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Crack instabilities ef a heated glass strip
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Recently, Yuse and Sano [Nature (London) 362, 329 (1993)]have observed that a crack traveling
in a glass strip submitted to a nonuniform thermal di8'usion 6eld undergoes numerous instabilities.
We study two cases of quasistatic crack propagation. The crack extension condition in straight
propagation is determined. An asymptotic analysis of the elastic free energy is introduced and
scaling laws are derived. A linear stability analysis of the straight propagation is performed, based
on the assumption that the crack tip propagation deviates from the centered straight one as soon
as it is submitted to a "physical" singular shear stress. It is shown that a straight propagation can
become unstable after which a wavy instability appears. The condition for instability as well as the
selected wavelength is calculated quantitatively. The results are compared with experiments and
the agreement is favorable.

PACS number(s): 62.20.Mk, 46.30.Nz, 81.40.Np

I. INTRODUCTION
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FIG. 1. Schematic representation of the experiment of Yuse
and Sano [3].

The study of crack propagation often follows two ap-
proaches. The first is for dynamical &acture formation,
where the cracked surfaces are created at a velocity of the
order of the Rayleigh wave speed [lj. The second one is
for slow or quasiequilibrium cracks. For the second case,
the work of Griffith in 1921 [2] is often seen as the begin-
ning of equilibrium &acture mechanics as a quantitative
science of material behavior. However, from that time on
the progress was mainly made in the Gelds of engineer-
ing. Recently, a renewal of interest has been caused by
the work of Yuse and Sano [3]. They have carried out an
experiment making reproducible sequences of crack pat-
terns. This is an important step in the understanding of
crack instabilities because well-controlled experiments in
this field are uncommon.

As shown in Fig. 1, the experiment [3] is performed by
pulling a thin glass strip from a hot region (heater) to
a cold one (water bath) at a slow and constant velocity
V. The control parameters are [3,4] the pulling velocity
V, the strip width 2b, and the temperature variation LT
between the heater and the cold bath. When these pa-

rameters are small enough the strip does not break. By
increasing essentially b or AT, a centered straight crack
appears and extends at a velocity —V in the &arne of
the strip. By further increasing these parameters, the
straight crack becomes unstable and the &acture follows
an oscillating path.

The experiment has been simulated numerically with
spring models [5] and by doing a complete numerical
resolution of the corresponding thermoelastic problem
but with discontinuous incrementation of the crack path
[6]. On the other hand, theoretical treatments [7,8]
have been undertaken to explain the bifurcation &om the
straight crack propagation to the wavy one. Although
the noncracked-cracked plate transition was not studied
quantitatively in [3], the results [6—8] of this bifurcation
analysis are quite unanimous and agree with the qual-
itative measurements in [3]. In fact, the condition of
existence of stably advancing straight cracks is based on
a criterion of energy minimization [2] that is well under-
stood. On the contrary, the physical origin of the insta-
bility straight-undulating crack remains unclear. Even in
the asymptotic regions, results of Refs. [6—8] do not agree
with each other, although they use the same criterion to
explain this transition. Moreover, a comparison of these
results with experiment [3] cannot be done rigorously be-
cause of the uncertainty in the value of the so-called frac
ture energy [9]. The quantitative experimental study of
the no crack —straight crack transition could solve this
problem [4].

Much eKort has been devoted to the study of the os-
cillatory instability by using the "criterion of local sym-
metry" [10]. It states that the path taken by a crack
in brittle homogeneous isotropic material is the one for
which the local stress Geld at the tip is of mode I type.
Let us recall that mode I loading causes an opening of the
fracture while mode II loading causes a shearing oK The
local analysis in the neighborhood of a crack tip shows

that the asymptotic stress tensor field Z, in the polar
coordinate system (r,P), takes the universal form [1]
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where f; (P) and fii(P) are universal functions common
to all configurations and loading conditions. The in-
Quence of configuration and loading are included in the
asymptotic description of stress only through the scalar
multipliers Ky and Kyy, which are the elastic stress inten-
sity factors of mode I and mode II loadings, respectively.
The criterion of local symmetry features that, if a shear
loading exists at the crack tip, Kii P 0 and the crack will
move by changing the orientation of the tangent to the
path.

Consider a straight crack subjected to mode I loading.
Nominally, Krp ——0, but due to the imperfections in the
system and, consequently, in crack alignment, KIy will
difFer slightly from zero. The existence of such shear load-
ing implies automatically that the crack deviates from a
straight line [10,11]. Moreover, for this fiinte plate prob-
lem, there exists a "geometrical" shear loading that ap-
pears as soon as the crack deviates from the center of the
strip. The combining of these two loadings leads to the
appearance of the oscillatory instability [12]. The undu-
lating crack may be due to an instability of the straight
crack, which creates a mode II loading, and the geom-
etry of the problem, which amplifies this shear loading
and leads to the oscillatory instability of the crack tip.

These general considerations lead us to investigate the
problem in a difFerent manner than [6—8]. To define the
wavy instability of the crack, we did not analyze it at the
level of the criterion Kyy ——0, but before it. That is when
a slight deviation from the straight crack will create a
"physical" shear loading.

II. INSTABILITIES OF A CRACK
IN A HEATED STRIP

all the quantities in Eq. (2) are dimensionless: Z is scaled

by Eo.@AT, E by uzbT, and T&(x) by AT, where E is
the Young modulus and o;z the coeKcient of thermal

expansion. Note that Z(x, y) [E(x,y) and Tj(x)] must

be understood as the average of Z(x, y, z) [E(x,y, z) and
Ti(x, z)] across the thickness of the strip [13]. Inversely,
the strain tensor is given, in terms of the stress tensor,
by

1 OU, OU~

= ((1+v)Z, , —vms, „~ij)+ Ti(x)h;, , (3)

where U is the displacement vector. For this problem,
the temperature field T~(x) is usually approximated by

T, (x) = (1 —e ~ +'~) 8(2:+ t), (4)

where 0() is the Heaviside function. The parameter
P = bV/D is the ratio of the geometrical length b to the
thermal diffusion length dti, = D/V, where D is the dif-
fusion constant. The temperature field given by Eq. (4)
satisfies the stationary difFusion equation without a heat
loss term AT~+POT~/Bx = 0, but it does not take into ac-
count other efFects corresponding mainly to the existence
of other lengths in experiment [3]: the nonzero thickness
e of the plate and the distance 6 between the cold. bath
and the heater. In fact, Eq. (4) assumes that the tem-
perature is constant through the thickness (i.e. , eP (( 1)
and that there is no heat exchange between the strip and
its surroundings, which becomes important for low veloc-
ities [4].

The problem of a crack of unknown shape in a strip
subjected to a temperature field consists in solving the
equilibrium equations [7]

The experimental configuration we will analyze is illus-
trated in Fig. 1. The coordinate system (x, y) is defined
on an infinitely long strip of thin glass whose boundaries
are located at y = +b. A semi-infinite crack, whose tip
is taken as the origin of the coordinate system, is placed
on the strip. In the following, we will take the half-width
of the strip b as the unit length. Since we focus on quasi-
static fractures, the ad.vancing velocity V of the crack
comes into the problem only through the temperature
field, assumed to be constant in the cold bath (x ( —t)
and independent of the transverse direction y. Here t de-
notes the crack tip position in the temperature gradient.

Under plane stress conditions, the strain tensor of a
thin plate in the temperature field Ti(x) is related to the
stress tensor by [13]

1
Z,~

= ((1 —v) E;~ + vEI, I,bij —(1 + v) Ti (x)~,,),
(2)

where Z(x, y) [E(x,y)] is the two-dimensional stress
(strain) tensor and v the Poisson ratio. For convenience,

with the boundary conditions

Zy„(x, +1) = K y(x, +1) = 0,
Z,~n~ = 0 on the crack,

Z=O for x=+oo,

(6)
(7)

(8)

where n is the unit vector normal to the crack edges. Un-
der equilibrium conditions, the crack shape depends es-
sentially on the stress, which is in this case related to the
temperature field. The mathematics of this problem are,
given the boundary conditions on a crack whose shape is
a priori unknown, the solution of the whole problem will
determine the correct shape of the crack [14].

Formally, there might exist more than one solution to
the global problem and one has to select the crack shape
that satisfies certain stability criteria. First, the solution
must be in accordance with the criterion of local sym-
metry [10], which imposes that the crack path s(x, y) is
one for which Kyy ——0 at the tip. Also, the chosen crack
path must satisfy another condition related to the energy
criterion introduced by Griffith [2]. This criterion states
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that the crack is at a critical value of incipient groIvth if
the reduction in the stored elastic energy W ~ associated
with a small virtual crack advance d8 from that state is
equal to the &acture energy I'

OR') . O2W )=I' th —,&0,
Os Os

(9)

W, i = Eb nz, (DT) W, (1O)

where R is the dimensionless free energy given by

W = — dS Z;~ E,, —Z,;(x, y) TI (x)
surface

I' being a material constant independent of the crack
shape. The second condition in Eq. (9) means that the
system must be stable in the sense of mechanical equilib-
rium.

The total thermoelastic free energy per unit thickness
W, I of a thin plate is given by [14]

OW
I & (14)

y(x) = Af(x) + O(A ) = Asin~x with ~A~ && 1, (15)

one defines the region of existence of stably extending
straight cracks (see Fig. 2). This problem has been solved
numerically [6—8] and the results are in agreement with
the experimental measurements [3,4]. Nevertheless, in
addition to the previous studies, we will introduce a sim-
ple analysis that yields the scaling laws governing the
transition &om a receding to a moving crack. That also
leads to the confirmation [8] and to extension of the in-
validity of the hypothesis, which consists in taking, in
certain limits, the approximation of an infinite strip.

In Sec. IV we investigate the straight-oscillating crack
transition. We perform a linear stability analysis of a
straight crack submitted to a small perturbation of its
shape. In the vicinity of the bifurcation, we introduce a
small smooth deviation y(x) to the shape of the centered
straight crack in the form

2„TI'(x) .

Note that in this writing, an integration across the thick-
ness of the strip has already been done. Equation (11)
can be simplified without specifying the crack shape. The
first term of this equation can be calculated by using suc-
cessively the equilibrium equations (5), the divergence
theorem, and the boundary conditions (6—8)

where A is a constant small amplitude and ~ the wave
vector of the oscillation. By small deviations &om the
centered straight crack, it must be understood that
~y(x)

~

&& 1 and ~y'(x)
~

&& 1 (~A~~ && 1) because the length
"difference" between the two paths must also be small.
From this observation, one can already expect that the
sought after transition will derive from a low wave vec-
tor (high wavelength A = 2vr/~) stability analysis. We
develop the stress and deformation fields as

f dS Z;~E;~ = dS
surface surface

Z~ =0,~+As;, +A t~+O(A ),
U; = u, + Av; + A u); + O(A ).

(16)
(17)

dOE, -Un'. = 0,
0

(12)
Because of the symmetry A ~ —A, the even perturbation

where n' is the unit vector perpendicular to the contour
0 limiting the strip, including the edges of the crack and
the boundaries of the plate. This term always vanishes,
regardless of the shape of the crack. The third term of
Eq. (11) is infinite in the configuration of an infinite strip,
which is evidently not the case experimentally. Neverthe-
less, since this term depends on the temperature distri-
bution only and not on the crack location, one can omit
it by a convenient choice of the zero &ee energy. Finally,
W is simply given by

15—
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OO +1
W = —— dx TI(x) dy E;;(x,y).

2 —OO —1
(13)
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Now we outline the analysis to be done and connect its
relation to earlier works [6—8]. In the following, we will
discuss first the problem of existence of a stably advanc-
ing straight crack. The transition between a non-cracked
strip and a straight crack is studied. It consists in solving
the problem of a centered straight crack and calculating
the stress intensity factor Ki(P, I). By using Eq. (9) and
the well-known correspondence relation established by Ir-
win [15]

—0 20 40 60 80 100

FIG. 2. Phase diagram in the P-Kl plane. A crack can
move in the region above the lower solid line. The transi-
tion to an oscillating propagation occurs at the upper solid
curve. For comparison, the results obtained in [7] for the tran-
sitiou straight-oscillating morphology are also shown (dashed
curve .
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orders are of pure mode I type, while the odd ones are
of pure mode II type. Therefore, using the tangential
Ui(x, y(x)) and the normal U (x, y(x)) deformations [10]

U, (*,y(x)) =
Ql + y'2(x)

& (U*(* y(*)) + y'(*) U. (* y(*))) (18)

1
U„(x,y(x)) =

I+ y" (*)
x (U.(* y(*)) —y'(x) U*(x y(x))) (»)

one calculates Ki (P, l, ~) and K iti(tP, /, cu), the stress
intensity factors of mode I and mode II loadings, respec-
tively. They are given by

—0 4
Cid 2''

where the superscripts + and —denote the upward and
downward limits, respectively. At leading order, one finds
that

Ki '(P, l, (u) = Ki(P, l) + O(A ), (22)

—K,', '(P, l, ~) = —Kii(P, L, ~) + Ki(P, l) + —O(A ).

(23)

Ki (P, l, ~) = — lim
8 ~-+o- —x
& (U-(x y+(*)) —U-(* y (x))), (20)

Kii (P, l, u) = — Iim
1 . 2'
8 ~~0- —x

x( i(x y (*))—Ui(x y (x))) (21)

FIG. 3. Example of the variation of Kii/A, &uKi/2, and
KII '/A = Kii/A+SKI/2 with respect to u/2vr for fixed values
of l and P.

According to Eq. (23), Fig. 3 shows that Kiti '/A is the
sum of two competitive terms: the first one Kii/A, which
is almost always negative, tends to amplify the instabil-
ity of the straight crack. This destabilizing field eQ'ect is

due to the variation of the stress field Z with respect to
o. The second term of Eq. (23), SKI/2, is a geometrical
stabilizing eÃect. This quantity is always positive in the
range of parameters where a straight crack can exist, so
it tends to favor the straight configuration by damping
the perturbation given by Eq. (15). It is foreseeable that
the straight-undulating crack transition will occur when
these two eÃects cancel each other. In Fig. 4 we plotted

It is shown that at leading order, Kl is still given
by Ki(P, l), the stress intensity factor of the centered
straight crack. The stress intensity factor Kii(P, l, u) is
the shear eKect introduced by the first-order perturba-
tion in loadings. It is given by the resolution of a pure
mode II problem of a centered straight crack

A . 2'
K(iPi, l, ~) = —lim (v (x, 0+) —v (x, 0 )).8 ~-+0- —z

(24)

3
C4

CI

Our linear stability analysis is based on the follow-
ing physical arguments. If Kii /A is found to be posi-
tive, this means that the stress intensity factor K&& and
the orientation of the crack tip y'(0) have the same sign.
Therefore, according to the criterion of local symmetry,
the crack tip tends to follow a path that decreases ~y'(0)

~

and consequently the amplitude of the perturbation will
decrease. On the other hand, when Kii /A ( 0, the slope
~y'(0)

~

will increase in order to restore a pure mode I local
stress field at the tip. So, under a small perturbation of
its shape, the straight crack will be stable if Kist/A is
found to be positive and unstable elsewhere. The oscillat-
ing crack configuration will then occur when K&i /A ( 0
is satisfied.

I I I I I I I I I I I I I I I I I I I

—0 2 4 6
67 27T

FIG. 4. Kii'/A versus ~/2vr for fixed P (P = 50) and for
difFerent values of I (from the upper to the lower curve, l =
0.08, 0.11, 0.121, 0.13, and 0.16). By increasing l, Ki~i'/A
decreases. When Kii'/A ) 0, the problem of a wavy crack
has no physical solutions. For a certain l (P), the minimum
of Kii '/A vanishes at m = tu and by increasing l further, any
small perturbation of the straight crack in a well-de6ned range
of wavelengths will cause a physical shear loading Kii '/A ( 0.
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KIII I/A with respect to ~ at constant P and for difFerent
values of I. It is shown that there exist critical values of
the parameters for which a small deviation from the cen-
tered straight crack begins ta introduce a physical shear
loading at the crack tip. At this point, the straight crack
becomes unstable and an undulating crack path appears.
Fram Fig. 4, one concludes that the straight-oscillating
crack transition will occur when

0.8

gKtot
Kii'(P, I, (u) = 0, (P, /, ~) = 0.

Rd

Equations (25) are satisfied for / = l„(P) and u
(P), functions that can be computed from (25). The

value of I = l„(P) is the critical position of the crack
tip in the temperature gradient where a straight and an
oscillating crack coexist (see Fig. 5). If l ( t ( l & I„),
the straight (oscillating) crack is the most stable config-
uration. The critical wavelength of the oscillation near
the transition region (see Fig. 6) is simply determined by
A(P) = 2m/ur„(P). In order to complete the phase dia-
gram and to quantify the straight-oscillating crack transi-
tion, one has to calculate according to Eq. (22) the stress
intensity factor of the straight crack K&" at the critical
points I (P). This is done by using the results of Sec. III
(see Fig. 2).

This stability analysis is not in contradiction with the
criterion of local symmetry. Our process consists in
searching for when a small perturbation of the linear
crack can create a shear loading able to lead to an os-
cillatory instability. Of course, once this instability is
reached, the undulating crack will choose a path satisfy-
ing Kjy = 0. Clearly, this condition cannot be satisfied
by the simple shape given by (15). The reason is that the
chosen shape must be an exact solution of the problem
to satisfy completely the criterion of local symmetry.

In order to see the efFect of the crack oscillation an the
&ee energy, we have calculated R'„, the elastic free energy
of a weakly oscillating crack. This energy is expanded for

I I I I
J

I I I I
j

I I I I
)

I I I I
)

I I I I

0.6—

0.4

I i I I I I I I I I I02~ Rat

—0 20 40 60 80 100

FIG. 6. Selected wavelength A versus P at the transition
from a straight to a wavy fracture.

A small under the form

W„=W, +A hW+O(A ) (26)

so that one has to solve the second-order perturbation
problem to compute be; W, is the elastic kee energy of
a centered straight crack for the same tip position in the
temperature gradient as the undulating crack. When the
bifurcation to the wavy instability occurs, the deviation
of the energy blV is always found to have an unstable
maximum at u = 0. This serves as a consistency test for
our approach (see Fig. 5).

III. THE STRAIGHT CRACK

This configuration has been studied previously [6—8]
by numerical methods. Nevertheless, since we shall need
some results for Sec. IV, we will discuss briefly the solu-
tion method (see [7] for details). The crack is assumed
to be centered because of the constraint Kyy ——0. The
equilibrium equations (5) are rewritten as

" = 0, V'o.;, = V'TI(x)—
Ox&

(27)

0.4
and the boundary conditions (6) and (7) become

o.»(x, 1) = o „(x,1) = o s(x, O) = 0, (28)

o»(x, O) = 0 for x & 0, u„(x, O) = 0 for x ) 0, (29)

0 J I I I I

—0 20

lu

40 60 80 100

lp
I I I I I I I I I I I I I

where some boundary conditions have been added be-
cause of the symmetry of the problem. By working in
the interval 0 & y & 1 and in the Fourier space of the x
direction, one obtains [7]

l~(P) when Ki'i '/A = 0 (solid line) and the criti-
cal position lo(P) for which W„becomes unstable at u = 0
(dashed line).

o»(k, 0) = —E(k)u„(k, 0) + Di(k),
o..(k, O) = II(k)o»(k, o)+ S, (k),
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P(k)=k .

(1 —cosh k) (sinh k —k)D, (k) = 2r, (k)

By using Eqs. (9) and (35), one concludes that the
straight crack can extend when / ) /, (P), where

/, (P) corresponds to Ki' (P), the maximum of Ki(P, /).
Therefore the no crack —straight crack transition (lower
solid curve in Fig. 2) obeys the law

sinh k + k~

sinh k —k2 Eb n~LT. (37)

Si(k) = Ti(k) (32)

u„(k, o) = f dxgr(T+ t)e*", (33)

where

gi(x) = —Dp(k)F+(k)e '"
27r

(34)

Once Eq. (30) is solved, the solution is complete. In order
to satisfy the boundary conditions given by Eq. (29), one
uses the Wiener-Hopf method [7,16], which consists of
decomposing E(k) as I" (k)/I" +(k), where I" (k) has
neither poles nor zeros for Im(k) & 0 and E+(k) has
none for Im(k) ) 0. Then, one finds

Eb o.T, (AT) AW = I'L„ (38)

This law is in agreement with the experimental observa-
tions concerning this transition [6,8].

The stress intensity factor Ki(P, /) decays rapidly to
zero when t ~ +oo and varies only in a window of width
of order L, which will be the characteristic length of the
problem. Therefore, when the crack position is behind
this region, the elastic &ee energy is not very difFerent
from a noncracked strip, while when it is in front of this
region, the strip can be approximately treated as an in-
finitely cracked one. The latter case is equivalent to the
problem of two strips of width b. To a first approxima-
tion, one can assume a linear energy variation between
these two limits across the unknown characteristic length
L,. Thus the existence of an extending straight crack is
constrained by the condition

In our calculations, we chose the large k behavior of
(k) to be g2/(8 —ik), with b infinitesimal. The

stress intensity factor of this mode I propagation is then
Ki = gr(/).

The dimensionless &ee energy TV, for a straight crack
is given by

LW oc P for P &(1,

LR'= 1 for P )) 1.
(39)

where AW = Wp(P) —Wp(P/2)/2. It can easily be
shown that the asymptotic behavior of LTV with respect
to P is simply given by

W, = Wp(P)— dxgi (x)

1- t'P)= —Wp
i

—
i
+ dxgi(x),(2)

Let us recall that from the beginning, we have scaled
lengths by b and consequently k by 1/b. So in these
two limits, the relevant length scale is the width of the
strip and the diffusion length d&h plays a secondary role
compared to b. Therefore, in the asymptotic cases of
Eqs. (39), the characteristic length is of the order of the
width of the strip L oc b. Extending straight cracks may
occur when

with Wp(P) the Bee energy of a noncracked strip of width
26. It is explicitly given by

b (AT) V Ct for P«1,
b(AT) = Ct for P )) 1.

(40)

dk 4sinh [k] P2

~ 27r k(2k+ sinh[2k]) k2 (k2 + P2)

(36)

Note that Wp is independent of /. Equations (35) and
(36) can be obtained by two difFerent, but equivalent,
methods: either by putting directly in Eq. (13) the solu-
tion of the above problem or by using Eq. (14) and calcu-

lating the free energy TVo of a noncracked strip. This can
be done easily since in this simple case, the mixed bound-
ary condition (29) is replaced by u„(x, 0) = u„(k, 0) = 0.

Moreover, these scaling laws remain valid when one
considers n equidistant straight cracks. This can be
seen by considering the energy difFerence W,~(b) —(n +
1)W,)(b/(n+1)). The scaling laws of Eqs. (40) reproduce
qualitatively the experimental behavior of the transition
to an advancing straight crack. However, the most im-
portant conclusion that can be drawn from this analytical
study is that the problem of a crack in a heated strip can-
not be approximated by a problem of an infinite plate in
both limiting cases 6 (( dqh and 6 )) dth. That could
explain why the analysis of Refs. [7,8] assuming an infi-
nite strip failed to explain the straight-oscillating crack
transition. Let us now study the stability of crack path
under mode I loading.
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IV. THE OSCILLATING CRACK

In this section we lay down the calculations needed to
compute numerically the conditions (25) and Eq. (26).
To introduce perturbations to the symmetric straight
crack, one takes the deviation &om this con6guration,
as given by Eq. (15). The condition f(0) = 0 is not re-
strictive since the transition occurs between a centered
straight crack and an oscillating one. It is therefore suf-
hcient to compare these two con6gurations at the same
location in the temperature gradient. In our approach,
we must solve Grst for the straight crack and then for the
Erst- and second-order perturbation in the amplitude A.
The perturbation method does not dier too much &om
that followed in [10]. The following analysis is to be com-
pared to the linearization performed in [10] for the study
of slightly curved cracks. The components of the vector
normal to the crack edges are (n, n„) oc (Af'(x), —1).
Expanding the equilibrium equations (5) and the bound-
ary conditions (6) and (7) near A = 0, one has the fol-
lowing two problems to solve.

The Grst problem is a mode II loading given by the
equilibrium equations

(41)

1—Kii (P / ~)= grt (0)
0

dx [c—r (x, o) sin(ux] p+( —x).
dx

(48)

The second problem concerns the second order (in the
amplitude A) of the perturbation analysis. It is a mode I
loading given by the equilibrium equations

(49)

with the boundary conditions

t„„(x,1) = t.„(x,1) = O; (5o)

a f a
t „(x,o) = t))( —x) f(x) v (x, o)

g'
f '(x) ——u„(x, 0)

with p+(x) = j 2" P+(k)e '"*. The stress intensity
factor of this mode II loading is then given by

with the boundary conditions

s„„(*,1) = s.„(*,1) = s„„(x,O) = O;

t9
s z(x, o) = [f(x)cr (x, o)] for x & 0,

v (x, o) =0 for x) 0.

(42)

1 0
tyy (x, 0) = — f (x)o(x, 0) f.or x & 0,

v)„(x, 0) = 0 for x & 0.

It can be shown that this problem yields, after a Fourier
transform,

Note that lim ~0- a' (x, o) is finite [fI (+m) = 0 in (1)].
This limit is equal to Z [7], the stress in the transverse di-
rection and near the tip, which remains once the square-
root singularity has been subtracted out. By the same
reasoning as in Sec. III, one Ands that this problem sat-
is6es the equation

s „(k,o) = —P(k)v (k, o), (44)

where

P(k)=k . (45)

To solve this equation, one uses again the Wiener-Hopf
technique; one splits s „(k,0) as s „(k,0) + s „(k,0) and

P(k) as P (k)/P+(k), where the signs + and —have the
same meanings as in Sec. III. Then, using Eq. (43), one
Ands

ty„{k,o) = —E(k) v)„(k, 0) —v *"t „(k,o)

-Z(k)a{k) '"("„' ), (53)

1 1

d»~(x) d~ [~*'(x ~) + ~"(* -~)]
2 —OO 0

Zf(x)0(-x) Z, , (x, O+) —Z,, (x, O-)

f (x)~(-x)
A2

2

which has to be solved by using the boundary conditions
(51) and (52). The functions E(k) and H(k) are given
by Eqs. (32) and thus the Wiener-Hopf decomposition of
F(k) is already known.

The elastic energy R'„up to the second order in A is
given by

0
g (k, g) = f dxgrr(T)e'", (46)

|9
x —7-*'(x V) + ~-'(x —~)l (54)

where

gg(*) = —f g*'g, If(*')~-(*' o)lg'(* —*') (gg)

Once the previous problems are solved analytically, the
various quantities that appear in Eqs. (25) and (26) can
be calculated numerically. The derivative of Kyy with
respect to ~ is given by
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"(P,l, ur)

d
dx —[xo (x, 0) cos ~x] p+( —x). (55)8x

After soine algebraic manipulations on Eq. (54), the cor-
rection bW is found to be equal to

0

d

-uu (x, 0), f '(x)0(x, 0.)dx2-

hW = Pu„—( L, O)—f (—l)—
2

(56)

where the first term reHects the discontinuity of the
derivative of cr (x, 0) at x = —l, when the temperature
field is given by Eq. (4). Note that the variation hW is
calculated using the first- and second-order terms of the
perturbation and does not depend on g~~ only.

The numerical analysis of the previous problems
is straightforward. The Wiener-Hopf decomposition
needed for P(k) and P(k) is done as described in [16].
The other quantities are computed. using Fourier trans-
forms, after treating the singular parts separately and an-
alytically. The results of these numerical calculations are
summarized in Figs. 2 and 6. Using Eqs. (34), (48), and
(55) and according to (22) and (25), one calculates the
position l„(P) where the straight crack becomes unstable
against a small perturbation of its shape, the correspond-
ing stress intensity factor Ki(P, l„), and the wavelength
of the oscillation A(P). Using Eq. (56), the critical value
lo(P) where bW starts to have a maximuin instead of
minimum at a = 0 has also been calculated (see Fig. 5).

The only hypothesis we made to introduce the con-
ditions (22) and (25) is the smoothness of the fracture
shapes. This assumption is not too drastic and is in
agreement with the experimental observations [3]. We
have also assumed, as in [10], the existence of a small ran-
dom stress intensity factor Kpp due to the imperfections
in the loading system. Because of the criterion of local
symmetry, the existence of such imperfections leads au-
tomatically to deviations from the original straight crack.
Therefore, the stability analysis of a preexisting straight
crack under a small fluctuation in its shape is necessary
before studying the shape of its extension.

V. CONCLUSION

In this paper we treated. completely the instabilities
of an advancing crack in a strip subjected to thermal
stresses. The first instability concerned the condition of
existence of extending straight cracks. We quantified this
transition (lower solid curve in Fig. 2) and proved the
asymptotic scaling laws analytically. Since this bifurca-
tion is well defined, its experimental study is a good way
to fix the fracture energy value and to determine the rel-
evant length scale in the imposed temperature field.

For the more subtle transition from a straight crack
to a wavy crack (upper solid curve in Fig. 2), we intro-
duced a notion that consists of defining this bifurcation
by the existence of a physical stress intensity factor of
mode II loading for a small instability of the straight
crack. Any quantitative comparison between this treat-
ment, the studies based on the criterion of local sym-
metry [8,6], and the experiment [3] is difFicult to do be-
cause even the first bifurcation has not yet been studied
quantitatively. Nevertheless, our results agree rather well
with the numerical simulations of [6]. Moreover, a com-
parison with the experimental data ip. the region of the
phase diagram where the diffusion length dth is the dom-
inant length scale in the temperature field (V = 3 mm/s,
AT = 70 K, and 6 = 1.2 cm) gives a value of the frac-
ture energy I' = 7.3 J/m, which is of the same order of
magnitude as the value measured in [9].

The selected wavelength plotted in Fig. 6 also shows
agreement with the results of [6] for P )) 1. In both
cases, it was found that A 0.28. For smaller P, the two
wavelengths are difFerent but still of the same order. In
this limit, they have to be compared with the experimen-
tal value A —0.56 in [3]. However, since there is no infor-
mation on V, one might attribute the plateau observed in
this experiment to the effects of h, , the spacing between
the heater and the cold bath, or to three-dimensional
effects [4].
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