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Flow of simple liquids down narrow V grooves
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The dynamics of spreading of simple liquids down straight, narrow V grooves open at the top were

captured by real-time video imaging. Groove depths in polished copper ranged between 40 and 100 pm
and extended approximately 2 cm with V angles of 30', 60', and 90'. The surface tension to viscosity ra-
tios ranged from 46 to 970 cm/sec and the capillary number was small, Ca ((1 in all cases. The length
of the spreading liquid scaled with &t accurately for every case examined; the dynamics were well

represented by two numbers, the location of the front in reduced coordinates and a diffusion coe%cient.
A simple theory is presented for the dynamics of the advancing front that requires no adjustable parame-
ters and fits well the experimental data collected with six alcohols. Unlike drop spreading, the ad hoc

slip boundary condition of that theory is not invoked for the open groove problem; only the static ad-

vancing contact angle is used.

PACS number(s): 68.45.Gd, 68.45.Kg, 83.50.Lh

INTRODUCTION

The kinetics of liquid Aow through capillary tubes has
been studied for over a century [1,2], and much of the
renewed interest is motivated by the similarity to How in
random porous media, wherein an ensemble of contorted
capillarities is used as a model system [3—5]. Similarly,
the spreading of a thin liquid film over a rough surface
can be thought of as channel Row through a random net-
work of contiguous V grooves. For example, a tin-lead
alloy on rough copper surfaces [6] can flow extensively
and with uncommon rapidity. This paper represents a
systematic examination of simple liquids (nonreacting)
spreading along well characterized, open grooves; experi-
mental and theoretical results are reported and show ex-
cellent agreement

We show that a simple continuum model of Aow is sa-
tisfactory for understanding the open-channel capillary
behavior of liquids that exhibit a range of surface tension
to viscosity ratios (y/p) and contact angles (8); see Fig.
1(a). The range of these parameters, listed in Table I, is
enough to show that a simple Quid dynamic model is
sufficient to represent the experimental data. No adjust-
able parameters are required, nor is any slip boundary
condition necessary. It is demonstrated that the kinetic
data scale as &y/p and as ho (groove depth). It is also
demonstrated that the liquid profile scales as g=z/&Dt,
where z is the distance down the groove, D is a type of
diffusion coefftcient, and t is How time; see Fig. 1(b).

EXPERIMENT

An experimental problem is to machine grooves that
conform closely to the mathematical model, shown in
Fig. 1(a). The V grooves were scribed on polished copper
using carefully ground and polished pieces of machine
tool steel with three angles (P) of 30', 60', and 90'. Each
of six polished copper blanks of approximately

2.5X2.5X0.3 cm were scribed with a set of three inter-
secting grooves, each with a different groove angle p.
Different depths (from 40 to 100 pm) were obtained de-
pending on the angle. The scribing left ridges on the
grooves that were subsequently polished Aat. We deter-
mined the shape of the grooves, as well as the depths, by
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FIG. 1. (a) shows the groove cross section with the geometri-
cal parameters identified. The axis of the channel, z, is perpen-
dicular to the plane of the figure. (b) shows the experimental
height variation along a P=60' groove as determined by intensi-

ty measurements for spreading cyclohexanol. Data from six
profiles at 2.5, 5, 8.8, 12.6, 16.9, and 26.7 sec after to were scaled
in terms of reduced coordinates and plotted together. A three-
point running average was used to attenuate variations from
pixel to pixel due to noise.
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TABLE I. Experimental parameters, and experimental and calculated kinetic rate data.

Liquid
x/v

(cm/sec)

Contact
angle
(deg)

Groove
height
(pm)

Theo r. Calc. Expt.
Expt. Theor. Theor. rate' rate' rate

gQ YJQ K (cx, 0) (cm/sec' ) (cm/sec' ) (cm/sec' )

Percent
diff

1-4-butadiol
cyclohexanol
1-butanol
2-octanol
diethylene-glycol
1-heptanol
cyclo hexanol
cyclohexanol
cyclohexanol
cyclo hexanol
cyclo hexanol

63 ~ 1

45.8
969
408
115
390
45.8
45.8
45.8
45.8
45.8

29
6
6

&2
33

&2
6
6
6
6
6

91
91
91
91
91
91
55
57
91
86
83

1.4
2.0
2.0
2.0
1.4
2.0
2.0
2.0
2.0
2.0
2.0

2.4
2.65
2.65
2.65
2.4
2.65
2.65
2.65
2.65
2.65
2.65

0.0216
0.0233
0.0233
0.0222
0.0202
0.0222
0.0233
0.0233
0.0233
0.0233
0.0233

0.267
0.262
1.20
0.763
0.347
0.746
0.204
0.208
0.262
0.254
0.250

0.156
0.197
0.905
0.574
0.203
0.561
0.153
0.156
0.197
0.191
0.188

0.180
0.200
0.861
0.574
0.227
0.591
0.139
0.163
0.200
0.195
0.187

+13
+ 1.5
—5.1

+0.0
+ 10.6
+5.1

—10.1
+4.3
+ 1.5
+2.1
—0.5

'Calculated using theoretical values for both D and gQ.
Calculated using the theoretical value for D and the experimental value for qQ.

two techniques: a Dektak-8000 profilometer and a Wyko
(MHT-II) vertical scanning interferometer. The tip of
the profilometer had a cone angle of 60', which allowed
reasonable accuracy in characterizing the 90 grooves but
could only give the width of the opening of the 60' and
30 grooves. Dental impression material was used to
form an image of the grooves that could then be profiled
to find the depth of the grooves; see Table I. The Wyko
instrument confirmed the depth data and provided accu-
rate profile information for all grooves.

The liquids listed in Table I were used as received and
literature values [7] for the surface tensions, and viscosi-
ties were used in the interpretation of the spreading data.
Advancing static contact angles were measured by ob-
serving the profiles of sessile drops of the various liquids
in Table I, an uncertainty of about 2 was maintained.
We were able to greatly increase the contrast in the video
images by spiking each liquid with a very small mole
fraction of the fluorescing dye coumarin. A "black-light"
gave images of good contrast between the spreading
liquid that fluoresced and the copper substrate that was
only weakly illuminated by the "black-light. "

Spreading experiments, starting from a small drop of
liquid placed on the crossing of the grooves, were record-
ed in real time by a 512 X 512 pixel charge-coupled-device
camera attached to a zoom lens. A Sony video recorder
was fitted with time base electronics so that a time stamp
was recorded on each image. The system operated at 30
frames per sec timed to better than 0.01 sec. An Image
Pro system with a frame grabber was used to produce im-
age files for further processing. Spreading lengths (the
edge of the drop to the wet-to-dry edge of the advancing
front) were measured in each frame using image analysis
software. Typical results are shown in Fig. 2 for the six
liquids used in this study. When spreading occurred we
found that the distance of the front down any groove, for
any liquid, was accurately linear with &t starting a few
frames after the liquid entered a groove. This is a major
experimental result and is consistent with capillary Aow

kinetics in closed capillaries [2].
It was also possible to determine the profile of the

spreading liquid in detail using TIFF files captured from
the videotape record of the, spreading dynamics by
measuring the intensity of the fluorescence along the line
of pixels down the center of the filling grove. The ratio
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FIG. 2. Linear plots of the data sets as spreading distance vs
the square root of spreading time. Lower set of curves: raw ex-
perimental data. Upper set of curves: result of scaling of the ex-
perimental data to that of 1-4-butadiol using the data in Table I
and gb[y/pIC(a, g)]'~ as a scaling factor. The experimental
rates in Table I are obtained from least squares fits to the exper-
imental data.
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Consider a V-shaped groove, as shown in Fig. 1(a).
The wetting liquid defines a contact angle 8(z, t) with the
straight walls of the groove that are oriented at an angle
a relative to the surface of the plate. Liquid fills the
groove to a depth h (z, t). The free-liquid surface is as-
sumed to have a circular shape with radius R, and z is the
axial position along the groove with the origin at the edge
of the liquid drop. The depth of the liquid at z=O is Ao.
The source of the wetting liquid is a sessile drop having
radius Ro »R, large enough so that its Laplace pressure
can be ignored and the location of its three-phase contact
line is nearly constant with time, Flow commences at
time t=0, and the liquid is drawn into the groove by
capillary forces to a distance zo(t) from the three-phase
contact line of the sessile drop. The mathematical prob-
lem is to calculate the Aow distance and the shape of the
liquid in this perfect V groove as a function of time.

The pressure drop across the surface at a distance z
down the groove is given by the Laplace equation

1 1O=y —+
R R~

—n[P]n,

where y is liquid surface tension, Rz is the radius of cur-
vature along z, [P] is the pressure tensor jump, and n is
the normal vector to the liquid surface. In P, the contri-
bution due to the velocity gradient at the free surface is
ignored because it is small, which is justified by the fact

I

h/ho was estimated by the intensity ratio I/Io, where
I(z, t) was the gray-scale level at (z, t) and Io was the
gray-scale level at the edge of the drop at the front of the
groove; see Fig. 1(b). The frame grabbing process added
some noise to the images, which was minimized by doing
a three-point running average on the raw data. We now
describe the elements of a theory that represents the
spreading kinetics without adjustable parameters and
then discuss the comparison with the experimental re-
sults shown in the figures and table.

MODEL
where po is the constant pressure in the vapor phase.
The gradient of this pressure is the driving force for the
How.

The pressure may vary down the groove through both
h and 0. The simplification we use is to consider the Row
as occurring in two segments. In the first segment, the
liquid fills the groove h (z, t) =ho, extending up to some
location behind the advancing front. Over the distance of
the filled groove where the liquid is pinned at the edges of
the groove, h is constant and the pressure variation is
through 8(z, t). The pressure variation in the second seg-
ment, which is the unfilled region that includes the front,
is through h (z, t) with fixed 8. In the second segment 8 is
taken as the advancing, static contact angle. We next
construct the governing equation for the variation of
h (z, t) down the unfilled segment of the groove. The
problem of Row in both segments, including matching
conditions, is the focus of a second paper [8].

The volumetric Aow rate q is related to the cross sec-
tional area A (z, t) of the liquid by the formula

Bq(z, t) BA (z, t)
az at

which was derived from mass conservation in the thin
shell (z,z+5) of volume A *5 assuming that the liquid is
incompressible. The cross sectional area of the liquid in
the groove, Fig. 1(a), is

A (a,z, t) =h (z, t)'A '[a, 0(z, t) ],
where

(4)

that the capillary number is small, Ca= U(p/y) «1,
where U is a characteristic velocity. Experimentally,
Ca & 0.0006. Later in this paper we provide experimental
evidence that R 2 »R, allowing 1/R 2 to be safely
neglected for our modeling purposes. If 1fR 2 is neglect-
ed in Eq. (1) relative to 1/R, the pressure in the fiuid is
given as

sin[a —8(z, t) ]tan(a)
p a, z, t= —y +po,

A*(a, 0)= sin (a —8)tan(a) —(a —8)+sin(a —8)cos(a —8)
tan (a)sin (a —0)

The volumetric How rate can be written in the con-
venient form [8]

h (z, t) F(0 )
Bp

p Bz

partial difFerential equation is of the diffusion type

B h2( )
D 8 h2( )

Bh(z, t)
(6a)

where I (0,a) is a positive function that plays the role of
an area-averaged velocity field along the groove and p is
the liquid viscosity. The pressure gradient along the axis
of the groove is assumed to change on a length scale that
is large compared to h (z, t). Combining Eqs. (2)—(5) with
8 constant (unfilled groove) we find that the governing

where by definition

I (a, 8)sin(a —0)tan(a)

Relevant K (a, 0) numbers are listed in Table I. This is an
ill-posed problem if the diffusion coefficient is negative
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but well posed if D& 0, necessarily a —8)0. If 8 & m. /2,
How will commence if a is large enough. We solve Eq.
(6a) in the front segment and a similar equation in the
back segment. The solutions are matched by requiring
that the pressure and pressure gradients are continuous
at the dividing surface between the two segments of the
groove. We also assume initial and boundary conditions
h(z, O)=0 and that 8—+a as z~O. We use the fact that
at any finite time, the total volume of liquid in the groove
is finite, so that for t & ao, J 0"h (z, t)dz & ~.

Observe that the governing equation and initial and
boundary conditions are invariant to the transformation
z =A,z, t =At ,Th. is invariance ensures that from Eq. (6a)
the similarity variable is

h (z, t) =hop(i) ),
where

z
v'Dt

(7)

See Ref. [9] for many details and examples.
A special case of Eq. (8) is used in computing the rate

constants shown in Table I: the distance to the front is zo
and the corresponding scaled distance is g&. The experi-
mental rate constant, the slope of zo vs v't, is compared
to rlov'D, the calculated rate constant in Table I. The
coe%cient D is insensitive to the details of the model for
the first segment of the How and so is used in the experi-
mental estimate of go, which is somewhat sensitive to
how the contact angle variation is modeled. Theoretical
values of rlo for wetting liquids (8-0) range from 1.7
when the groove is never filled to 2.6 for the two segment
model. D is calculated from Eq. (6) using the static, ad-
vancing contact angle.

Several details are omitted which we plan to publish
elsewhere [8]. For example, the function I (a, 8) is
defined as part of the process of constructing q, Eq. (5),
and developing numerical solutions of the boundary
value problem. Such numerical solutions are necessary to
determine values for K(a, 8) in Eq. (6b) and iso. There is

no exact analytical representation in terms of simple
functions. Approximation formulas [8], which reproduce
the numbers for K(a, 8) used in Table I, are

'3 ' 1/2
A *(8,a)

cota
h, II (a, 8)=I (a, a)

0

"cl cota[cos(a —8)—1]=1+
ho sin(a —8)

(9a)

RESULTS AND DISCUSSION

We assert that the spreading distance is linear with
v t. This contention is supported by the experimental

—,'cot a+ —",cot a+ —,'cot a
I"(a,a) =

1+3.4cota+4cot a+3.4cot a+cot a
(9b)

Formula (9) is accurate to 2.5% when compared to the
numerical solution of the boundary value problem and is
valid for both segments.
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FIG. 3. Nonlinear least squares fit to 1-butanol flow in a 60'
groove. The experimental data pairs (z, t) for the data in Fig. 2
were fit to the function z =a(t —to)". The resulting fitting pa-
rameters are given in the figure. The standard deviations were
computed from each covariance matrix computed in the fit.

data shown in Fig. 2, which demonstrate the linear rela-
tionship between zo and Qt —to, where to is the time as-

sociated with the frame in which the liquid is first seen in
the groove. (It was difficult to determine to exactly from
the video record. ) Also note that there are deviations
when t goes to to, which is expected since the Aow fields
are not well developed at times close to to (A. log-log
plot of the data is linear, except at short times. ) We also
tested the hypothesis of v t behavior by fitting on the test
function zo=a(t to)"—, allowing n to adjust to a non-
linear least squares fit to determine a, to, and n. The re-
sults are that for six liquids n =0.521+0.04. However,
the linear estimate of the correlation coefticient between a
and n was greater than —0.9 and as large as —0.99,
which signals a strong correlation of these parameters
when fit to the data. A second set of fits adjusted a, to
but kept n =

—,'. The weighted sum of the squares of the
residuals are very close to being the same regardless of
whether n is adjusted or fixed at n =

—,'. The result of this
nonlinear least squares fitting is shown graphically in Fig.
3 for one example, the spreading of 1-butanol in a 60'
groove. Note the indistinguishable difference compared
to experiment between the case where n is fixed at —,

' and
the case where n is allowed to vary. From log-log plots,
nonlinear least squares fits, and the &t plots in Fig. 2 we
conclude that the hypothesis that n =

—,
' is supported by

all of the spreading data reported herein.
The lower portion of Fig. 2 shows the data plotted as

the spreading distance vs &t [Eq. (8)] for all six liquids
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flowing in the same 60' groove of one of the six copper
samples. The experimental rate values in Table I are the
slopes (obtained from least squares fits to this data) of
these experimental linear plots. This &t dependence was
always obeyed, when spreading occurred, for all com-
binations of sample, groove, and liquid. We observed
cases where the contact angle was large enough to
prevent flow, which is in qualitative agreement with the
requirement that D&0. In fact, the fluids with contact
angles clustered near 30' would not flow down the
grooves in copper with ca=45'. However, the simple
theory expressed here allows flow in groove angles up to
45 . Requiring D&0 is necessary, but a stability argu-
ment is consistent with the experimental result and may
provide a sufficient condition for flow to start. Recognize
that the simple theory is not valid at very short
times. However, &t behavior was established within two
or three video frames (-0.1 sec) so that this limitation
was not studied.

The curves in the upper portion of Fig. 2 are the result
of scaling (relative to that of 1-4-butadiol) the raw data in
the lower portion of the figure using rlo[E(a, 8)y/p)''
as the scaling factor and the values listed in Table I.
Since in this case hp is constant, only the surface tension
to the viscosity ratio and the calculated values of K(a, o)
and gp are involved in the collapse of the experimental
family of spreading rate curves to a common straight
line, in this case that of 1-4-butadiol. The complementa-
ry case is where a single liquid spreads down the same
type of Cu grooves. In this case iio[K(a, 8)y/ip]'~2
should be constant, leaving only hp as an active parame-
ter. The lower portion of Fig. 4 contains plots of spread-
ing distance vs &t for cyclohexanol fiowing in the 60'
grooves in all six of the copper samples. Again, the cor-
responding experimental data values given in Table I
were obtained from the slopes of this data. While the
variation in groove depths is insufficiently broad to ade-
quately test such scaling, the result of scaling of this data
to ho', as in the upper portion of Fig. 4, is clustering of
the data more tightly about a single, linear relationship.
This behavior is consistent with theory, as is shown quan-
titatively in Table I.

The profile function shown in Fig. 1(b) continues the
pattern of agreement between experiment and theory and
shows additional detail. The data used to generate this
figure was constructed from six frames captured at
different times during spreading of cyclohexanol down a
60 groove. The original data sets were first made nondi-
mensional by the scaling of Eq. (8), then all of them were
concatenated into one data set, and finally smoothed
gently by a three-point running average. Figure 1(b)
shows the comparison of the profile data with theory for
cyclohexanol. It is clear that a single curve is traced
from which an experimental qp was estimated for Table I.

The experimental profile is gentle, as is required for ig-
noring the curvature along the groove R2. The measured
angle between a tangent to the liquid surface and the
groove axis was never larger than —10'. Figure 1(b) also
shows the fit of the theoretical profile of the front to the
experimental profile. The shape of the low contact angle
front is well represented by the theory. As an additional
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FIG. 4. Linear plots of spreading distance vs the square root
of spreading time for the same alcohol (cyclohexanol) flowing in
multiple examples of 60 grooves. Lower family of curves: raw
experimental data. Upper family curves: result of scaling to a
common groove depth using ho as the scaling factor. Symbols
refer to the six cyclohexanol runs listed in Table I.

test, our theory predicts that in the limit as h —+0,
[ —( I /rt )(Bp/Oil )]~—,'. The profile data was fit by a po-
lynomial from which a rough estimate of this limit was
computed. The experimental limit is 0.61 0.2, which we
consider to be in good agreement with theory. However,
the numbers computed from theory for gp are too large,
for example, 2.6 compared to 2.0+0.2; see Table I.

The continuum theory and experiment compare well
without adjustable parameters. The scaling required of
this theory is established within 0.1 sec after the front
emerges from the drop. At this level of theoretical devel-
opment, there is no need to include a slip boundary con-
dition at the three phase contact line as was done in the
hydrodynamic theory of spreading drops [10]. When the
R2 contribution is added to Eq. (2), the modified Eq. (6a)
will no longer admit a similarity solution. Inclusion of
R2 thus makes the modeling much more complex, and
construction of such a model does not seem warranted by
the data. Indeed, the experimental results strongly sup-
port the &t behavior consistent with ignoring R2. This
is also consistent with the observations shown in Fig.
1(b). It appears that the Rz term cannot be a factor in
improving the estimation of gp. We conclude that the
static contact angle is sufficient for open-groove flow of
many wetting liquids. The experimental data is
sufficiently rich to uncover the difference between the ex-
perimental and theoretical values of qp. Otherwise, there
is essential agreement between theory and experiment.
The remaining discrepancy probably involves details con-
cerning the matching conditions between the two seg-
ments, the effect of real groove geometry, and the details
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of the dynamics of the three-phase contact line at the
front. These factors are being studied so as to improve
the estimation of go. The character of the transition be-
tween the dynamics of spreading down grooves and drop
spreading (P= 180') leads to comparisons with the classi-
cal wetting literature. We plan to discuss these topics in
a longer paper.
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