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We consider the instability of amphiphilic sponge phases with respect to a fluctuating lamellar phase
in a consistent random interface model based on the curvature-elastic Hamiltonian of the membranes.
The phase behavior is investigated in terms of bending moduli and surfactant concentration. .First-order
transitions are found upon changes in surfactant concentration, bending modulus, or saddle-splay
modulus in agreement with experimental observation.
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INTRODUCTION

Experimentally, it is well established that in self-
assembling amphiphilic systems of both binary and ter-
nary types (where the amphiphile is dissolved in water
or/and oil, respectively) the appearance of the isotropic
sponge phase is intimately related to a nearby lamellar
phase where the observed transition from sponge to
lamellae can be triggered by increasing surfactant con-
centration or chain length or by decreasing alcohol con-
tent [1,2].

The theoretical literature on the relative stability of
sponge and lamellar phases evolves mainly around micro-
scopic (Ising-type) models, phenomenological Ginzburg-
Landau (GL) theories [3—5], and the effective interface
(membrane) model [2,6—9]. While microscopic and GL
theories yield phase diagrams which are in principle
difficult to relate to experiment because they are cast in
phenomenological parameters without obvious physical
meaning [5], the coarse-grained membrane model of An-
delman et aI. consistently predicted phase diagrams for
both microemulsions [6] and L3 phases [7] which could
be expressed in terms of observable parameters and
which qualitatively resemble measurement. However,
the free energy of the lamellar phase considered there was
heuristically taken as Helfrich's free of steric repulsion
[10,11] and is therefore not consistent with the free ener-
gy of the sponge phase derived in [6,7]. An extension of
the coarse-grained lattice model by Golubovic and Lu-
bensky remedied this inconsistency, but at the expense of
an extended parameter space [8]. Finally, Porte et al. 's

work [2] is based on general stability properties of the
bending Hamiltonian [cf. Eq. (1)], leads to very useful in-
sights into the role of the saddle-splay curvature and
compares well to experiment, but remains semiquantita-
tive because it does not take entropic terms into account.

In general, a consistent and quantitative theoretical ap-
proach to the structure and thermodynamics of the
sponge (asymmetric or symmetric) and fluctuating lamel-
lar phases in terms of parameters which can be related to
experiment remains a challenge. An up-to-date account
of experimental phenomena and the (mostly open)
theoretical problems they pose has recently been given by

Strey [12], who lists the relative stability of the sponge
and lamellar phases, the typical shape of the lamellar re-
gion of the phase diagram (in ternary systems), and the
vanishing of the one-phase microemulsion region upon
change in surfactant chain length as outstanding prob-
lems. Furthermore, both experimentalists and theorists
have often pointed out that no current approach can do
justice to the fact that topological changes are a crucial
factor for the sponge-lamellar (S-L) transition, so that the
Gaussian curvature of the surfactant layer (cf. below)
should by no means be dropped in an approach to the S-L
transition [2,13—16]. This has led to renewed interest in
the role of topology in the most recent literature [17,18].
Another startling point is the stability of 1.3 toward I
phases up to a relatively high surfactant concentration
P, =30% [1],which has also been related to the effect of
saddle-splay curvature [2,13].

In this paper we will treat the instability of the sponge
phase which leads to a fluctuating lamellar phase within
the framework of a random interface model which allows
for a systematic and consistent approach to the structure
and thermodynamics of Auctuating membranes with vari-
able topology. Detailed attention will be given to the role
of Gaussian elasticity (Euler characteristic) [19] and sur-
factant concentration. Unlike most previous approaches
we will not work in the limit of membranes with high
bending stiffness [20,17,18,11), but will take effects of
configurational (topological) entropy quantitatively into
account. Free energies of both fluctuating sponge and
anisotropic phases will be consistently derived in one
theoretical framework.

MODEL

We build on a variational model of random self-
avoiding interfaces which has recently been successfully
applied to consistently describe both structure and ther-
modynamics of bicontinuous microemulsions and I.3

sponge phases [21—23]. This approach is based on the
description of the surfactant film as an ensemble of Aexi-
ble interfaces which are governed by the bending Hamil-
tonian &of an elastic bilayer [24]
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F ~F=FO+ (&—Ro)o, (2)

where ( )0 denotes Gaussian ensemble averages, and &0
is the Gaussian model Hamiltonian

% -gv '(k)~s(k)~
k

(3)

characterized by its structure factor v(k). One can write
the free energy per unit volume f=F/V in units of ks T
(neglecting constant terms) explicitly as

f[v(k)]=2m(H )0+~(K)0—
—,'g lnv(k),

k

(4)

where the (surface) average of a physical uuantity 0 is
defined here as (O)0/V=(5(s —a)+(Vs) O)o. In
membrane models with a bending Hamiltonian it is com-
mon to assume further that the surfactant film is in-
compressible [20], so that the free energy density

f=f[v(k);~, v, P„a]has to be functionally minimized
with respect to v(k) under the constraint of fixed total
surfactant volume fraction P, . Moreover, a mean-
spherical condition [22) has to be applied to contain the
overcounting of the entropy of the random field s(r).
These physical constraints can again be expressed solely
in terms of v(k) and a, the asymmetry parameter which
is related to the inside-outside ratio by
P= —'[1—erf (a/v'2)] [29]. The mean curvature of the
interface (H)0 is proportional to a (cf. the Appendix),
and hence we deal with symmetric structures for
(H)0-a=0 and with asymmetric structures for a&0.
For a given physical situation, i.e., at fixed values of ~, s7,

P„and P, the physical state of the system can therefore
be determined by variationally minimizing the free ener-
gy density f with respect to v(k) (and, possibly, by a sub-
sequent second minimization with respect to o. in binary

&=f dS[2aH +PA], (1)
S

where H and K denote the local mean square and
saddle-splay curvatures of the film, respectively. The pa-
rameters which characterize Eq. (1) are the surfactant
volume fraction P, (which is proportional to the surface
to volume ratio P, =r,S/V [20], where r, is the layer
thickness) and the bending and saddle-play moduli a and
a of the flexible interface. The ratio of the bulk partitions
on either side of the interface (or of inside and outside
[26] in binary systems) P is fixed by the oil and water
volume fractions in ternary systems, but is in principle a
free variable in binary systems. The variational model of
fiuctuating membrane systems is discussed (for the isotro-
pic case) in detail in [22,23]. It introduces surfaces that
are implicitly defined by a smoothly varying scalar field,
s(r), whose level cuts s(r)=const=a [25] delineate the
position of the surfactant film separating the bulk com-
ponents in ternary systems and the inside-outside parti-
tions in binary systems. The spectral density (structure
factor) of the field s (r ) can be systematically derived, if it
is assumed to be Gaussian, by using the variational
Feynman-Hellman theorem [27,28] which relates the free
energies of the real and model (Gaussian) systems F and
Fo by

systems). All structural and thermodynamic results of
the theory are then described by the parameters ~, I7, and
p, only, with no further adjustable parameters.

The simplest way of consistently generalizing the ran-
dom interface formalism beyond isotropic sponge phases
is by going to anisotropic phases with D & type symme-
try. One can then use a probability distribution of the
form

is(k, , k, )i'
-exp

2( ls(k, , k. ) I') 0

where s(k, k, ) is the Fourier transform of the random
field s(p, z), and p and z now denote in-plane and normal
coordinates. Isotropic and anisotropic structures can be
described using a (uniaxial, nonchiral) nematic order pa-
rameter which can be expressed as m;
= (s;sj —

—,'5;J (Vs ) )0, where the s,. are first derivatives of
s, analogous to the order parameter introduced by Maier
and Saupe [30—33]. If we —without loss of generality-
do the usual simplification to align the z axis of the coor-
dinate system with the direction of lamellar ordering
[32,33], m;J becomes diagonal, and a more convenient,
scalar quantity can be used as the order parameter. For
our purposes it is most convenient to define the dimen-
sionless quantity m by

0'

Values of the order parameter m = 1 describe an ensem-
ble of nearly flat layers; for m =0 we regain the sponge
phase and for m & 0 a fluctuating columnar phase is de-
scribed (which we found to be always unstable and which
we will not pursue here).

The nematic lamellar phase was first postulated by
Huse and Leibler [34]. Unlike smectic lamellar phases
which show long range orientational and quasi-long-
range positional order, nematic phases are characterized
by long range orientational order but only short range
positional order. The ground state of nematic phases is
highly degenerate, and can be imagined as an ensemble of
freely moving flat layers, so that an infinite number of
zero temperature configurations is possible (a paramagnet
with a molecular lattice constant in one dimension). For
all these configurations the bending energy is zero. The
smectic phase, in contrast, has a periodic ground state.
On the other hand, Morse and Milner's Brazovskii (GL)
model predicts that the nematic phase is always unstable
with respect to the smectic phase [33]. We cannot join
the discussion concerning the nematic-smectic instability
here [35], but note that our treatment will certainly pro-
vide an upper boundary of the stability of the sponge
phase (within the limits of accuracy of the first-order
Feynman-Hellman approximation) [40]. As this upper
limit can be predicted within a model that is capable of
consistently and quantitatively treating structure and
thermodynamics of fluctuating membranes with variable
topology beyond the limit of high bending stiffness and
under rigorous conservation of membrane area, it will in
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any case contribute to the understanding of the
isotropic-anisotropic transition in amphiphilic systems.

RESULTS

of the moments of the structure factor v(k, k, ), we find
the surface average of the mean square curvature to read
(cf. the Appendix for details concerning the calculation of
statistical averages)

%'e can proceed by establishing the statistical quanti-
ties needed to evaluate Eq. (4) for uniaxial nematic lamel-
lar phases [41]. With the definition

(k "k, ) =(4~ )
' f f dk dk, k" 'k, v(k, k, ) (6)

&H'&, =H, (~,,~, )(k," )+H2(~, ,~, ) & k,'k,'&

+H3(cr, o, )(.k, )+H4(cr, cr, ),
with

(7)

—1/2 —a2/2H (cr, cr, )=(4rr) 'cr, '/ e / m [ ——,'——,'m+( —', + —,'m+ ,'rn )m— '/ arctanh(m'/ )],
—1/2 —a2/2H2(cr, cr, )=(4m. ) 'cr, ' e m [3—m+( —3+2m+m )m '/ arctan(m' )],
—1/2 —a2/H3(cr, cr, )=(4m) 'cr, ' e m [ —1+—,'m+(1 —m) m ' arctanh(m' )],

3/2 —a2/2H4(o, cr, )=(12m)'0,./ e . / (a —1)m [9m 7m —+3m (1—m) m '/ arctanh(m' )] .

where the isotropic limit

2/ne +(k )/3 —,'(a —l)(k'&

[29] can be taken without problem. We see that, in the
absence of in-plane fiuctuations, m —+1 and (lt. )o~0,
corresponding to essentially parallel interfaces without
saddlelike connections.

Finally, the surface to volume ratio which is propor-
tional to P, reads

S/y — 1e a /2( )1/2

X[1+(1—m)m ' arctanh(m' )] . (9)

This expression converges toward the proper isotropic
limit for m~O (cf. [29]) and remains well defined for
maximal anisotropy m —+ 1.

We can now write the free energy per unit volume
more explicitly:

f[ v( k, , k)]= 2~[ H, ( k,")+H,(k,'k,')
+H3(k, )+H4]+~(K)0

f f dk dk, k lnv(k, k, ) .
Sm

(10)

Analogous to our work on isotropic systems [22],
we can functionally minimize c)f [v] /c) v =0 (where
f=f A+ S1/V +A (2(sr))0 is the free energy per unit
volume including the physical constraints coupled by
Lagrange multipliers) to gain the optimal structure factor
which, after simple calculation [42], reads

v(k, k, )=[ak +bk k, +ck, dk ek, +g] '—. —(ll)

For m —+ 0, Eq. (7) converges towards its isotropic form
(2/rr)e

—a /2+(k2)/3 [1(c22 1)(k2) + 1 (k4)/(k2)]
(which was derived by Teubner in [29]) as it should, with
cr, =-,'cr —,

' &k'&, &k' & —,', & k'&, (k'k,') —,', (k'&,
and (k, & —,'&k'&.

The saddle-splay curvature reads

(K) =m 'e (a —l)o (1—m)

I

The coefficients a, .. . ,g have to be determined by minimi-
zation. In the case of a, b, and c this can be done im-
mediately due to the simple form of Eq. (10), in which
H„H2, and H3 are only dependent on o. and o.„and
are thus given by

a(ic, g„g)=4rcH, , b(~, P„P)=4rcH2,

c(x,P„P)=41cH3, (12)

X[1+(1—m)m '/ arctanh(m' )]

(4m.2) ' f f dk dk, k k, v(k, k, )

2 a 2=m e P, [1+(1—m)m '/ arctanh(m' )]

(13)

Equation system (13) can be solved numerically or pertur-
batively for small values of m in the spirit of a Landau
expansion. In the latter case we write all relevant quanti-
ties up to fourth order:

x =xo+x1m+x2m +x3m +x4m2 3 4 (14)

with x =a, b, c, d, e, g, o. , o.„andv, and where the in-
dices i refer to orders in m. The series for o. , o„a,b,
and c are readily known. To calculate the remaining
coefficients and the structure factor, we can write

v;=w; —no n;,—2

with the recursion sequence w1=0, w2=no n1,
—3 2

w3 no [ —n, +2non, n2], and w4 =no [n, —3non in2
—4 3 —5 4 2

+non2+2non, n3], where

while the remaining coefficients d, e, and g can be deter-
mined by the two constraints (s (r))0=(1)=1 and

P, =const and the definition of the order parameter
m = 1 —cr /cr, which form the nonlinear equation system

(4m. )
' f f dk dk, k v(k, k, )=1,

(4~ )-2'f fdk dk, k v(k, k, )

=2(1—m )ne.
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and the indices i again denote orders in m. The particu-
larly simple form of the coefficients of the structure fac-
tor can be fully exploited by performing the integrations
on the left-hand side of Eqs. (13) in spherical coordinates
with appropriate integration limits in cylindrical coordi-

nates f o
' ' f 'k. . .dkzdk, . k, is an integrationQk —k "e

C

limit chosen as a small multiple of the inverse molecular
size; therefore thermal fiuctuations (which do not neces-
sarily have to leave the topology unchanged; the mem-
brane is, for example, allowed to disintegrate into small
aggregates for small values of i~ [22,23], cf. also the S-A
transition below) at all length scales down to some 2m/k,
are naturally included, and we do not have to make use of
renormalized bending moduli. Equation (15) also shows
that the 3 X 3 equation systems which determine the suc-

—
3 ~z4

—
i', ~z6

—
)'~ ~z6

—
3 ~z4

—
i'~ ~z6

—
~ ~z6

—,
'

Vz4 e; —I.,z
3 Vz4

(16)

/G

where V „=(2m ) 'fo'dk no k", L, i=W, —
A,;„

=(2m )
' f fdk dk, k ic;, A,;,= V26/15[8a;+2b; +3c, ],

A,;2= Vz s/10 5[4 8a;+ 8b; +6c], and A.;3= V2s/105[8a, .

+6b;+15c;]. The missing expansion coefficients of the
structure factor, d, , e, , and g;, can finally be given as

cessive sets of coefficients d„e„g„.. . , d4, e4, g4 are in-
homogeneous linear equation systems. The calculation of
the coefficients is therefore reduced to the evaluation of
(solvable) radial integrals and a set of linear equation sys-
tems

d;(ir, p„Q)=4 ' V V26' [4L, , V~~ V26+L;2(5 V~4
—9V22 V2s)+Li3(6Vp~ V26

—10V2„)],
e; (a,p„p) = —2 ' V ' V26' [ —2L;, V24 V26+ L;z( 5 Vz4

—3 V2z V&6 ) +L;3( 12V22 V2&
—10V24 )],

gi( &( s&( ) [Lil 26 Li2V24 i3 24]

w jth y = —y z4 + yzz yz6 . Together
with the already known expressions for a;, b;, and c;, we
have thus determined the coefficients of the structure fac-
tor as functions of a, P„and P up to fourth order in m,
where the most complicated terms appearing in the ex-
pansion coefficients are given as one-dimensional radial
integrals which are exactly solvable.

In order to check the perturbative results, we have
compared with independently calculated numerical solu-
tions (to all orders in m) of equation system (13) for a
number of choices of x and P, . Agreement was found to
be satisfactory but deteriorates —as expected —for in-
creasing values of m [43].

Before we proceed with stability and phase transitions,
it is instructive to consider briefly examples of nematic
lamellar structure. In Fig. 1 we show angle averaged
structure factors for i~=5, P, =0.1, and a=0 for order
parameter values of m =0 and 0.9. Corresponding real-
space representations for different values of the order pa-
rameters are given in the next figure, Fig. 2. The image
for I=0.9 resembles the freeze fracture electron micros-
copy (FFEM) images in [14,39] (particularly when look-
ing at more detailed zooms into the images given in
[14,39]) [44]. Uniaxial order is clearly discernible, but
there are still many topological defects. These become
progressively fewer for higher values of the order param-
eter m~1 when the structure factor approaches the
form expected for lamellar structure (o. —+0)

2

v '(k, k )=c k — (e bk )—P~ z z P

(e bk ) +ak —dk —+g .
4c

For small k ~0 we find that for e /(4c) —g =0 a sharp
peak at k, =e/(2c ) emerges, while at the same time due
to be/(2c) —d =0 the fiuctuation in the k direction con-

2 P
verges for k, ~e/(2c) toward a sharp peak centered at
k, =0.

Having determined the structure factor, we can insert
v( k, k, ; ir, P„a;m ) into the free energy per unit volume
[Eq. (10)] and integrate over k and k, to find the Landau
free energy per unit volume up to fourth order:

0.25

FIG. 1. Angle averaged structure factors v(k) for the isotro-
pic case (m =0, left curve) and a nematic state (m =0.9, right
curve) evaluated numerically for «.=5, P, =0.1, and a=O. The
expected difFerence of the swelling factor P which relates the
domain size A,o to the surfactant concentration A,O-PP, ' is well
known in experiment, e.g. [51], and is clearly visible from the
shift of peak positions of the above curves. Note that while the
nematic peak appears very sharp, it is not a quasi-Bragg peak,
as expected from a smectic lamellar phase. v is plotted in units
of k, and k in units of k, .
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FIG. 2. Two-dimensional cuts through the real-space struc-
tures gained from structure factors for K=5, p, =0.1, and a=0
for various values of m. The Euler characteristic of the struc-
ture at m =0.9 is about half that of the isotropic sponge case,
m =0. All images were generated from variationally deter-
mined structure factors v(K, p„a;m) using cylindrical coordi-
nates (in k space). {Note that the structures for m =0.5 and 0.9
are not stable in this case, and are only given here for illustra-
tive purposes. )

f(K, K, a, p, ) =fo(K, K, a, p, )+f2(K, K, a, p, )m

+fs(K, K, a, g, )m +f4(K, K, a, g, )m

(17)

The linear term vanishes as usual [32,45]. For the other
terms we find

2f2(K, K, a, p, )= — p, e (a —1)K+f&(K,a, p, ),
f~( ,K,Kap, )

3 2 2P, e (a —1)[2K—17K]+fs(K, a, g, ),975
(1g)

f4(K, K, a, g, ) = P, e (a —1)
37800

X [134K—599K]+f4(K, a, p, ),

where f symbolizes terms comprising straightforward
multiple integrals which are, however, too lengthy to be
given here. Nevertheless, Eq. (18) explicitly contains all K

dependent terms, and shows that negative values of 17 des-
tabilize the sponge, as expected. Quantitatively we find
that at constant P, the stability of the sponge depends
sensitively on the value of I7. In our model it is straight-
forward to distinguish the (bending) energetic and entro-
pic contributions to the free energy per unit volume. As
expected, for a rising value of the order parameter we ob-
serve a decrease in bending energy, while the entropic
contribution to the free energy per unit volume increases.
The sum of the two contributions leads to transitions
which turn out to be strongly first order in all investigat-
ed cases (m is close to saturation for the stable nematic
systems). Strongly negative values of K destroy the
sponge even for soft membranes a = 1, while in a narrow
region of only slightly negative 17 sponges appear to exist
up to quite large values of ~= 10. In Fig. 3 we show a ~-~
phase diagram for P, =0. 1 and a =0.

To calculate phase diagrams in representations con-
taining P, or P is more complicated. Upon an increase in

P, we again observe a strongly first-order transition (ac-

0.0
10 15

FIG. 3. K Kphas-e diagram at $, =0. 1 and a=0. S and N
denote the sponge and (nematic) lamellar phase. As in any of
the investigated cases the transition was strongly first order, and
it was necessary to check the results obtained from Landau
theory by a few points which were determined numerically.
Agreement is satisfactory, and lies for values of ~=2 and 5
within a few percent of the Landau values. The maximum of
sponge existence ~= 13 in the plot should, however, actually be
a=10. (~ is given in units of k&Tas throughout the text. )

companied by phase coexistence). To determine the con-
centrations of the coexisting phases, accurate knowledge
of the free energy per unit volume is needed which is
beyond the scope of the Landau expansion, while numeri-
cal techniques require a very complex computational
effort in order to work with a spherical integration region
and to surmount the current numerical limit of m =0.95.
We will not tackle this technically involved task here, but
will be content with presenting the respective stability
lines (where the free energy densities of the respective
phases are minimal) which suffice in providing the gen-
eral shape of the phase diagram. In Fig. 4 we show a P, -

~ stability diagram for a value of F=O. Alternatively in
Fig. 4, we could have plotted P, vs the "temperature"

'=T as, e.g., in [6]. Then we would see that the phase
sequence asymmetric sponge [26]—symmetric sponge—
lamellar phase resembles qualitatively experimental P, T-
phase diagrams, e.g. , the one for Ci2E5 in [1]. However, a
change in temperature also affects the saddle-splay curva-
ture, so that in a genuine P, Tphase diagra-m the detailed
shape of the L, 3 region could be different from that pre-
dicted by a p, -K ' plot. Nevertheless, even as the stabili-
ty plot (Fig. 4) stands, it is clear that the region of sponge
phase stability is rather narrow, in qualitative agreement
with experiment.

However, it is safer to relate changes in ~ to changes in
the surfactant chain length as investigated by Schubert
and Strey and by Strey in [46,12]. Figure 4 is plotted for
K=O, where the sponge region is maximal. Qualitatively,
we see that upon increase in ~ the 1.3 region shrinks visi-
bly in extent. This agrees with the result of Strey, who
found (in microemulsions) that the difference in surfac-
tant concentration between the middle phase and the S-I.
transition decreased for longer chain length [47]. Al-
though we could not deal with bending moduli sc & 20 be-
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20

0

10

0
0.0 0.2 0.4

cause of strong numerical instability, it is clear that for
some ~) 20 the L3 phase will have entirely vanished. In
the same way —as we know from our above results —the
L3 phase can be eradicated by decreasing 17. At high ~
the asymmetric and lamellar regions collide, and we ex-
pect a direct asymmetric sponge to lamellar transition (as
mentioned in passing in [13]). In microemulsions this sit-
uation would mean that we would predict a very dilute
lamellar phase to be in equilibrium with oil- and water-
rich phases. This has been observed, e.g., by Strey upon
further increase of the surfactant chain length to C&4E~
[12].

Finally, in all investigated systems we never found an
indication for a stable asymmetric lamellar phase
(a&O, mAO). This was suggested by Cates in [4], and
finds quantitative support here.

CONCLUSIONS

We have presented a consistent structural and thermo-
dynamic random interface theory of sponge and (nemat-
ic) lamellar phases. The model is based on a canonical en-
semble of fluctuating interfaces which is appropriate in a
picture of membrane phases as incompressible two-
dimensional Quid objects. The major virtues of our
description are that it goes beyond Hat interface approxi-
mations (high lr models) and remains well defined for low
values of the bending stifFness. Furthermore, the inter-

FIG. 4. P, -a stability diagram for ~=0, where A, S, and X
denote the asymmetric sponge, symmetric sponge, and (nematic)
lamellar phases, respectively. The A phase region was deter-
mined on the basis of our previous work in [22,23]. The S-A
transition is in this case first order with phase coexistence (tie
lines were omitted). The results for the S-N instability line are
based on Landau expansion (accurate S-N or A-N tie lines can-
not be given due to the technical di%culty of accurately deter-
mining the N free energy). Two cases at v=5 and 10 were
cross-checked with exact numerical solutions with satisfactory
success.

faces are described in a truly continuous fashion, their
structure [quantified by v(k)] and thermodynamics con-
sistently derived (unlike [6—8, 18], where coarse graining
and renormalization lead to similar phase diagrams but
do not provide consistently structural information), and
the conservation of the membrane area is rigorously im-
plemented. The theory allows for a quantitative and con-
sistent approach to the complex topological changes that
take place when a sponge undergoes a transition to a
lamellar structure without leaving the simple description
and parameter space given by the bending Hamiltonian.
Both energy and configurational entropy could be
quantified for the fluctuating membranes under investiga-
tion, and lead upon changes in the saddle-splay modulus
or surfactant concentration to first-order transitions. The
respective stability diagrams show a sequence of phases
which agrees with experiments. The extension of the
theory toward a consistent structural and thermodynam-
ic treatment of smectic lamellar phases with random to-
pological defects is clearly significant but very demand-

ACKNOWLEDGMENTS

We are grateful to S. A. Safran, B. W. Ninham, S.
Marcelja, and H. Wennerstrom for critical comments,
and are indebted to M. Teubner for helpful discussions.

APPENDIX

Because s(r) is a Gaussian process in real space [48],
statistical averages can be derived from the multivariate
Gaussian distribution [49]

1p= exp[ —
—,'A 'x ],

where I contains the whole set of random variables
comprising s and its first and second derivatives. The
matrix elements of the positive definite correlation matrix
A contain all possible autocorrelations and cross-
correlations between the random variables. As in the iso-
tropic case —cf. [29]—the symmetry of the problem
(D &) leads to a decoupling of the first derivatives and
the mixed second derivatives from the rest. We can write
the operators in differential form,

t)n t)n

Ts
I
vs I

Because of the cylindrical and mirror symmetry of the
system the only parts which do not vanish during the
averaging of the operator for the mean square curvature
read, for example,

+(Vs) H =
5 [s „(s+s, ) +s~~(s„+s,) +s„(s~+s) +4s„s„s+4s„,s„s,+4s,s s,

4 (Vs)

+2(s„s+s„s,+s s, )(s„„s~~+s„s+s s„)+2(s„ss„+ss„„s„+s,"s „s)],
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so that the ensemble average explicitly reads

S4
[[[[s—a[ [Vs['FI'),=( *,)s[ —,'[li(s —a)s„'„)()+—,'[5[s—a]s„„sss],]

(Vs)
s2s2

+
s s ls[[ [[[s—a)s„„]s+[5[s —a)s„„sss]s+2(5[s —a)s,„s„]s+2(5(s—a]ss, ]s]

(Vs )

4

+ —,
' s —as +—' 5s —as„s

(Vs)'

+ —,
] (5(s —a)s )o+~4(5(s —a)s „s„)o+—', (5(s —a)s„)()].

The averages over the zeroth and second derivatives are
not difficult, because the respective arguments of the mul-
tivariate Gaussian are essentially quadratic. In the case
a=O they can be evaluated using Wick's theorem [50].
The averages over the first derivatives are more compli-
cated. A set of successive transformations, p=s +s,
s, =y, and y=px, is required and leads to solvable in-
tegrals. Other differential operators, including Gaussian

curvature and the surface to volume ratio, can be treated
analogously. For the mean curvature (,H )[] we find that
for a =0 the surface is a zero mean curvature surface for
all values of m, as it should be. Finally, to obtain formu-
las (7) and (9), the definition of the order parameter m has
to be applied [note that Eqs. (7)—(9) have been derived for
( 1)= 1; generalization is trivial].
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