicit
calculations. There are additional corrections which are
more complex than the one in (34) and decay as 1/( .

II

In the aggregated phase, and as long as the domain
size of the condensed inclusions is much larger than the
in-plane correlation length (~~, the average roughness is
simply given by a weighted average of (25) with the bend-
ing rigidities Kp for the pure membrane and Kp + bK for
the condensed domains, leading to
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8. Annealed ver 8ue quenched avenging

For the disordered phase the natural question arises
whether a coupling of the distribution of inclusions,
br(x), to the membrane shape, i.e. , calculating an an-

nealed average over «(x), leads to an additional contri-
bution to the efFective rigidity as given by (34). In fact,
the annealed average of the effective roughness (l~) for a
random distribution «(x) defined by its moments (11)
and (13) turns out to be

(l )D "—(I ) "+ ~ (y)~ ( ) —h (y) b ( ) (l( ) ~V' I(y)] )'(~+ I(
1

bv2"+(l')...(~ —O') (1 —1/4&~~) (37)

where (l2)D''i" denotes the result (33) obtained for
quenched averaging; the two diBerent averages differ by a
correction term which does not vanish in the asymptotic
limit. To understand this correction better, we calcu-
late the density of inclusions for both averages. In the
quenched case, one obviously obtains

(38)

4r.'b
(40)

leading to

for x. = 0 and to

(&(0)') = (')0 (~+ -,' »N'~~/4+ ~) (4~)

For the annealed case, however, one gets

((j)(x)) ' " = P — bv. (x)bK(y)
1

—«(x) «(y) ([&'l(y)1')0

(~ —~ )(1 —1/4~~~)
2Kp

(39)

B. Spontaneous-curvature inhomogeneity

Single inclusion

The calculation is analogous to the one for the rigidity
coupling. In contrast, the 6rst order contribution van-
ishes, and the roughness at a position x relative to the
inclusion located at x:q ——0 is given by

with a decreased area &action due to the unfavorable cou-
pling of the stiK inclusions to the fluctuating membrane
(for «) 0). Now inserting (39) into (33) one clearly
generates the correction term present in (37); conversely,
the difference in the effective roughness between the an-
nealed and the quenched case vanishes if the effective area
&action is identical. It follows that the coupling of the
positions of the inclusions to the membrane shape does
not yield a softening of the membrane, contrary to what
one might intuitively guess. The same result is found for
the spontaneous-curvature inhomogeneities considered in
the next section.

4~ bc'a4-
(~(x) ) = (~ )o (1+ . ker(v 2x/(~~~~) (42)

for x g 0. A region of increased (or decreased) sponta-
neous curvature locally always increases the roughness,
but as for the rigidity coupling this influence vanishes in
the asymptotic limit.

2. Extended phaae8

For an inhomogeneous distribution b'c(x) of sponta-
neous curvature the spatially averaged roughness is given
by

(l') = (~')o—
Xy

K
bc(y)bc(z)(l(x) V' l(y)V' l(z))e .

xys

(43)

For homogeneous coverage with inclusions, de6ned by
bc(x) = hc, the contribution due to the perturbation
vanishes and one has (l ) = (I )o This can be. seen al-
ready &om the bare Hamiltonian (1), where the constant
spontaneous curvature ep does not influence the mem-
brane behavior since the integral over the curvature over
the planar membrane is a constant. For the disordered
phase, defined by (12) and (14), the resultant roughness
1s
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8C CX Kp
K~ff = Kp 1— (45)

This can be transformed into a form which had been
deduced &om the hat model previously [25]:

1 P(l —P)bc2a2

Kp T (46)

In contrast to the results for the rigidity coupling, the
effective rigidity now depends on the type of modulated
order even in the asymptotic limit. The roughness for
the stripe, chessboard, and hexagonal phases, which were
de6ned in Sec. III, is given by

By comparison with (26), the efFective rigidity is given
by

as relevant for membranes on a substrate or membranes
in a stack which experience an external pressure [31].
The hard wall takes into account that membranes cannot
penetrate the substrate or a neighboring membrane. Ex-
perimentally, a pressure can be applied by various means,
including mechanical, osmotic, and vapor-pressure tech-
niques [32]. For inembranes with constrained solvent
&action [33] the pressure plays the role of a I agrange
multiplier fixing the separation between membranes [34].
There is good evidence that for a potential given by (50)
the different separation coordinates in a stack actually
decouple, so that the behavior of a stack should not dif-
fer &om the behavior of a single separation coordinate
[35], unlike the case for a stack which is held together
by short-ranged attractive forces between the individual
membranes [36]. For the simulations, the Hamiltonian

(1) is discretized on a square lattice with lattice constant
o,

)(
[37].

A. Aggregation of inclusions

+a q G~ l(q)
- 2

(47)

In the erst part of the simulations we investigate the
aggregation of inclusions based on the mechanism ex-
pounded in Sec. III. The parameters of the unperturbed
membrane are o,

~~

= 1 and Ko/T = 1/4. The mean sepa-
ration E = (l) is accurately described by

/2cFiT' l
(51)

- 2)+3a' q Gl2l (q)
- ) (48)

3 bc2K2

+o q G( )(q)
g - ) (49)

with P = 1/2, P = 1/2, and P = 1/4, respectively. In
the asymptotic limit, as (~~ ~ oo, the efFective rigidity
for the three difFerent modulated phases is given by (46)
with the factor (1 —P) being replaced by 1/4, 3/8, and
3/8, for the striped (P = 1/2), chessboard (P = 1/2),
and hexagonal phases (P = 1/4), respectively. One sees
that the effective rigidity of the modulated phases is al-
ways lower than the one of the disordered phase at the
corresponding coverage P.

V. MONTE CARLO SIMULATIONS

V(l)
oo for l ( 0
P/ for0&l,

In order to check the results of the perturbation cal-
culation we performed Monte Carlo simulations for the
case of symmetric inclusions. In the simulations, we used
a more realistic potential containing a hard wall given by

which follows from a minimization of the &ee-energy den-
sity f = PI+ V~i(E). The ffuctuation potential VJ;i(E) is
given by Vsi(I) = c~iT /Kk with the coefficient deter-
mined as c~i = 0.116 + 0.002 [35]; the elastic constant
K appearing in (51) is the bending rigidity of an individ-
ual membrane in a pair of identical membranes, which
is related to the bending rigidity vp of the separation
coordinate by K = 2KO [16]. For the pressure potential
with a hard wall defined by (50), the parallel correla-
tion length (~~ is related to the mean separation E via

= 8(K/T)'~'e/C~~ with C[[ 5.8319 [19]. In Fig. 5
we show three instantaneous configurations of inclusions
in a membrane, which are described by the Hamiltonian
(2) with the parameters given by (a) P/T = 0.01 leading
to (~~

=
$~~/a~[ ——2.767, (b) P/T = 0.1 and (~[

= 1.284,
and (c) P/T = 1.0 and (~~

= 0.596. In the simulation,
the positions of the inclusions and the membrane con-
6guration were updated separately, allowing the inclu-
sions to move to neighboring sites only; the snapshots in
Fig. 5 were taken after the system had been equilibrated
for 10 Monte Carlo steps starting with a random initial
con6guration. For all three simulations, the ratio of the
inclusion rigidity and the membrane rigidity was taken
to be (Kp + hK)/Ko = 2000, the spontaneous curvature
of the inclusions was zero, and the linear size of a pro-
tein was fixed at a/a~~ = 2. The. area &action was set
at P = 1/2. Clearly, the inclusions in Fig. 5(b) form a
condensed phase which is phase separated from a phase
almost free of inclusions. In Fig. 5(c) some clustering
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is visible, whereas in Fig. 5(a) no correlations between
the inclusions are detectable. The parameter values of
these simulations are denoted in Fig. 3 by filled circles.
There is qualitative agreement with the results of the
perturbation theory in that only the simulation for an
intermediate value of (~~ shows aggregation; the efFective

value of S of the simulations thus lies somewhere between
S 0.2 and 0.5. To literally connect the perturba-
tion parameter S with the parameters of the simulations

would be illusory, due to the many approximations made
in the analytic calculation. One issue which could not
be addressed in the theory is the size of an inclusion.
The simulations indeed demonstrate that the efFective
parameter S scales inversely proportional with the rel-
ative inclusion size a/o, ~~,

as speculated in Sec. III: For
a/a~~ = 1 no aggregation could be observed for any pa-
rameters [38], while for o/g~~ = 3 the aggregated phase
persists to much smaller values of the pressure P/T.
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FIG. 5. Con6gurations of inclusions or proteins with linear size a after equilibration for 10 Monte Carlo steps at three
difFerent pressures. (a) P = 0.01 (t'~~ = 2.767), (b) P = 0.1 ((~~

= 1.284), and (c) P = 1.0 ((~~ = 0.696). Each protein covers four
lattice sites of the underlying lipid matrix with lattice constant a~~. There is strong aggregation leading to a single domain of
clustered proteins for the intermediate value of the pressure, in agreement with the phase diagram in Fig. 3.
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B. Effective bending rigidity

We also studied the behavior of the effective bending
rigidity K,ff. For the presentation of our data, we intro-
duce the dimensionless height variable z—:t/2R/T/a~~
and the rescaled pressure p = P/a~~~/+2RT, where the
mean bending rigidity K is given by the arithmetic av-
erage r = (1 —P)Kp + P(Kp + bK). We performed four
series of simulations for different values of hK/Ko, namely,
bK/Ko —— 0, 2, 6, and 18, with a fixed area fraction
P = 1/2. In Fig. 6 we plot the ratios of (z) for bK/ro g 0
and br/eo ——0. For the data denoted by open circles,
the inclusions could not diffuse and were distributed ac-
cording to a chessboard pattern with the lattice constant
identical to the underlying discretization lattice. By plot-
ting the ratio, we isolate the softening effect due to fluc-
tuations: if the effective bending rigidity e ff was given
by the mean bending rigidity K, all three data sets would
coincide. In fact, the Monte Carlo data saturate at values
different &om unity as the pressure decreases. In order to
obtain good statistics, we had to sample over 10 Monte
Carlo steps, using lattices with up to 3600 sites; the
resulting statistical errors are denoted by vertical bars.
Calculating the mean separation I. for hr/Ice g 0 by sub-
stituting r. = 21',yf as given by (35) into the expression
(51), and the mean separation for SK/ro ——0 by substi-
tuting r. = 2+o into (51), and using (z) = E/2R/T/a~~~,
the ratio turns out to be given by

Z K Kp

(z(hK/Kp ——0))

f (1 + Ph K/Ko ) [1 + (1 —P) b tc/tc p j l
'

1+ bK/r. o

This prediction, which should be valid asymptotically for

2.0

(Z)5
(Z)B

1.0
10 10 10 10

P

FIG. 6. Ratio of (z(K/eo g 0)) over (z(s/ao ——0)) for three
different values of br/Ko, namely, Std/~0 ——2, 6, and 18, at an
area fraction P = 1/2. Open circles denote results for a fixed
chessboard configuration of the inclusions, closed circles for a
fixed number of freely diffusing inclusions, and open squares
for freely difFusing inclusions in the grand canonical ensemble.
Note that inclusions are disordered for the parameter values
considered here. The broken lines denote the predictions of
the perturbation theory; the numerical uncertainties are given
by the vertical error bars.

vanishing pressure, is denoted by horizontal broken lines
in Fig. 6 for the three different values of hr/Ico used;
there is good agreement with the Monte Carlo results
for small enough pressure. We also did some simulations
for freely diffusing inclusions where the same parame-
ters were used as for the chessboard configurations. The
closed circles denote simulations in the canonical ensem-
ble with a fixed number of inclusions on the lattice (with

1/2), and the open squares denote simulations in
the grand canonical ensemble, where the thermal aver-
age of the density is fixed at P = 1/2 by application of
a suitably chosen chemical potential. The numerical ef-
fort is much higher, since an additional local degree of
freedom, namely, the position of the inclusions, has to be
equilibrated in addition to the membrane shape. For the
specific parameters used, the inclusions are disordered
and far &om forming an aggregated phase. The data
are very close to the data for the chessboard pattern,
denoted by open circles. This agrees with the predic-
tion from Sec. IVA that a disordered and a modulated
distribution of inclusions should have the same effective
rigidity for (~~ )) a~~ and that annealing the inclusion dis-
tribution at axed density does not lead to an additional
softening of the membrane.

VI. CONCLUSIONS

In summary, we performed a perturbation calculation
for inhomogeneous fluid membranes in the effective per-
turbation parameters 8r/Ko and 6cagico/T where hK

and bt" are the excess rigidity and spontaneous curva-
ture of inclusions immersed in the otherwise homoge-
neous membrane. The effects described in this article
arise due to a coupling of thermally activated shape fluc-
tuations to the lateral distribution of inclusions. The ft..ee
energy and the effective bending rigidity v, yy of different
phases were calculated up to second order in the effec-
tive perturbation parameters. The resulting phase dia-
gram features the disordered phase, where inclusions are
randomly distributed, the aggregated phase, where the
mixed system separates into a phase of close-packed in-
clusions and the pure membrane without inclusions, and
various modulated phases in the case where the spon-
taneous curvatures of the inclusions all have the same
sign. A single-mode description was used for the modu-
lated phases. We checked the predictions for symmetric
inclusions by lattice Monte Carlo simulations using a po-
tential which takes into account the impenetrability of
neighboring molecules.

The phase behavior can be understood based on the in-
teraction between two single inclusions, which are for the
following arguments supposed to be stiffer than the sur-
rounding membrane and have spontaneous curvatures of
the same sign. Then the shape fluctuations of the mem-
brane lead to an attraction due to the rigidity coupling
and to a repulsion due to the curvature coupling between
the inclusions. The latter interaction prefers modulated
phases, the former leads to aggregation. The control pa-
rameter turns out to be the in-plane correlation length
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(~~ of the membrane, which measures the decay of lat-
eral height-height correlations. This parameter can be
experimentally controlled in various ways. In vesicle ex-
periments, (~~ depends on material parameters but also
on the pressure di6'erence between the inside and the out-
side of the vesicle, which in turn can be easily changed by
osmotic techniques. Also, binding a vesicle to a substrate
changes the pressure due to concomitant shape transfor-
mations but also inHuences the correlations directly in
the part of the membrane which is exposed to the bind-
ing substrate [39]. In experiments on oriented stacks of
membranes, the correlation length (~~ is proportional to
the mean separation between the membranes, which is
above the critical unbinding transition simply determined
by the solvent f'raction. Changing (~~ corresponds to a
path on a straight line passing through the origin in the
phase diagrams in Fig. 2. The slope of this line depends
on the characteristics of the inclusion considered, namely,
on the ratio of the bending rigidity and the spontaneous
curvature induced in the membrane. Causing the aggre-
gation transition or the formation of hexagonal order by
changing the correlation length (~~ also rules out compet-
ing mechanisms (as described in the Introduction) as an
explanation for the phase change, since these should not
depend on

Finally, we would like to discuss the aggregation tran-
sition of a membrane with an area fraction P of inclu-
sions on a more phenomenological basis using the con-
cept of the efFective bending rigidity K,fy. For concrete-
ness, we will use the picture of a stack of membranes at
a fixed mean separation S between nearest-neighboring
membranes. Neglecting attractive interactions which are
small for the case where a stack can be swollen indef-
initely, the main contribution to the free energy is the
fluctuation interaction V~i(E); see Sec. V. In the disor-
dered phase, where the inclusions are randomly mixed,
the free energy (neglecting translational entropy of the
proteins) is in the asymptotic limit and using (35) given
by

T2 T2 1

K~fpl E ( Kp Kp + bK)

where Ko is the bending rigidity of the pure membrane
and Ko + b~ is the bending rigidity of an inclusion. In
the aggregated phase, there is a macroscopic phase sep-
aration in each relative displacement field in the stack
into patches &ee of inclusions with bending rigidity xo
and a mean separation $0 and patches of close-packed
inclusions controlled by a bending rigidity ~0 + bv. with
a mean separation Zp. The &ee energy is now given by
a weighted average of the Quctuation interaction V~i(E)
over all patches and reads

f ~ +
/ ( +$ )! (55)
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APPENDIX A: CORRELATION FUNCTIONS

The correlation functions needed in the text are defined
by

which is for all values of the parameters involved lower
than (53) [40]. This difference of the free energies is
the driving mechanism for the stabilization of the aggre-
gated phase. The perturbation calculation, taking into
account the finite correlation length (~~ and the transla-
tional entropy of the inclusion, yields the more refined
phase diagram given in Fig. 2. Note that for the modu-
lated phases the heuristic free energy written as in (53)
has to be supplemented by a contribution from the cou-
pling between the spontaneous curvature of the inclu-
sions and the actual curvature of the membrane, which
is of the form (hc(x) V' l(x)). An interesting result of the
above treatment is the prediction of two coexisting mean
separations Eo and. Sg in a stack of membranes hosting
the aggregated protein phase, which might be observable
using x-ray scattering techniques. The two separations
are related by Ep/Ig = 2(1 —v ~ + 7 ~ )/(1 + w) with
7. = QKp/(1+ p)(Kp + hK). In fact, since the clustering
of proteins occurs in the separation coordinate between
neighboring membranes, this aggregation has the ten-
dency to propagate vertically &om one membrane pair to
the adjacent one. The mean seParation for membranes
covered with inclusions is smaller than for membranes
&ee of inclusions, so a vertical correlation of protein clus-
ters leads to strains in the stack. These strains are re-
lieved by introducing domains of stagger-stacked protein
patches, which raises the &ee energy due to the presence
of domain boundaries [41].

f T2 ~~1

( o+8 )I') ' (54) 4 ig. (xq —xq) g(2) (
q

(Al)

This expression has to be minimized in accord with the
conserved-volume constraint E = (1 P)Ip+PEg which en-—
sures that the mean separation averaged over the patches
in the whole system is still given by E. The result of the
minimization is

C~, (xg —x2) = ([V' l(xg)] [V' l(x2)] )p

iq. (xq —xz) g(4) (g&(q) ~

q
(A2)
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C~ (xi —x2):—(V'l(xi)7'l(x2))p

2 iq (xl —xz) G(2) (
K~J ~

Q

(A3)

G(2) (q) (B2)

where j = jd2q/(2vr)2. These correlation functions can
be calculated exactly for the Hamiltonian defined by (1)
if one chooses a harmonic potential, given by

s G(2)( )
' T' I' 3a'l

(B3)

V(l) = (m/2)l2. (A4) f sq' G(')(q)
q ]c~p 128

(B4)

Then, the propagators appearing in (Al) —(A3) are given
by

G(2) (q) (A5)

G&'(q) = 2 (p+ q)'G" (p+ q) p'G"'(p) («)
P

leading to the closed-form expressions [13]

APPENDIX C: POUR-POINT PROPAGATOR

&~'(lxi —»2I) = 2kei(~21»i —»2I/&ii)
~Kp(((

(A7)
In this section we determine the q-dependent part of

the four-point propagator G&, (q) . To that end, we define(4)

the function

2T2G, (~x, —»2~) =, [kei(i/2~»i —»2~/(~~)]', (A8)
7l Kp

T2(6
G( )(q) = 2 G( )(p+ q)G( )(p) = K(q), (Cl)

64K02

C~ (J», —»2() = ker(i/2)xi —»2[/(())2' Kp
(A9)

where q = q(~~/+2 and q = fqf. The auxiliary function
K(q) is given by

for xi g x2, where the correlation length is defined by

((( = (4rp/m)'~ . (A10)

The function G&, (q) is calculated in Appendix C. For
large arguments, the Thomson functions exhibit oscilla-
tory behavior with an exponentially decaying envelope
and are given by [43]

1 1

&[p+q] —i [p+q
1= ——(Zi + Z'2 —Xs —X4) .

7r2

4 2 1 1
vr' p4+ 1 [p+ q]4+ 1

1 r 1 1
d'x

I

7r (p2 i p2 +i)

] .')~

(C2)

ker(x) —e ~~ cos( —z/i/2 —vr/8),
2x

(All) The four product integrals can be solved using the Feyn-
man reparametrization technique defined by the equality

kei(x) = —e ~~ sin( —z/~2 —vr/8).
2x

(A12)
1 dc'

AB p [n(A —B) g B]2
' (C3)

For vanishing argument x, ker(x) is positive and diverges,
whereas kei(0) = —m/4.

APPENDIX B: INTEGRALS

Some of the integrals needed in the text diverge at the
upper cutoff, which thus has to be finite and is defined
by the relation f 1 = 1/a . The integrals then are given

Q
by

Applying this trick to the first integral yields

Xy=lp ~ ~

2- 1

(p —')([p+ q]' —')

~ ~

1
dn d'p, , , (C4)([p+ nq]2 —i+ nq2(1 —n))2

The origin of the p integration can be shifted since there
is no cutoff involved and the result is

epa2
I 4

~~)

(B1)
q p n(1 —n) —i/q

The remaining integral is elementary and gives

(C5)
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(1n(gl —4i/q + 1) —ln(4(/I —4i/q2 —1) lX1= =2 ~
~

q
rQI

—4i/q'

(CB)

The analogous results for the other product integrals are

Z2= d P
2- 1

(&'+ i)([p+ qI'+ i)

dc'

(1 — )+ /q'

2vr ~ ln(gl + 4i/q2 + 1) —In(gl + 4i/q2 —I) )
gl + 4i/q2

~ ~

2-2's —— d P (p' —i)([p+ q]'+ ')
do!

q' o n(l —n) + (2n —l)i/q'

(ln(1+ Ql —4/q4) —ln(1 —Ql —4/q4) l
)q2 Ql —4/q4

(Cs)

X = d'p (P'+ ')(X + q1' —')
do!

q', n(l —n) —(2n —1)i/q2

vr f ln(1 + gl —4/q4) —ln(1 —gl —4/q4) ~

QI —4/q'

After some algebraic manipulation one arrives at the re-
sult

4 arctanh(l —4/q4) '/2

(1-4/.-) ~

(1/1+ 16/q 4- 1)tl arctantt(t/1/4+ 4/rj + 1/2) l —(1/1+ 16/4 —1) 1 cretan(t/1/4+ 4/qr —1/2) r&r

)(2+ 32/q )'/"
(Clo)

The limiting behavior of K(q) for q « 1 and q )) 1 can
be combined into

Finally, the q-dependent part of G&2)(q) is given by

G&, (q) = 16G( )
(q)/(~~ so that we obtain

4
K(q) (Cl 1) G",'(q) =, ,~(q).4~2(2 (C12)
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