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Shear-induced phase separation of complex fluids: The role of flow-concentration coupling
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We propose a classification scheme for the instabilities that might arise in sheared complex Auids. A
central role is played by the coupling between the flow and the solute concentration, which is a combina-
tion of the parameters describing (a) the tendency of solute molecules to migrate to regions of small or
high shear rates and (b) the variation of the viscosity with concentration. Using a mean field approach,
we show that the nature and the geometry of the instability can be predicted from the knowledge of the
coupling parameter, the diffuson coefficient, and the derivative of the stress with respect to the shear
rate. We also successfully compare a description of the variation of the stress at and just beyond the in-

stability threshold, with experimental results from a wormlike surfactant solution of CPC103.

PACS number(s): 47.50.+d, 47.20.—k, 36.20.—r

I. INTRODUCTION

The rheology of concentrated colloidal suspensions,
polymer or surfactant solutions, and many other complex
fIuids is often used as a tool for extracting structural in-
formation from these materials. It carriers, for instance,
the signature of ordering phase transitions, entanglement
of long polymer chains, or breaking and recombination
kinetics in self-assembled surfactant chains. Experiments
are usually performed in the shear geometry depicted in
Fig. 1: a steady shear is applied between two plates. The
velocity is in direction 1; the velocity gradient is in direc-
tion 2:

has been explained on the microscopic basis provided by
the theory of Doi and Edwards for polymer melts, but it
can also be viewed, at the macroscopic level, as a
mechanical instability arising for a vanishing derivative
of the stress with respect to the shear rate qd(yo)=0. A
linear stability analysis can be performed on the Navier-
Stokes equation in one dimension,

Bv& Ba&2

8 8

by considering a small perturbation in the shear velocity
profile and expanding the stress around its initial value:

v=(ra2 0 0)

One defines the viscosity as the ratio of the shear stress
o. ,2 by the shear rate. We will note the derivative of the
stress with respect to the shear rate gd( jo), which is also
of interest in this paper:

do 12
nd()'o) =

dp 7 3p

This "local viscosity" is measurable, as is the viscosity.
While carrying a simple shear experiment, one generally
assumes that the velocity profile of Eq. ( 1 ) is self-
sustained in the shear: any small, randomly generated ve-
locity fluctuation around the average profile must decay
to zero. Otherwise, an instability will grow away from
mechanical equilibrium. An example of such instability
growth is the so-called spurt eFect in polymer melts, first
reported by Bagley, Cabott, and West [1] as a discon-
tinuity in the How curve of polyethylene. This instability

~»(l') =~i2(r o)+' (4)

'Present address: Physical Chemistry 1, Chemical Center,
Lund University, P.O. Box 124, 221 00 Lund, Sweden. FICx. 1. Flow geometry: velocity field.
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'Qd yo
VISC (6)

It is clear that an instability will appear and grow when
i)d(yo) &0. From the experimental point of view this in-
stability corresponds to a situation in which the stress
first increases as a function of shear rate and then gradu-
ally levels off until a zero slope is attained. The Auid is
then expected to decompose into a layered structure, with
a series of strips alternatively subjected to low and high
shear rates at the same stress [2]. This instability can
occur in Aexible unbreakable polymers and in surfactant
solutions of wormlike micelles; in that case, this structure
is at the origin of a stress plateau observed in some sys-
tems [3].

In some cases, these domains have different concentra-
tions, as experimentally observed in concentrated worm-
like solutions [4]. In these cases [4,S], the rheological sig-
nature is very different. This shows the importance of
shear-concentration coupling. A similar instability also
exists in sheared suspensions of colloidal particles where
a plug forms in shear Aow past a critical shear. Nozieres
and Quemada [6] have explained how a coupling mecha-
nism between Aow and concentration is responsible for
plug formation in sheared suspension Aow. By invoking a
lift force (reminiscent of the magnum force in inviscid
fluids) that drives the particles toward the regions of
small shear rate, the increase of viscosity with concentra-
tion leads to a feedback circuit that may drive the insta-
bility: the particles migrate toward regions of small shear,
increasing the concentration there and thus reducing the
shear rate, which further increases the migration current.

The coupling between Aow and concentration is a rath-
er general feature of complex Auids, where the viscosity
usually depends on the concentration of at least one of
the constituents, and where the trajectory of the solute
species is often coupled to the stress bestowed on the
solution. This coupling has been described not only in
concentrated colloidal suspensions but also in polymer
solutions [7] and copolymer solutions [8] and binary
fluids [9], where two-fiuid models or stochastic dynamics
concepts have been successfully applied to describe the
increase of concentration fluctuations in shear flows [10]
or order-disorder phase transitions [11]. In this paper,
we attempt to classify some instabilities that may arise in
sheared complex Auids where flow and concentration are
coupled. %'e purposefully position our description at a
phenomenological level: on the one hand, the dynamics
of the concentration Auctuations will be treated by a gen-
eralized diffusion equation that explicitly accounts for the
coupling between Aow and concentration; on the other
hand, the Aow hydrodynamics will be treated with the
Navier-Stokes equation, including a constitutive equation

The linearized form of Eq. (3) derived with respect to xz
corresponds then to a diffusion equation

85y ~o i2 8 5y
P Bt By Jr i'o Bx2

for the shear perturbation with the corresponding
diffusion coeKcient:

relating the stress with both concentration and velocity
field.

This approach allows us to maintain some degree of
generality, clarifying the role of the coupling mechanism.
In Sec. II we present a linear stability analysis for the ve-
locity Auctuations around the average velocity profile un-
der a shear Aow, and we describe the conditions under
which different instabilities may grow. Special attention
is paid to the prediction of the stability geometry, an im-
portant issue related to orientation of the differently
sheared domains. In Sec. III we describe the Aow and
stress fields when the two phases coexist in the Aow and
compare our predictions to experimental results from a
wormlike surfactant solution of CPC103 [S]. The con-
cluding section discusses the limitations and possible ex-
tensions of our work.

II. LINEAR STABILITY FGR A CQNSKRVKD
ORDER PARAMKTKR

In the Appendix, we show that, if the order parameter
coupled with shear is nonconservative (as nematic aniso-
tropy), then the previous flow stability criterion remains
exactly the same: gd(yo) )0. Thus, we will only consid-
er the effect of a conservative order parameter, i.e., the
concentration. For many of the experimental situations
that might be indicated by our description, such as
binary-Auid mixtures, colloidal suspensions, surfactant
solutions, polymer solutions and blends, or diblock copo-
lymer melts, the evolution of the system can be described
by two coupled dynamical equations: one equation that
describes the dynamics of the order parameter and one
that describes mechanical equilibrium. They can be de-
rived with some degree of generality at the phenomeno-
logical level by considering the conservation law for the
order parameter

+V J=o
Bt

and writing a generalized Fick equation for the current

where p is the osmotic stress acting on the order parame-
ter (like the osmotic stress acting on the solute in a two-
component solution), g is a friction coefficient, and v is
the velocity field of the Auid. Enforcement of incompres-
sibility of the Auid leads to

ae +v V@=V[MVp(+, V.v)],
Bt

where M=@/g is a positive transport coefficient. For a
dilute solute (p=k~T In, oC&) in a quiescent solvent, one
recovers the usual diffusion equation with diffusion
coefficient D =k~T/g. We have assumed that the con-
centration is coupled with the shear rate. In an inhomo-
geneous Aow, the concentrations of two regions sheared
with different shear rates will evolve in time by a diffusion
process. This has been introduced by the mean of a
dependence of p on the shear rate.
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In Eq. (9), the convection term v V4 breaks the
translational invariance in direction 2 of the problem be-
cause the initial velocity depends explicitly on xz. Thus
the problem is inhomogeneous and leads to Orr-
Sommerfeld —like equations requiring sophisticated
asymptotic analysis [12]. However, substantial
simplification can be achieved if we can neglect distur-
bances modulated in direction 1. A.ny Auctuation with a
characteristic relaxation rate slower than yo is strongly
convected by the Aow, and the fluctuations are "layered"
in a plane perpendicular to the Aow direction. As the
Auctuations are controlled by diffusion, which is a very
slow process, it is quite reasonable to assume that all the
Auctuations are layered. Actually, this assumption
amounts to not taking into account the instabilities that
would appear at a length scale smaller than (D/yo)'~2—
typically of the order of micrometers. It is possible that
these instabilities occur in some systems [13), and so we
have to keep in mind that we have not considered a class
of instabilities for which the samples are not layered but
are instead becoming lumpy.

Therefore, we will assume that all the Auctuations are
layered, and hence that the wave vector of the Auctua-
tions can be taken perpendicular to the initial velocity,
i.e., in the (ez, e3) plane. In that case, v VC& vanishes,
and we can perform a linear analysis.

The other ingredient of the model is the mechanical
equilibrium, described by the Navier-Stokes equation

Bo' )3
'93 =

~'Yi3 i'i&=ra
(12)

This component should be positive on physical grounds
and does not affect the stability criterion we discuss
presently. Lastly, it can be shown that the modification
of the osmotic stress due to a shear Aow Auctuation
reduces to the single term

M BP
a(v v)

(13)

by a shear parallel to the initial one. It is clear that if a
secondary shear occurs in another direction, the effect
will be completely different. As in the previous case of
isotropic viscosity, we will allow velocity amplitude Auc-
tuations, not velocity direction Auctuations. Hence we
will keep only two terms corresponding to two directions
of the perturbated velocity gradient (Fig. 2); in each case,
the velocity Auctuation is parallel to the initial velocity,
but the gradient of the velocity Auctuation is either in
direction 2 or in direction 3. The first component is the
derivative of the stress with respect to the initial shear
rate and corresponds in fact to the "local viscosity"
gd(yo). This is the term that leads, without coupling, to
mechanical instabilities as explained previously. The
second component represents the dissipation due to a
shear with a gradient in direction 3 superimposed on the
initial shear rate in direction 2 (see Fig. 2) and is given by

p = —VP+ Vo. ,at

where we have limited ourselves to Aows with low Rey-
nolds numbers. The stress depends on both the shear and
the concentration; hence it can be developed as

For this, we use the property that the osmotic stress is
a scalar and thus can only depend on the scalar invariants

o(V v, @)=o(V.vo, @o)+

This is in fact the local constitutive equation of the Auid.
The term

is an unknown fourth order tensor that can itself lead to
various mechanical instabilities [14]. It contains a priori
many terms: the study of this tensor is in fact reminiscent
of all the work on constitutive equations. However, here
we are only interested in instabilities that are due to the
coupling, so we will not consider all the parameters but
will simplify this tensor as much as possible. The sim-
plest form of the tensor we can assume is scalar, which
corresponds to the case of a Newtonian Auid. In this ap-
proximation, the only efficient perturbations possess ve-
locity Auctuations parallel to the initial velocity. As we
are interested in the coupling between the mechanical in-
stabilities and phase separation, we have to deal with a
vanishing value of Bo.&2/By&2=gd. The possible cancella-
tion of this term arises from the convection of the stress

"0
I

I

I 7

b)

FIG. 2. Representation of the main and perturbative shear.
(a) The perturbative velocity gradient is in direction 2, as the
main velocity gradient; (b) the perturbative velocity gradient is
in direction 3, perpendicular to the main velocity gradient.
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of the Sow. Then, after linearization and suppression of
the irrelevant terms, we get the two coupled equations for
the deviations of concentration 5% and velocity 5v, :

CO +d
2 p

CO +D —C =0, for 0=0
k

(22)

and

85@ D ~5@+M BP 18 5v

at BX2
(14)

or to

CO +3
2 p

CO +D =0, for 8=m/2 .
k

(23)

a5v1 a25 a25
1 8~12 ae+ + (15)

where D is the classical diffusion coefficient and can de-
pend on the initial shear rate

(16)

Taking a velocity perturbation

lk 1'+ COt
v1 —ve (17)

with a wave vector k =k cosOe2+k sinOe3, we see that
Eqs. (5) and (6) become

co54 = —Dk 5@—iM k cos05v,Bp

Bp

pco5v= —k [gdcos 8+rj,sin 0]5v

BO 12+ ik 54k cosOe1,

(18)

CO + CO

k k

'gd 2 'l3 2cos 0+ sin 0+D
, p

'Id 2 I3 2+ cos 0+ sin 0 D —C cos 0=0, (20)

and combining Eqs. (7) and (8}, we obtain the following
dispersion equation:

2

A perturbation will grow if there is a positive solution
for co. We have plotted a two-parameter stability dia-
gram (Fig. 3) in the case D) 0. If D remains positive,
two types of instabilities are possible; both appear with
k~~ez, i.e., with a band structure perpendicular to the
shear. The first one occurs with a positive gd coefficient
and can be observed only while the stress is an increasing
function of the shear rate [see Fig. 4(a}].This instability
appears when

) D

p

and the other one occurs when

(24)

(25)

Thus, the second instability appears if the stress is de-
creasing with rising shear rate, because the negative cou-
pling stabilizes the Bow with regard to the purely
mechanical instability. However, —pD is of the order of
10 Pa s, so that a negative value of gd cannot be detect-
ed with rheometers. Hence, in practice the transition will
occur when gd is observed to vanish. The corresponding
flow curve o,@= f(y) will present a vanishing derivative
[Fig. 4(b)] similar to the purely mechanical instability de-
scribed in the Introduction. Actually, if C is negative,
thin layers with higher viscosity than that of the initial
Quid appear. This situation is in fact unstable because

where
T

M Bp ~o i2

p ~y

a~
4 =@0 p ()y

70

(21)

is the coupling term. C is the product of the derivative of
the viscosity with respect to the concentration and the
derivative of the chemital potential with respect to the
shear rate. C actually represents the feedback effect of
the concentration: if two domains have different shear
rates, their concentrations will evolve and then their
viscosities. So, if C is positive, the viscosity of the
domain with the higher shear rate is decreased, and vice
versa if C is negative. Let us note that C is difficult to es-
timate from experimental measurements; however, its
sign is very easy to obtain: C is positive if the shear in-
duced phase is less viscous than the initial one, and nega-
tive otherwise. It is zero if the shear induced phase has
the same concentration as the initial one.

The extrema for Eq. (20) lie at 8=0 or vr/2 Hence the.
previous dispersion equation reduces either to

FIG. 3. Stability diagram for a positive di6'usion coeKcient.
A perturbation is amplified in the domain noted "unstable" and
softened in the domain noted "stable. " The coupling term is

C=M/p(Bp/By) . . (Bcr, /Be)
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Sign of C

C&0

Instability
criterion

C&q2—D
P

Instability Geometry

C&0 (a) If D &0
g2 ~ —PD

(b) D(y) &0 k/fe,

the layers tend to break into small droplets. So in that
case, a secondary instability will be generated simultane-
ously.

Let us now consider the case in which the diffusion
coefficient, modified by the Qow, becomes negative. Thus,
a shear induced spinodal phase separation occurs. If the

a)

TABLE I. Classification of the instabilities when concentra-
tion and Bow are coupled.

coupling coefficient C is positive, the first instability pre-
viously described (24) will grow before the spinodal phase
separation. However, if the coupling coefficient C is neg-
ative, the spinodal separation can occur before the
mechanical instability. Then its wave vector will be
parallel to direction 3.

All these results are summarized in Table I. In fact,
Quids can be sorted into two types:

(i) If the coupling term C is positive, only one kind of
instability can occur. Concentration Quctuations induce
shear rate Quctuations, which in a feedback process gen-
erate an amplification of concentration Quctuations. The
sample is then layered perpendicularly to the gradient
direction.

(ii) If the coupling term C is negative, mechanical and
spinodal instabilities are separate. (a) If D remains posi-
tive, a mechanical instability can be generated. It is so
slightly modified and stabilized by the coupling that it
can be considered a purely mechanical one. The layering
remains perpendicular to direction 2. In general, the lay-
ers of the shear induced phase will not be stable, as they
are more viscous and break into droplets. (b) If D is
modified by the Qow and becomes negative, the thermo-
dynamical instability remains under Qow but the spinodal
separation is layered perpendicularly to the neutral direc-
tion.

So if C is positive, we can observe a new instability
with a strong coupling between shear rate and concentra-
tion. In contrast, if C is negative, we find almost all of
the usual instabilities, either purely mechanical or spino-
dal. Let us also remember that we have only discussed
shear banded instabilities and that other instabilities
(where the system becomes lumpy) can also exist. More-
over, secondary instabilities can develop, for instance, if
the shear induced phase is more viscous than the initial
one.

Shear induced transitions can be generated not only by
instabilities but also by nucleation and growth processes.
So we have two different domains in the phase diagram:
the first one corresponding to the instabilities and the
other to coexisting phases in Qow. This is similar to a
first order transition [6]. In practice, it is quite easy to
distinguish between mechanical and diffusive transitions
because the typical times are very different. But it will be
experimentally difficult to distinguish between instability
and nucleation and growth. To separate the two effects, a
study of the mechanical transient behavior must be com-
bined in the detection of the concentration and velocity
fields.

III. BEHAVIOR OF THE STRESS
IN THE COEXISTING DOMAIN

FIG. 4. Flow curve. (a) When the coupling term C is posi-
tive, the instability appears for increasing stress as a function of
shear rate. (b) When the coupling term C is negative, the insta-
bility appears for a vanishing derivative of the stress with
respect to the shear rate.

The behavior of the stress in the two-phase coexisting
domain is easy to estimate, from the dynamical phase dia-
gram (4&, y ), for both geometries. Let @, g, and y be the
concentration, the viscosity, and the shear rate of the ini-
tial phase (indexed with a') and of the shear induced one
(with a"). Let x be the volume fraction of the initial
Quid. %'e assume that the initial Quid is always kept at its
instability threshold y, (4&).
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If the instability appears with k ~~e2, the two phases are
similarly stressed but have different shear rates. The
measured shear rate is the mean shear rate

y =xy'+(1 —x )y",
0='9y '9 y

(26a)

(26b)

Hence, we can deduce an expression of the stress varia-
tion near the threshold at the beginning of the layering
(x =1):

dcT 1J
dy

yC
(27)

where AN is the concentration gap.
If the instability appears with k~~e3, then the two

phases are similarly sheared but differently stressed; using
the same argument, we can deduce the expression of the
stress variation at the threshold

de 1J
dy

yC

ay
BN

1—7l"
71'

(28)

Both expressions can be derived from the measurement of
the dynamical phase digram, from which we can easily
derive y, (C&) and b, N. Of course, if the estimated slope
do. /dy is negative, a secondary mechanical instability is
generated.

The experimental results were obtained from the
wormlike system described in [5] with two surfactant
concentrations: 31% and 34% (in weight) of surfactant.
The dynamical phase diagram and the How curves were
determined at equilibrium. In this specific case, the cou-
pling term C is positive because the shear induced phase
is less viscous than the initial one; hence we apply the ex-
pression (27) corresponding to the k~~e2 geometry. The
results are reported in Table II.

Let us point out that these results are approximate be-
cause the term By, /8@ depends strongly on the concen-
tration, as can be seen in the dynamical phase diagram
reported in [5]. So a small uncertainty about the concen-
tration induces a strong uncertainty about this term.
Another difhculty arises from the fact that in this worm-
like micellar system, the induced phase is nematic and is
very shear-thinning. Hence, care must be taken to deter-

mine the value of g", which has to be estimated at the
relevant stress. However, these experimental results are
satisfactory. Moreover, the slope obtained by using Eq.
(28), i.e., assuming the orthogonal geometry, is complete-
ly incompatible with the measured one, thus confirming
that the layers are perpendicular to the gradient direc-
tion.

IV. CONCLUSION

The model that we have developed here allows
classification of the layering instabilities when Aow and
concentration are coupled. This approach allows us to
distinguish two classes of Auids according to the sign of
the coupling term C. This coupling constant is positive if
the shear induced phase is less viscous than the initial
one. If C is positive, we have a new type of instability, in
which the mechanical and thermodynamical mechanisms
are mixed. If C is negative, the two mechanisms are un-
coupled and the instability is either quasi purely mechan-
ical (and develops when the local viscosity vanishes) or
thermodynamical (on the spinodal line). These instabili-
ties appear with specific orientation of the layers. Beside
these instabilities, other instabilities can occur (where the
system becomes lumpy), as well as nucleation and secon-
dary instabilities. Thus, many studies are required for an
insight into the shear induced transitions, although we
have also shown with a simple example that quantitative
analysis of the coexisting phase domain is possible.
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APPENDIX: COUPLING WITH A NONCONSERVED
ORDER PARAMETER

Let us consider the case in which the Aow is coupled
with a nonconserved order parameter S (as nematic an-
isotropy, for example). This parameter takes the So value
at equilibrium. The stress depends on both S and y, and
it can then be developed as

Bo )2o,z(y, t)=~i~(yo, t)+ 5y
By x Yp

~0 &2J 6S.
S=Sp( Pp)

TABLE II. Comparison between model and experiments on
wormlike micelles.

The order parameter S(y ) relaxes to its equilibrium value
So(y ):

(A 1)

Surfactant concentration

dcT
estimated from

the flow curve
dcT

calculated from
dr

the expression (27)

4=31%

0.58 Pas

0.4 Pas

+=34%

5.0 Pas

5.6 Pas

where g is a positive microscopic relaxation rate.
S can be developed as

S(y) =So(yo)+5S,
BSO

o(y)= o(yo)
Yp
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5~ 125y+ 55
5S S=SO(yo)

cl(T i2

57 Y ro

Let us consider a perturbation to the initial shear rate j'o
l kx 2 + cot

as 5j =5yoe ' . This leads to the following disper-

hence Eq. (Al) can be hnearized as

t}5S 5So= —$5S —g 5)',
Bt ()j y=yo

and the Navier-Stokes equation, derived with respect to
x 2, 1S given bp

sion equation:
V

k ~&2

p By i'= ro

BSc Bo'iz+ /+ co 5& i'= i'0 BS s =so(i'0)

The term between brackets is the total stress variation re-
sulting from a shear variation drri2/dy. Hence we find
the usual stability criterion for the eA'ective stress varia-
tion.
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